
AN EXCURSION INTO ÉTALE COHOMOLOGY

DANIEL KRIZ

Abstract. In this expository article, we review the basic con-
structions and properties of the Étale cohomology groups of general
schemes, including their relation to the Čech cohomology groups,
and a brief discussion of some of their applications.

I’d love to go on an excursion - why not?...

Into the mountains, of course, where else? - Franz Kafka

1. Introduction

The original motivation of Étale cohomology was to realize the pro-
gram set forth by Weil of formulating a topological theory on a variety
over a field k which would play a similar role as the singular homology
on a general topological space. The problem with Zariski cohomology is
that it is often too difficult to compute, and does not resemble singular
cohomology.

Grothendieck’s solution was to consider, instead of the category of
open sets of the space, the category of “étale mappings” to the space.
These maps, in a sense, define open sets of finite coverings of the origi-
nal space, which can be used to define a new cohomological theory. Per-
haps most importantly, étale cohomology is superior to Zariski topol-
ogy in its easy computability through Čech cohomology. Futhermore,
unlike singular cohomology, Étale cohomology enables one to obtain
results in positive characteristics.

In this note, we undertake an excursion into the basic definitions
and constructions behind general Étale groups, as well as a practical
means of calculating them through Čech cohomology. We now begin
our investigation with the appropriate definitions to make the above
construction precise.
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2. Definitions

Let (X,OX) and (Y,OY ) be schemes. A morphism of schemes con-
sists of a pair of maps (f : X → Y, f# : OY → f∗OX) which satisfy
the obvious compatibility conditions with the restriction maps. By the
phrase f is locally of finite type, we mean that for any affine neigh-
borhood V = SpecB ⊂ Y , then there exists an open affine covering
{Uj = SpecAj}j∈J of f−1(V ) such that for each j, Aj is a finite B-
algebra. If noreover the affine cover {Uj} can be chosen to be finite,
then f is said to be of finite type. A scheme Y along with a morphism
f : Y → X is called a scheme over X, and f is called the structure
morphism of Y .

Definition 1 (Flat morphism). A ring homomorphism f : A → B is
flat if B is flat when viewed as an A-module via f (i.e., the functor
· ⊗AB is exact). A morphism of schemes f : Y → X is flat if for each
y ∈ Y , the induced map on stalks f#

y : OX,f(y) → (f∗OY )f(y) ⊆ OY,y is
flat.

A flat morphsim f : A→ B is called faithfully flat if it satisfies the
following condition: for any nonzero A-module M , B⊗AM 6= 0 (again
we use f to consider B as an A-module). In particular, taking M to
be principal in A shows that f is injective.

Definition 2 (Unramified morphism). Let f : Y → X be a morphism
of schemes. f is said to be unramified at y ∈ Y if it is locally of finite
type and OY,y/mxOY,y is a finite separable field extension of the residue
field k(x), where here x = f(y) and mx = f#(my) with mx being the
maimal ideal of OX,x. f is said to be unramified if it is unramified at
each point y ∈ Y .

Remark 3. Note that this implies that in terms of rings,f : A→ B is
unramified at q ∈ SpecB if and only if p = f−1(q) generates the maxi-
mal ideal in Bq and k(q) is a finite separable extension of k(p). Thus
our definition of unramified agrees with the number-theoretic notion.

Definition 4 (Étale morphism). Let f : X → Y be a flat, unramified
morphism of schemes. Then f is called étale. f being unramified has
the geometric interpretation that when f as a flat morphism is viewed
as a covering map, then it has no branch points.

Theorem 5. Any flat morphism that is locally of finite-type is open.

Proof. See Milne [5,I.2.12], or Hartshorne [4,III.9.1]. �

The family of étale morphisms X → Y behaves nicely.
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Proposition 6. (1) Any open immersion is étale.
(2) The composition of two étale morphisms is étale.
(3) The property of being étale is preserved under base change.

Proof. Any open immersion is a local isomorphism, which proves (1).
(2) immediately follows from that fact that any immersion is unramified
(this follows directly from the definition of an immersion). For (3), see
Milne [5,I.3.3]. �

Note that by this observation, we have that the class E of all étale
morphisms of finite-type satsifies:

• all isomorphisms of schemes are in E
• the composition of any two elements of E is in E
• any base change of any element in E is an element in E

We call an element of E and E-morphism.
Note that by Theorem 5 and Proposition 6, any E-morphism is open

and any open immersion is an E-morphism. It is in this sense that the
E-morphisms will play the part of the open sets in our new topology,
the Grothendieck Topology.

The general definition of a Grothendieck topology T on a category
C is defined as follows. By sieve on an object c ∈ C, we mean a
subfunctor of Hom(−, c). Suppose s is a sieve on an object c. Then
for any morphism f : c′ → c, we define the pullback of s along f by
f ∗s(c′′) = {g : c′′ → c′ : f ◦ g ∈ S(c′′)}, where the functor f ∗s inherits
its action on morphisms from being a subfunctor of Hom(−, c′).

Definition 7 (Grothendieck Topology). A Grothendieck topology on
a category C is a rule S which associates to each c ∈ obj(C) a collection
of sieves S(c) on c, called the covering sieves of c, and which is subject
to the following axioms:

(1) If f : c′ → c is a morphism, and s ∈ S(c) then f ∗s(c′) ∈ S(c′).
(2) Suppose s ∈ S(c), s′ is any sieve on c, and for each c′ ∈ obj(C),

and any (f : c′ → c) ∈ S(c′), that f ∗s′ ∈ S(c′). Then s′ ∈ S(c′).
(3) For any c ∈ obj(C), we have Hom(−, c) ∈ S(c).

Now fix a full subcategory G/X of Sch/X which is closed under fiber
products and which satisfies the following condition: for any g : Y → X
in G/X and any E-morphism f : U → Y , the composition f ◦ g : U →
X is in G/X. We define an E-covering of Y ∈ obj(G/X) to be a
family {fi : Ui → Y }i∈I of E-morphisms such that Y =

⋃
i∈I fi(X).

The class of all E-coverings E is called the E-topology on G/X. We
then call (G/X, E) the E-site over X, and denote it by (G/X)E, or
when G/X is clear from the context, XE.
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Remark 8. Note that (G/X)E satisfies the following properties:

(1) if φ : U → U is an isomorphism in G/X, then it is an E-
covering;

(2) if {φi : Ui → U}i∈I is an E-covering, and for each i, {ψij : Vij →
Ui}j∈J is an E-covering, then {ψij ◦ φi : Vij → U}i∈I,j∈J is an
E-covering;

(3) if {φi : Ui → U}i∈I is a covering, then for any morphism (f :
V → U) ∈ Mor(G/X), after applying base-change with respect
to f to each φi, {(φi)(V ) : Ui ×U V → V }i∈I is an E-covering.

Hence (G/X)E is indeed a Grothendieck topology.

We have, in effect, replaced the open sets of X with the objects
of G/X, and the rigid requirement on a scheme X that a covering
consist of subsets of X with the more flexible notion of E-coverings. It
turns out that we can define the usual notions of presheaf, sheaf, and
associated sheaf analagously in the étale situation.

Remark 9. Since E contains all open immersions, then an open cov-
ering {Ui}i∈I in the usual Zariski topoology is a covering {idi : Ui →
Ui}i∈I in the E-topology. Moreover, a scheme F defines, by restriction,
a sheaf FU on each U ∈ G/X. So the E-topology is indeed “stronger”
than the Zariski topology.

Definition 10 (Presheaf). A presheaf F , just as in the normal setting,
is a contravariant functor from the category of open sets of (G/X)◦ to
the category of Abelian groups Ab. That is, for any open set U ∈ G/X,
F associates to U and abelian group F(U). Often this is also denoted,
as in the standard setting, by Γ(U,F), and are called the sections of
F over U . To any morphism f : V → U is associated a homomor-
phism of abelian groups F(f) : F(U) → F(V ). These correspond to
the restriction maps in the standard situation, and so are sometimes
denoted in the same way by ρU ′U or (s 7→ s|U ′). Unlike in the standard
setting over topological spaces however, in general there may be many
restrictions U ′ → U which need not agree.

Definition 11 (Morphism of presheaves). A morphism of presheaves
φ : F → F ′ on (G/X)E is a morphism of functors. That is, to any
U ∈ G/X, φ associates a morphism of abelian groups φ(U) : F(U)→
F ′(U) which is compatible with the restriction maps.

Remark 12. The presheaves over (G/X)E along with the presheaf
morphism form a category P((G/X)E), which just as in the standard
setting, inherits most of the properties of Ab. For any two presheaves
F and F ′, we can define their direct sum in the obvious way U 7→
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F(U) ⊕ F ′(U) and f 7→ F(f) ⊕ F ′(f). Similarly, for the kernel
and cokernel of any morphism φ : F → F ′, we get the presheaves
ker(φ)(U) = ker(φ(U)) and coker(φ)(U) = coker(φ(U)). One can also
define general direct sums, direct products, direct limits and inverse
limits analagrously. Hence P((G/X)E) forms an abelian category.

Definition 13 (Continuous morphism). Let (G′/X ′)E′ and (G/X)E
be sites. Then a morphism π : X ′ → X of schemes defines a morphism
of sites (G′/X ′)E′)→ (G/X)E if:

(1) for any Y ∈ obj(G/X), the base change Y(X′) is in obj(G′/X ′);
(2) for any E-morphism (U → Y ) ∈ Mor(G/X), the morphism

U(X′) → Y(X′), obtained by the base change π : X ′ → X, is an
E ′-morphism in Mor(G′/X ′).

Note that since the base change of a surjective family of morphisms
remains surjective, then π defines a functor

π̃ : G/X → G′/X ′

π̃(Y ) = Y(X′)

and so colloquially, we refer to such a π as a continuous morphism
π : XE → X ′E′.

We now translate the notion of a sheaf from the standard setting to
the étale situation. The key is to replace the intersection of two open
sets with their fibered product. This indeed defines the intersection in
the Grothendieck topology.

Definition 14 (Sheaf). A sheaf F is a presheaf which satisfies the
following axioms

(1) local identity: if s ∈ F(U) and there is a covering {Ui →
U}i∈I of U such that s|Ui

= 0 for all i, then s = 0
(2) gluing axiom: if {Ui → U}i∈I is a covering, and {si}i∈I ,
si ∈ F(Ui) is a family of sections such that si|Ui×UUk

= sj|Ui×UUj

for all i, j ∈ I, then there exists a section s ∈ F(U) with s|Ui
=

si for all i ∈ I.

As usual, axiom (1) implies that the section s formed by gluing together
the sections si in axiom (2) is uniquely determined by the si.

Definition 15 (Direct image and Inverse image). Suppose π : X ′E′ →
XE is continuous. To any presheaf P ′ on X ′E′, define πp(P

′) = P ′ ◦
π′ on XE. More precisely, πp(P

′) is the presheaf on XE such that
Γ(U, πp(P

′)) = Γ(U(X′), P
′). We call the presheaf πp(P

′) the direct
image of P ′.
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Now it is easy to see that πp defines a functor P(X ′E′) → P(XE),
and we define the inverse image functor πp : P(XE) → P(X ′E′) to be
the left adjoint of πp; so pip is the functor such that

HomP(X′)(π
pP, P ′) ∼= HomP(X)(P, πpP

′)

whose existence is guaranteed by a well-known result in category theory
(see, for example, Milne, [5,II.2.2]).

As in sheaf theory over topological spaces, we have the notion of
an associated sheaf to a presheaf, whose existence is guaranteed by the
following theorem.

Theorem 16. For any presheaf P on XE, there is a sheaf aP on XE

and a morphism θ : P → aP such that any morphism φ from P into a
sheaf F factors uniquely as in the following commutative diagram:

P aP

F

θ

φ φ′

Proof. See Milne [5,II.2.11].
�

Of course it is easy to see that uniqueness is a formal consequence
of the universal property.

Definition 17 (Associated sheaf to a presheaf). We for a presheaf P ,
we call the sheaf aP as in Theorem 16 the associated sheaf to P .

Remark 18. Note that P 7→ aP is a functor. It is in fact the left ad-
joint of the inclusion functor S(XE) ↪→ P(XE) (see Milne, [5,II.2.14]).

We are now ready to define étale cohomology.

3. Construction of the Étale cohomology groups

The construction will follow very much the same path as the con-
struction of ordinary sheaf cohomology. Let C be an abelian category.
As usual, we call I ∈ obj(C) injective if the functor C → Ab;M 7→
HomC(M, I) is exact. C is said to have enough injectives if for every
M ∈ obj(C), M can be embedded in an injective object (there is an
injective object I and an injective morphism M ↪→ I).
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If C has enough injectives, then for any left exact functor F : C→ C′

where C′ is another abelian category, there is a sequence, unique up
to homotopy, of functors RiF : C→ C′, i ≥ 0, called the right derived
functors of F which has the following properties:

(1) R0F = F;
(2) if I ∈ obj(C) is injective, then RiF(I) = 0 for each i ≥ 0;
(3) for any short exact sequence 0 → M ′ → M → M ′′ → 0 of ob-

jects in C, there are morphisms ∂i : RiF(M ′′)→ Ri+1F(M ′), i ≥
0 (called connecting homomorphisms) such that the sequence

...→ RiF(M)→ RiF(M ′′)
∂i−→ Ri+1F(M ′)→ Ri+1F(M)→ ...

is exact;
(4) the association above in (c) of the short exact sequence in C to

the long exact sequence in C′ is functorial.

Now henceforth fix a subcategory G/X ⊆ Sch/X as above, denote
the E-site over X with respect to G/X by XE. Denote the category
of sheaves on XE by S(XE).

Proposition 19. The category S(XE) has enough injectives.

This will follow from the next lemma.

Lemma 20. (1) A product of injectives is injective.
(2) If a functor F : A → B has an exact left adjoint G : B → A,

then F preserves injectives.

Proof. (1) is clear. (2) Suppose I ∈ obj(A) is injective. Since G
is the left adjoint of F, then the functor M 7→ HomB(M,F(I)) is
isomorphic to M 7→ HomA(G(M), I), and the latter is exact since
it is a composition M 7→ G(M), which is exact by assumption, and
M 7→ HomA(M, I), which is exact since I is injective in A. Hence the
former functor M 7→ HomB(M,F(I)) is exact, and so F(I) is injective
in B. �

Now we prove Proposition 19. Let φx : x̄→ X be a geometric point
(k-rational point where k is separably closed) of X. Then S(x̄E) is
isomorphic to Ab, and so has enough injectives. Now choose any M ∈
obj(S(XE)), and now for each x ∈ X, choose an embedding φ∗xM →M ′

x

into an injective object of S(x̄E). Then define M∗ =
∏

x∈X φx∗φ
∗
xM and

M∗∗ =
∏

x∈X φx∗M
′
x. The canonical maps M → M∗ and M → M∗∗

are monomorphisms, and by Lemma 20, M∗∗ is injective. �
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Definition 21 (Étale cohomology groups).

(1) As in the ordinary situation over topological spaces, the global
sections functor

Γ(X, ·) : S(XE)→ Ab

Γ(X,F ) = F (X)

is left exact, and we denote its right derived functors by

RiΓ(X, ·) = H i(X, ·) = H i(XE, ·)

and the group H i(XE, F ) is called the ith cohomology group of
XE with values in F .

(2) For any U ∈ obj(XE), we can define analagously the right de-
rived functors of the functor S(XE) → Ab, F 7→ Γ(U, F ) =
F (U), and they are denoted by H i(U, F ). It is not hard to see
that H i(U, F |U) = H i(U, F ).

(3) The inclusion functor S(XE) → P(XE) of sheaves on XE into
presheaves on XE is exact, and its right derived functors are
denoted by H i(Xe, F ) or H i(F ).

(4) For any fixed sheaf F0 on XE, the functor F 7→ HomS(F0, F ) is
left exact and its right dervied functors are denoted byRiHomS(F0, ·) =
ExtiS(F0, ·).

(5) For any sheaves F and F ′ on XE, we denote the sheaf (one easily
checks the sheaf axioms) U 7→ Hom(F |U , F ′|U) by Hom(F, F ′).
If one fixes a sheaf F0, then the functor S(XE)→ S(XE), F 7→
Hom(F0, F ) is left exact, and its right derived functors are de-
noted by Exti(F0, F ).

(6) For any continuous morphism (see Definition 11) π : X ′E′ → XE,
we can define the right derived functors Riπ∗ of the functor
π∗ : S(X ′E′)→ S(XE). The sheaves Riπ∗F are called the higher
direct images of F .

We now investigate an analagously defined version of Čech cohomol-
ogy.

4. Čech Cohomology

Let U = {φi : Ui → X}i∈I be a covering of X in the E-topology.
Then for any (p+1)-tuple (i0, ..., ip) where each ij ∈ I, and put Ui0...ip =
Ui0 ×X ... ×X Uip . Now let P be any presheaf on XE. The canonivcal
projection map

Ui0...ip → Ui0...îj ...ip = Ui0 ×X ...×X Uij−1
×X Uij+1

×X ...×X Uip
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which induces a “restriction morphism”

P (Ui0...îj ...ip)→ P (Ui0...ip)

which we denote (unambiguously) by resj. Now we define a complex

C ·(U , P ) = (Cp(U , P ), dp)p

in the following way:

Cp(U , P ) =
∏
Ip+1

P (Ui0...ip); dp : Cp(U , P )→ Cp+1(U , P )

where dp is the homomorphism defined as follows: if s = (si0...ip) ∈
Cp(U , P ), then

(dps)i0...ip+1 =

p+1∑
j=0

(−1)jresj(si0...îj ...ip+1
)

. The standard pairing argument shows that dp+1dp = 0, and so the
above group defines a complex. The cohomology groups of (Cp(U , P ), dp)
are called the Čech cohomology groups, Ȟp(U , P ) of P with respect to
the covering U of X.

We immediately note that there is a canonical map

Ȟp(U , P ) = ker(
∏

P (Ui)→
∏

P (Uij))

and hence there is a canonical map P (X) → Ȟ0(U , P ) which in par-
ticular is an isomorphism if P is a sheaf.

A second covering V = {ψj : Vj → X}j∈J is called a refinement of U
if there is a map τ : J → I such that for each j, ψj factors through φτj;
i.e., ψj = φτjλj for some λj : Vj → Uτj. This τ along with the family
{λj}j∈J induces a map τ p : Cp(U , P )→ Cp(V , P ) in the following way:
if s = (si0...ip) ∈ Cp(U , P ), then

(τ ps)j0...jp = resλj0×...×λjp (sτj0...τjp).

It is easy to see that the maps τ p commute with the differential d and
hence they induce maps on cohomology,

ρ(V ,U , τ) : Ȟp(U , P )→ Ȟp(V , P ).

Of course we need the standard housekeeping lemma.

Lemma 22. The map ρ(V ,U , τ) does not depend on τ or {λj}j∈J .
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Proof. Choose another τ ′ : J → I and another family {λ′j}j∈J such that
ψj = φτ ′jλ

′
j for all j ∈ J . Then for s ∈ Cp(U , P ), define a morphism h

by

(hps)j0...jp−1 =
∑
r

(−1)rresλj0×...×(λjrλ′jr )×...×λ
′
jp−1

(sτj0...τjrτ ′jr...τ ′jp−1).

Then hp is a homomorphism Cp(U , P ) → Cp−1(V , P ) which satisfies
the chain homotopy condition

dp−1hp + hp+1dp = τ ′p − τp.

Then passing to cohomology, this becomes

ρ(V ,U , τ ′)− ρ(V ,U , τ) = 0.

�

Thus, if V is a refinement of U , we get a homomorphism ρ(V ,U) :
Ȟp(U , P )→ Ȟp(V , P ) which depends only on V and U .Hence, if U ,V ,
and W are three coverings of X such that W is a refinement of V and
V is a refinement of U , then ρ(W ,U) = ρ(W ,V)ρ(V ,U). So we can
define the Čech cohomology groups of P over X to be Ȟp(XE, P ) =
lim−→ Ȟp(U , P ) where the limit is taken over all coverings U of X.

Definition 23 (Čech cohomology groups). We define the Čech coho-
mology groups of P over X to be Ȟp(XE, P ) = lim−→ Ȟp(U , P ) where the
limit is taken over all coverings U of X.

Remark 24. (1) Note that the category over which we take the
above limit is not cofiltered. We can resolve this inconvenience
as follows. We mod out the set of coverings of X by the equiv-
alence relation U ∼ V if and only if U and V are each a re-
finement of the other, and call the set of equivalence classes IX .
Note that refinement induces a partial ordering on Ix which is
filtered because any two coverings U = {Ui},V = {Vj} have a
common refinement U × V = {Ui × Vj}. By Lemma 22, the
functor U 7→ Ȟp(U , P ) factors through Ix, and the limit can
thus be taken over IX .

(2) If U → X is in obj(XE) and P is a presheaf on XE, then we
may analagously define cohomology groups Ȟp(U/U, P ) and

Ȟp(U, P ) = lim−→ Ȟp(U/U, P )

where the limit is taken over all coverings U of U . It is clear
that since Ȟp(U, P ) is defined intrinsically in terms of P , then
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Ȟp(U, P ) is the same thing as Ȟp(U, P |U). Moreover, the map-
ping U 7→ Ȟp(U, P ) extends to a functor (G/X)→ Ab, i.e., a
presheaf on (G/X)E = XE, which we denote by Ȟ

p
(XE, P ) or

Ȟ
p
(P ).

Note that for any short exact sequence of presheaves 0→ P ′ → P →
P ′′ → 0 and any covering U of X, we get another short exact sequence

0→ Cp(U , P ′)→ Cp(U , P )→ Cp(U , P ′′)→ 0.

This sequence is exact because it is a direct product of exact sequences
of abelian groups. Hence, we in turn get a short exact sequence of
complexes

0→ C ·(U , P ′)→ C ·(U , P )→ C ·(U , P ′′)→ 0

and as purely formal consequence, we get an associated long exact
sequence of cohomology

0→ Ȟ0(U , P ′)→ ...→ Ȟp(U , P )→ Ȟp(U , P ′′)→ Ȟp+1(U , P ′)→ ...

Then since exactness is preserved upon passing to the direct limit over
all coverings of X (or better yet over IX , see Remark 24), then we get
a long exact sequence of Čech cohomology groups

0→ Ȟ0(U, P ′)→ ...→ Ȟp(U, P )→ Ȟp(U, P ′′)→ Ȟp+1(U, P ′)→ ...

So to any short exact sequence of presheaves we associate a long exact
sequence of Čech cohomology groups. It is clear by the above that
this association is functorial. However, if we had started with a short
exact sequence of sheaves, that is a sequence exact only in S(XE) and
not P(XE), then the maps Cp(U , P )→ Cp(U , P ′′) need not be surjec-
tive, and so we do not get an associated short exact sequence of Čech
complexes. We will denote this

As in the situation over topological spaces, Čech cohomology is useful
for practical purposes; namely, it provides a means of calculating Étale
cohomology in certain situations.

For derived functor cohomology, the theorem we will prove is

Theorem 25 ((Partial) Equivalence of Čech cohomology and Derived
functor cohomology). Čech cohomology and derived functor cohomology
agree, that is, Ȟ ·(X,−) ∼= H ·(X,−) if and only if to every short exact
sequence of sheaves there is functorially associated a long exact sequence
of Čech cohomology groups.

This theorem will be deduced immediately from the following lemma.

Lemma 26. If P ∈ obj(XE) is injective, then Ȟp(U/U, P ) = 0, for all
p > 0.
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Proof. (Following Milne, [5,II.2.4]) This is equivalent to the cochain
complex ∏

P (Ui)
d1−→

∏
P (Ui0i1)

d2−→
∏

P (Ui0i1i2)→ ...

being exact. Now for any W → U in obj(XE), the constant presheaf on
W , ZW has the property that Hom(ZW , P ) = P (W ) for any presheaf
P on X, and

ZW (V ) =
⊕

HomX(V,W )

Z.

Hence the above complex can be rewritten as∏
Hom(ZUi0

, P )→
∏

Hom(ZUi0i1
, P )→ ...

and again as

Hom(
⊕

ZUi0
, P )→ Hom(

⊕
ZUi0i1

, P )→ ...

Tehn since P is injective, it is enough to show⊕
ZUi0

←
⊕

ZUi0i1
←

⊕
ZUi0i1i2

← ...

is exact in the category of presheaves P(X). That is, for any V ∈
obj(XE),⊕

ZUi0
(V )←

⊕
ZUi0i1

(V )←
⊕

ZUi0i1i2
(V )← ...

Now for any U -scheme W and φ ∈ HomX(V, U), then denote by
Homφ(V,W ) the set of morphisms ψ : V → W such that

V W

U

ψ

φ

commutes. Then

HomX(V, Ui0i1...) =
⊔

HomX(V,U)

Homφ(V, Ui0i1...)

=
⊔

HomX(V,U)

(Homφ(V, Ui0)× Homφ(V, Ui1)× ...)

Now put S(φ) =
⊔
i Homφ(V, Ui), and⋃

i0,...,ip

HomX(V, Ui0...ip) =
⋃

HomX(V,U)

(S(φ)× ...× S(φ))
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(i.e., p+1 copies of S(φ)). Then
⊕

ZUi0...ip
(V ) is the free abelian group

on
⋃

HomX(V,U)(S(φ)× ...×S(φ)), and so the complex can be rewritten
as ⊕

HomX(V,U)

⊕
S(φ)

Z←
⊕

S(φ)×S(φ)

Z←
⊕

S(φ)×S(φ)×S(φ)

Z← ...


The complex inside the parentheses is the standard complex associ-
ated with

⊕
S(φ) Z, which is exact. One can check that kp(s)i0...ip−1 =

s1i0...ip−1 , where 1 is a fixed element of S(φ) and because an injective
sheaf is injective as a presheaf

s = (si0...ip) ∈
⊕

S(φ)p+1

Z

�

Now we can prove Theorem 25. For sufficiency, we note thatH0(X,F ) =
Ȟ0(X,F ), and the assertion follows from Lemma 26 and the fact that
the associated sheaf functor a is right adjoint to the inclusion functor
S(XE) ↪→ P(XE) (see Remark 18). Necessity is clear. �

Note that if, for example, for every surjection F → F ′′ of sheaves,
the map lim−→(

∏
F (Ui0...ip)) →

∏
F ′′(Ui0...ip) is also surjective, where

the limit is taken over all coverings of X, then the hypotheses of the
theorem are satisfied, and so we have equivalence of the two cohomology
theories.

The étale case proves to be nicer, as the following important theorem
illustrates.

Theorem 27 (Equivalence of Čech cohomology and Étale cohomol-
ogy). Suppose X is a quasi-compact (every open cover of X has a finite
subcover) scheme such that every finite subset is contained in an affine
open set (as is the case when, for example, X is quasi-projective over
an affine scheme). Let F be a sheaf on XE. Then there is a canonical

isomoprhism Ȟ(XE, F )
∼=−→ Hp(XE, F ) for each p.

For the proof, we follow Milne [5,III.2.17]. We will cite the following
two lemmas; the first comes purely from commutative algebra.

Recall that a local ring R with maximal ideal m is called Henselian if
for any monic polynomial P ∈ R[x], then the factorization of its image
P ∈ (R/m)[x] into a product of coprime monic polynomials can be

lifted up to a factorization in R[x]. It is a fact that the completion R̂
of any local ring R is Henselian, and so R is the a subring of a Henselian
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ring. Then we call the smallest Henselian ring which contains R the
Henselization of R.

Lemma 28. Suppose A is a ring, p1, ...pr are prime ideal of A, and
Ash

p1
, ...Ash

pr
are strict Henselizations of the local rings Ap1 , ..., Apr. Then

B = Ash
p1
⊗ ...⊗ Ash

pr
has the property that any faithfully flat étale map

B → C has a section C → B.

Proof. See Artin [1,3.4(iii)]. �

Now for any morphism U → X, let U0 = X and Un = U ×X ...×X U
be the n-fold fibered product. Note that if (x) = (x1, ..., xr) is an r-
tuple of geometric points, then the base change X(x) = X if r = 0,
and

X(x) = spec(Ox1)×X ...×X spec(Oxr)

if r 6= 0.

Lemma 29. Let X be as in the statement of Theorem 27, and let
U → X be étale of finite-type, and let (x) = (x1, ..., xr) be a col-
lection of geometric points of X. Also let Ũ → Un × X(x) be an
étale surjective morphism. Then if n > 0 or r > 0, there is an
étale surjective morphism U ′ → U such that the induced X-morphism
U ′n ×X(x) → Un ×X(x) factors through Ũ .

Proof. The proof relies on induction on n. For the base case n = 0, the
assertion follows from Lemma 28. The other special case n = 1, r = 0
is obvious. The induction step involves in extending an étale map of
finite type V → U which is not surjective but whose induced map on
V n×X(x) → Un×X(x) factors through W , and extending it in finitely
many steps to a surjective map. See Milne, [5,III.2.19]. �

Now we can prove Theorem 27. We will use Theorem 25. Suppose
F → F ′′ is a surjective map of sheaves, and suppose V is in E/X. Then
since X and V are quasi-compact, all coverings U → V which consts of
a single morphism are cofinal in the set of coverings of V . Now suppose
s′′ ∈ F ′′(Un). Then there is an étale covering Ũ → Un and s ∈ F (Ũ)
such that s 7→ s′′′|Ũ Then by Lemma 29, there is a covering U ′ → U

such that U ′n → Un factors through Ũ , and so s|U ′n 7→ s′′|U ′n , and we
are done. �
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5. A Brief Discussion of Applications

In this section, we give a brief description of some applications of
the computability of Étale cohomology through Čech cohomology.

Over an algebraically closed field, we denote by Z/k(1) = µk the
(inveritible) étale sheaf of kth roots of unity, and then define Z/k(r) =

µ⊗rk . Étale cohomology with coefficients in Z/n(r) in fact behaves much
like singular homology. For example, it satisfies a kind of “Poincaré
duality” and a “Lefschetz trace formula”, which we will describe later
below.

One can take the homotopy inverse limit of the sheaves lim←−Z/`n(r)
over n (as opposed to simply taking the inverse limit of the cohomol-
ogy groups) to get `-adic cohomology, that is, étale cohomology with
coefficients in Z`(r). If we work over quasi-projective varieties however,
it is alright to define this as the inverse limit of cohomology groups, as
there is usually no lim1 group.

Now we state (without justification, see Milne [5,VI] for proofs) two
important theorems regarding `-adic cohomology.

First, we define cohomology with compact support of a variety X with
coefficients in a sheaf F are defined to be

H i
c(XE, F ) = H i(YE, j!F )

where j : X → Y is an open immersion of X into a proper variety Y ,
and j!F is the ordinary extension by zero of the sheaf F . Of course,
one can show that the H i

c are independent of the chosen immersion j.
By constructible sheaf F on X, we mean X is the union of a finite

number of locally closed subsets on each of which F is a locally constant
sheaf.

Theorem 30 (Poincaré duality for smooth separated varieties). (See
Milne, [5,VI.11.1]) Suppose X is a smooth separated variety of dimen-
sion d over a separably closed field k. Consider the sheaf Z/`Z where `
is coprime with Char(k) (note that ` does not have to be prime). Then:

(1) There exists a unique map λ(X) : H2d
c (XE,Z/`Z(d)) → Z/`Z

which is in fact an isomorphism.
(2) For any constructible sheaf F or Z/lZ-modules on X, the canon-

cial pairings

H i
c(XE, F )× Ext2d−iX (F,Z/`Z(d))→ H2d

c (XE,Z/`Z(d))
λ(X)−−−→∼= Z/`Z

are nondegenerate.

We also have the famous Lefschetz Trace Formula. Let H i
c(XE,Q`) =

H i
c(XE,Z`)⊗Q`.
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Theorem 31 (Lefschetz Trace Formula). (See Milne, [5,VI.12.3] for
a more general formuation.) Suppose X0 is a smooth projective vari-
ety over a finite field k of characteristic coprime with `. Denote the
algebraic closure of k by k, and let X = X0 ×k k. Let Frob denote
the Frobenius correspondence on X, and let K|k be a degree n < ∞
extension of k. Then

#X0(K) =
2d∑
i=0

(−1)iTr(Frobn|H i
c(XE,Q`))

where X0(K) denotes the set of fixed points of X0 with coefficients in
K under Frob.

Of course one of the crowning achievements of Étale cohomology is
its applications in the proofs by Grothendieck and Deligne of the Weil
conjectures; roughly speaking, these results count points on smooth
projective varieties where the Lefschetz trace formula is applied to Ga-
lois actions. It should be noted however that additional methods were
needed in these proofs, for example in Deligne’s proof of the analogue
of the Riemann hypothesis (see [2] and [3]).
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