
A GALOIS COHOMOLOGICAL PROOF OF GROSS’S FACTORIZATION
THEOREM

DANIEL KRIZ

Abstract. In this note, we give a new proof for Gross’s factorization of the Katz p-adic
L-function restricted to the cyclotomic line into two Kubota-Leopoldt p-adic L-functions,
formulated via Iwasawa theory as a factorization of characteristic ideals of the Pontryagin
duals of relevant Selmer groups. Our argument uses methods of Galois cohomology.
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1. Notation and Conventions

Fix an algebraic closure Q of Q. Throughout, let p denote an odd prime number and
fix an algebraic closure Qp of Qp. Fix a prime p of Q above p, which is equivalent to

fixing an embedding Q ↪→ Qp, and an identification between GQp := Gal(Qp/Qp) and the

decomposition group of p. Fix an identification C ∼= Qp which is compatible with the

embeddings Q ↪→ C and Q ↪→ Qp. Let K/Q be an imaginary quadratic extension of
fundamental discriminant DK and in which p splits; write pOK = pp. Our convention will
be that p denotes the prime attached to a (henceforth) fixed embedding K ↪→ Qp. Let

GK := Gal(K/K). Given a place v of K, let Iv ⊂ GK denote the inertia group of any prime

of K above v, and let Fv denote the residue field at v. Let εK : Gal(K/Q) → Q×p be the
quadratic character associated with K.

Let K∞ denote the unique Z2
p-extension of K. Such an extension has an action of

Gal(K/Q) (given by conjugation), and let K+
∞ and K−∞ denote the corresponding +/−-

isotypic components, respectively; we call these the cyclotomic and anticyclotomic Zp-
extensions of K, respectively. Let ΓK = Gal(K∞/K), Γ+

K = Gal(K+
∞/K) and Γ−K =

Gal(K−∞/K), so that Γ+
K
∼= Zp and Γ−K

∼= Zp. Let ΛK = ZpJΓKK, Λ+
K = ZpJΓ+

KK and
Λ−K = ZpJΓ−KK. Given the integer ring O of any finite extension of Zp, let ΛK,O = ΛK ⊗ O
and similarly define Λ±K,O.
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Given a p-adic Dirichlet character χ : A×K → Q×p , let Zp[χ] be the (finite) extension of
Zp obtained by adjoining the values of χ to Zp. Henceforth, assume Zp[χ] ⊂ O; when
O = Zp[χ], then put ΛK,O = ΛK,χ. Note that for any χ, ΛK,O has a natural GK action given
by ΨK : GK � ΓK ↪→ ΛK , and let ΛK,O(χ) denote the χ-twist (i.e., the module where the
Galois action is given by ΨK ⊗ χ). Similarly, define Λ±K,O, Ψ±K : GK � Γ±K , and Λ±K,O(χ),

and Λχ for any p-adic Hecke character χ : A×Q → Q×p .
Recall that an algebraic Hecke character over K of infinity type (m,n) over K is an idèlic

character Φ : K×\A×K → C× such that the local character at the unique infinite place is given
by φ∞(z) = zmzn. Recall the associated p-adic avatar of Φ is defined via the (inverse of the)

Artin reciprocity map: φ : Gab
K

rec−1
K−−−→ K×\A×K/C× → Q×p by φ(x) = Φ(x)x−m∞ x−n∞ xmp x

n
p for

x ∈ A×K ; here we use the above identification C ∼= Qp.
Let Q∞ denote the unique Zp-extension of Q, and let Γ = Gal(Q∞/Q) ∼= Zp. Then we have

a natural isomorphism Γ+
K
∼= Γ. Let χcyc : GQ � Gal(K(µp∞)/K) ∼= Gal(Q(µp∞)/Q)

∼−→
Z×p be the p-adic cyclotomic character, i.e. the p-adic avatar of the inverse of the usual

idèlic norm character NQ : A×Q → C× (of infinity type 1). Hence χcyc is given by χcyc :

Gal(K(µp∞)/K)
∼−→ Z×p given by σ(ζ) = ζχcyc(σ). Since χcyc(x) ∈ Z×p = µ2(p−1) × (1 + 2pZp),

we may write it uniquely as χcyc(x) = ω(x)〈x〉 where 〈x〉 ≡ 1 mod 2p; ω : GQ → µ2(p−1) is
called the Teichmüller character. Let Λ = ZpJΓK.

Given a topological Zp-module M , let M∗ = Homcts(M,Qp/Zp) denote its Pontryagin
dual (henceforth, the subscript “cts” will be suppressed, as all homomorphisms, cocycles
and characters under our consideration will be continuous). Recall that given a G-module
M , M∗ has a natural action given by (gf)(x) = f(gx). For a G-module M , we will let MG

denote the elements of M fixed by the action of G. In the case where G = GK for some
global, local, or finite field K, we write H i(K,M) := H i(GK ,M) for the Galois cohomology
groups. Henceforth, for a G-module M let M(n) := M ⊗ χncyc denote the G-module called

the nth Tate twist of M .
For a general number field L and a finite set of places Σ of L, let LΣ denote the maximal

extension of L (in Q) that is unramified outside Σ. Let GL,Σ = Gal(LΣ/L).

2. Preliminaries and Main Theorem

Our main result is to recover a theorem of Gross [5] which factorizes a certain 1-variable
p-adic L-function over an imaginary quadratic field K due to Katz into two Kubota-Leopoldt
p-adic L-functions over Q. While Gross explicitly compares the measures underlying these
two p-adic L-functions in his proof, we use Galois cohomology in order to relate the char-
acteristic ideals of Selmer groups associated with these p-adic L-functions by the Iwasawa
main conjectures (now proven) for GL1 over K and over Q. In order to state our main result,
we need to recall some statements from Iwasawa theory.

2.1. The Katz p-adic L-function and some statements from Iwasawa theory. Recall
that the Katz p-adic L-function Lp interpolates classical L-values of a range of (norm-shifted)
anticyclotomic algebraic Hecke characters Φv of infinity type (−(k + d), d) where k ≥ 1 and
d ≥ 0 ([6]). Denote the range of corresponding p-adic avatars by Xp. The p-adic avatars of

these shifted anticyclotomic Hecke characters are thus given by characters φ : Γ−K → Q×p ,

where φp(x) = Φp(x)x−(k+d) and φp(x) = Φp(x)xd. Viewing Λ∗K,φ(φ) as a p-adic Galois
2



representation of GKp and GKp
, these representations are Hodge-Tate with weights k+d and

−d, respectively (under our conventions; several authors take the negative of this definition
for the Hodge-Tate weights). In terms of Hodge filtrations, this implies that

Fili Λ∗K,φ(φp) =

{
Λ∗K,φ(φp) i ≤ k + d

0 i > k + d
Fili Λ∗K,φ(φp) =

{
Λ∗K,φ(φp) i ≤ −d
0 i > −d

.

In particular, since k ≥ 1 and d ≥ 0, we have F+Λ∗K,φ(φp) := Fil1 Λ∗K,φ(φp) = Λ∗K,φ(φp)

and F+Λ∗K,φ(φp) := Fil1 Λ∗K,φ(φp) = 0. The Bloch-Kato-Greenberg Selmer groups (see [4])
attached to the above Galois representations Λ∗K,φ(φ) are thus

Selp(φ)

= ker

H1(K,Λ∗K,φ(φ))
∏
v resv−−−−→

∏
v-p

H1(Iv,Λ
∗
K,φ(φv))×

∏
v|p

H1(Iv,Λ
∗
K,φ(φv)/F

+Λ∗K,φ(φv))


= ker

{
H1(K,Λ∗K,φ(φ))

∏
v 6=p resv
−−−−−→

∏
v 6=p

H1(Iv,Λ
∗
K,φ(φv))

}
.

The last line above thus defines the p-adic Selmer group associated to φ, i.e., the Selmer
group which interpolates the Bloch-Kato-Greenberg Selmer groups for φ ∈ Xp.

Let Xp(φ) = Selp(φ)∗. The Main Conjecture (now Theorem) of Iwasawa Theory over K
([8]) states that

charΛK,φXp(φ) = (LKatz
p (φ−1))

where charΛK,φXp(φ) denotes the characteristic ideal of Xp(φ) viewed as a ΛK,φ-module, and

LKatz
p (φ−1, 0) ∈ ΛK,φ is the Katz p-adic L-function.
By the Main Theorem of Iwasawa Theory, Selp(φ)[γ− − 1] corresponds to the restriction

of Lp(φ, s) to the cyclotomic line. Its Pontryagin dual is Xp(φ)/(γ− − 1)Xp(φ). Restricting

to characters φ : Γ+
K → Q×p , we have the following version of the Main Theorem of Iwasawa

Theory “restricted to the cyclotomic line”

charΛ+
K,φ

(Xp(φ)/(γ− − 1)Xp(φ)) = (LKatz,+
p (φ−1))

where charΛ+
K,φ
Xp(φ) denotes the characteristic ideal of Xp(φ) viewed as a Λ+

K,φ-module, and

LKatz,+
p (φ−1) ∈ Λ+

K,φ is the Katz p-adic L-function restricted to the cyclotomic line.
We will now briefly recall some Iwasawa theory over Q, with which one associates special

values of the Kubota-Leopoldt p-adic L-function (defined, for example, in [10]). For a more
comprehensive overview of classical Iwasawa theory, we refer the reader to notes of Skinner,

[9]. Suppose we are given two families of p-adic Hecke characters φ : A×Q → Q×p whose
associated p-adic Galois representation Λ∗φ(φ) have Hodge-Tate weights n > 0 and n ≤ 0 odd
at p, respectively. Thus, for each of these families,

Fili Λ∗φ(φp) =

{
Λ∗φ(φp) i ≤ n

0 i > n
.
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For the first family corresponding to the range n > 0, we have F+Λ∗φ(φp) := Fil1 Λ∗φ(φp) =
Λ∗φ(φp). For the second family corresponding to the range n ≤ 0, we have F+Λ∗φ(φp) :=

Fil1 Λ∗φ(φp) = 0. The corresponding Bloch-Kato-Greenberg Selmer groups are thus

H1
p (Q,Λ∗φ(φ))

= ker

{
H1(Q,Λ∗φ(φ))

∏
` res`−−−−→

∏
`6=p

H1(I`,Λ
∗
φ(φ`))×H1(Ip,Λ

∗
φ(φp)/F

+Λ∗φ(φp))

}

= ker

{
H1(Q,Λ∗φ(φ))

∏
` 6=p res`−−−−−→

∏
`6=p

H1(I`,Λ
∗
φ(φ`))

}

= ker

{
H1(GQ,S,Λ

∗
φ(φ))

∏
`∈S,` 6=p res`−−−−−−−→

∏
`∈S

H1(I`,Λ
∗
φ(φ`))

}
where S is any finite set of places of Q containing the places at which φ is ramified, and

H1
f (Q,Λ∗φ(φ))

= ker

{
H1(Q,Λ∗φ(φ))

∏
` res`−−−−→

∏
`6=p

H1(I`,Λ
∗
φ(φ`))×H1(Ip,Λ

∗
φ(φp)/F

+Λ∗φ(φp))

}

= ker

{
H1(Q,Λ∗φ(φ))

∏
` res`−−−−→

∏
`

H1(I`,Λ
∗
φ(φ`))

}

= ker

{
H1(GQ,S,Λ

∗
φ(φ))

∏
`∈S res`−−−−−→

∏
`∈S

H1(I`,Λ
∗
φ(φ`))

}
where S is any finite set of places of Q containing the places where φ is ramified and p.

Let Xp(φ) = H1
p (Q,Λ∗φ(φ))∗ and Xf (φ) = H1

f (Q,Λ∗φ(φ))∗. The Main Conjecture (now
Theorem) of Iwasawa Theory over Q ([7], [9, Section 4.5]) says that that when φ is odd,

charΛφXf (φ) = (Lp(φ−1))

where charΛφXf (φ) denotes the characteristic ideal of Xf (φ) viewed as a Λφ-module and
Lp(φ−1) ∈ Λφ is the Kubota-Leopoldt p-adic L-function. (Here we are taking the normal-
ization of Lp as in [9, Section 4.2].) Fix a topological generator γ of Γ. Given an s ∈ Zp,
denote the specialization at of Lp(φ−1) at γ 7→ 〈γ〉−s by Lp(φ

−1ω, s).
When φ is even, we first invoke Greenberg’s “functional equation for characteristic ideals”,

[3, Theorem 2] to relate the characteristic ideal of its Selmer group to that of its dual
character:

charΛφXp(φ) = charΛφXf (φ
−1χcyc)

ι = (Lp(φχ−1
cyc)

ι).

where charΛφXp(φ) denotes the characteristic ideal of Xp(φ) viewed as a Λφ-module, and
Lp(φχ−1

cyc)
ι ∈ Λι

φ is the “involuted” Kubota-Leopoldt p-adic L-function, i.e. an element whose

specialization at 〈·〉−s for s ∈ Zp is Lp(φχ
−1
cycω(〈·〉−s ◦Ψι), 0) = Lp(φ〈·〉s−1, 0) = Lp(φ, 1− s).

Here Λι
φ is the Λφ-module whose underlying Zp-module is Λφ but on which Γ acts through the

involution ι(γ) = γ−1 (so that the Galois action Ψι : GQ � Γ
ι−→ Γ ↪→ Λφ is also involuted).
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Our Main Theorem is a version of Gross’s factorization of the Katz p-adic L-function
restricted to the cyclotomic line ([5]), stated in terms of characteristic ideals.

Theorem 1 (Main Theorem). Let φK : GK � ΓK → Q×p be such that φK = φ|GK where

φ : GQ � Γ→ Q×p is an even Dirichlet character. Then under the canonical identifications

Γ+
K
∼= Γ and Λ+

K,φK
∼= Λφ, we have the following factorization of ideals of Λφ:

(LKatz,+
p (φ−1

K )) = (Lp(φ−1εK))(Lp(φχ−1
cyc)

ι).

Remark 2. Theorem 1 thus implies

(1) LKatz,+
p (φ−1

K ) = Lp(φ−1εK)Lp(φχ−1
cyc)

ι mod Λ×φ .

Taking the specialization at 〈·〉−s for s ∈ Zp, we have

LKatz,+
p (φK , s) = Lp(φεKω, s)Lp(φ

−1, 1− s) mod Zp[φ]×

which is Gross’s original factorization theorem on the cyclotomic line, modulo a p-adic unit.
In fact, we can recover Gross’s original theorem (i.e., show that the “equality up to unit” in
(1) is an actual equality) using some specific special value formulas.

Corollary 3. Let φ, φK be as in the notation of Theorem 1. Then for any s ∈ Zp, we have

(2) LKatz,+
p (φK , s) = Lp(φεKω, s)Lp(φ

−1, 1− s).

Proof. First, note that it suffices to establish this equality at s = 0 for all non-trivial finite-
order characters. This follows because 〈·〉−s, for any s ∈ Zp, can be approximated by a
sequence of finite-order characters, so that if (1) is established at all such specializations,
then we have shown (1) holds on a dense subset of the weight space, and so by Theorem 1
we know that we have shown an equality of continuous measures on a dense subset and thus
we have equality everywhere. For any finite-order character φ, (2) follows from the special
value formulas in [5, Sections 3 and 5, eq. (3.5)]. �

The proof of the Theorem 1 will be given in Section 3.

2.2. Acknowledgements. The author would like to thank Chris Skinner for helpful dis-
cussions during the preparation of this note.

2.3. A few control theorems. Henceforth, fix topological generators γ± of Γ±K respectively,
and let γ be the topological generator of Γ which is the image of γ+ under the isomorphism
Γ+
K
∼= Γ. (Note that we can write ΛK = ZpJT, SK where T = γ+ − 1 and S = γ− − 1.)

Suppose now that φK : Γ+
K → Q×p is a cyclotomic p-adic Galois character. Using the

canonical isomorphism Γ+
K
∼= Γ, we can view φK as a character φ : Γ → Q×p , where φ is

related to φK by φ|GK = φK (here we precompose with the projection GK � Γ+
K). Assume

henceforth that φ is even.

Remark 4. For the rest of the paper, we will let MK = Λ∗K,φK (φK) and for any place v

of K, MKv = Λ∗K,φK (φK,v) (as GKv=modules). Similarly, let M±
K = Λ±,∗K,φK (φK), M±

Kv
=

Λ±,∗K,φK (φKv), M = Λ∗φ(φ) and for any place ` of Q, M` = Λ∗φ(φ`) (as a GQ`-module).
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Lemma 5. We have M
GK,{p,p}
K = 0, M

+,Ip
Kp

= 0 and M
Ip
Kp
/(γ− − 1)M

Ip
Kp

= 0. Furthermore,

M
Ip
p = Mp(εK,p)

Ip = 0.

Proof. First recall the projection GK � ΓK = Γ+
K ⊕ Γ−K . Since the cyclotomic Zp-extension

K+
∞/K is totally ramified at p and p (and totally unramified everywhere else), then in

fact the restriction ΨK|Ip : Ip = Ip ↪→ GK � Γ+
K is a surjection. Recalling that MK =

Hom(ΛK,φK ,Qp/Zp(φK)) andMKp
= Hom(Λ+

K,φK
,Qp/Zp(φK,p)) where the original (untwisted)

Galois action is given by ΨK : GK � ΓK , the surjections GK,{p,p} � ΓK and Ip � Γ+
K imply

that

M
GK,{p,p}
K = {f ∈ Hom(ΛK,φK ,Qp/Zp) : f(g) = φ−1

K (g)f(1ΓK ) = 0,∀g ∈ ΓK} = 0

M
+,Ip
Kp

= {f ∈ Hom(Λ+
K,φK

,Qp/Zp) : f(g) = φ−1
K,p(g)f(1Γ+

K
) = 0,∀g ∈ Γ+

K} = 0

(since f(1ΓK ) = f(1Γ+
K

) = 0). The fact that M
Ip
p = 0 now follows from the canonical

isomorphism M+
K
∼= M and Ip = Ip. Since p is split in K, εK is unramified at p, i.e.

εK,p(Ip) = 1, so Mp(εK,p)
Ip = 0 also follows.

We will now show that M
Ip
Kp
/(γ− − 1)M

Ip
Kp

= 0. Note that

M
Ip
Kp

= {f ∈ Hom(ΛK,φK ,Qp/Zp) : f(ΨK(g)x) = φ−1
K,p(g)f(x),∀g ∈ Ip,∀x ∈ ΓK}.

We claim that M
Ip
Kp
∩(γ−−1)MKp = (γ−−1)M

Ip
Kp

. First, note that ΓK ∼= Z2
p is in particular

abelian, and so for any α ∈ Ip and any (γ− − 1)f ∈ (γ− − 1)M
Ip
Kp

where f ∈ M
Ip
Kp

and so

ΨK(α)f = f , we have

ΨK(α)(γ− − 1)f = (γ− − 1)ΨK(α)f = (γ− − 1)f

and so since (γ−−1)f ∈ (γ−−1)M
Ip
Kp

was arbitary, we have (γ−−1)M
Ip
Kp
⊂M

Ip
Kp
∩(γ−−1)MKp .

Now take any (γ− − 1)f ∈M Ip
Kp
∩ (γ− − 1)MKp

where f ∈MKp
, meaning

(γ− − 1)f = ΨK(α)(γ− − 1)f = (γ− − 1)ΨK(α)f

and so
(γ− − 1)(ΨK(α)− 1)f = 0

which implies that (ΨK(α) − 1)f factors through the quotient ΛK � Λ+
K , and that the

induced map (ΨK(α) − 1)f : ΛK � Λ+
K is in M

+,Ip
Kp

= 0. Hence (ΨK(α) − 1)f = 0, and

so since α ∈ Ip was arbitrary, we have f ∈ MKp
, and so (γ− − 1)f ∈ (γ− − 1)M

Ip
Kp

. Since

(γ−−1)f ∈M Ip
Kp
∩(γ−−1)MKp was arbitrary, we thus have M

Ip
Kp
∩(γ−−1)MKp ⊂ (γ−−1)M

Ip
Kp

.

Hence, the claim is established.

In particular we have M
Ip
Kp
/(γ− − 1)M

Ip
Kp

↪→ MKp
/(γ− − 1)MKp

, so we are done if we can

show that MKp
/(γ− − 1)MKp

= 0. For this, note that since Pontryagin duality interchanges
quotients and torsion, we have

MKp
/(γ− − 1)MKp

= (ΛK,φK (φK,p)[γ− − 1])∗.

As a ΛK-module, we have ΛK,φK (φK,p)[γ−− 1] = ZpJγ+− 1, γ−− 1K[γ−− 1] = 0 since γ−− 1
is a free variable. Now dualizing, we are done. �
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Now let

Sel+p (φK) : = ker

H1(K,M+
K)

∏
v resv−−−−→

∏
v-p

H1(Iv,M
+
Kv

)×
∏
v|p

H1(Iv,M
+
Kv
/F+M+

Kv
)


= ker

{
H1(K,M+

K)

∏
v∈SK,v 6=p resv
−−−−−−−−−→

∏
v 6=p

H1(Iv,M
+
Kv

)

}
= ker

{
H1(GK,{p,p},M

+
K)

resp−−→ H1(Ip,M
+
Kp

)
}
.

Corollary 6. We have

Sel+p (φK) = ker
{
H1(GK,{p,p},M

+
K)

resp−−→ H1(Kp,M
+
Kp

)
}
,

= ker

{
H1(GK,SK ,M

+
K)

∏
v 6=p resv
−−−−−→ H1(Kv,M

+
Kv

)

}
,

H1
f (Q,M(εK)) = ker

{
H1(GQ,S,M(εK))

∏
`∈S res`−−−−−→

∏
`∈S

H1(Q`,M`(εK,`))

}

where SK is any finite set of places of K containing {p, p} and S is any finite set of places
of Q containing the places where φεK is ramified and p.

Proof. First note that the restriction H1(GK,{p,p},M
+
K) → H1(Ip,M

+
Kp

) factors through

H1(GK,{p},M
+
K). By Lemma 5, we have H1(Kp,M

+
Kp

) ↪→ H1(Ip,M
+
Kp

), so the restriction

of x ∈ H1(GK,{p,p},M
+
K) to H1(Ip,M

+
K,p) is 0 if and only if its restriction to H1(Kp,M

+
K,p)

is 0. For v - p, the assertion follows because GFv has profinite order prime to p, so

ker(H1(Kv,M
+
Kv

)
resv−−→ H1(Iv,M

+
Kv

)) = H1(Fv,M+
Kv

) = 0. The assertion for H1
f (Q,M)

follows completely analogously. �

Now we show that

Proposition 7.

Selp(φK)[γ− − 1] ∼= Sel+p (φK).

Proof. We have the short exact sequences of GK,{p,p}-modules

0→M+
K = MK [γ− − 1]→MK

γ−−1−−−→MK → 0

and the short exact sequence of Ip-modules

0→M+
Kp

= MKp
[γ− − 1]→MKp

γ−−1−−−→MKp
→ 0.

From the corresponding long exact sequences of group cohomology, we obtain the following
commutative diagram
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M
GK,{p,p}
K /(γ− − 1)M

GK,{p,p}
K

0 H1(GK,{p,p},M
+
K) H1(GK,{p,p},MK)[γ− − 1] 0

M
Ip
Kp
/(γ− − 1)M

Ip
Kp

0 H1(Ip,M
+
Kp

) H1(Ip,MKp
)[γ− − 1] 0

Sel+p (φK) Selp(φK)[γ− − 1]

0 0

resprespresp

where the horizontal and vertical arrows are exact. By Lemma 5, we have M
GK,{p,p}
K = 0 and

M
Ip
Kp
/(γ−−1)M

Ip
Kp

= 0. Thus we have H1(K,M+
K)

∼−→ H1(K,MK)[γ−−1] and H1(Ip,M
+
Kp

)
∼−→

H1(Ip,MKp
)[γ− − 1], and hence Sel+p (φK)

∼−→ Selp(φK)[γ− − 1], as claimed. �

2.4. An exact sequence of Selmer groups. Recall from the discussion in Section 2.1
that Selp(φK) corresponds to the restriction of the Katz p-adic L-function to the cyclotomic
line evaluated at φK . By Proposition 7, Selp(φK)[γ− − 1] = Sel+p (φK) is thus the pertinent
Selmer group.

By Shapiro’s lemma, we have an isotypic decomposition

H1(K,M+
K) = H1(Q, IndQ

KM
+
K) = H1(Q,M)⊕H1(Q,M(εK)).

Recall that since p is split in K, we have εK,p = 1. For v|` where ` splits in K, we have the
usual restriction map

resv : H1(K,M+
K) = H1(Q,M)⊕H1(Q,M(εK))→ H1(Kv,M

+
Kv

) = H1(I`,M`) = H1(I`,M`(εK,`))

which is the sum of the restriction maps H1(Q,M`) → H1(I`,M`) and H1(Q,M(εK)) →
H1(Q,M`(εK,`)) = H1(Q,M`). In particular for ` = p, we have resp(x, y) = resp x + resp y
and resp(x, y) = resp x+ resp y. If v|` where ` is ramified or inert in K, we have

resv : H1(K,M+
K)→ H1(Kv,M

+
Kv

) = H1(I`,M`)⊕H1(I`,M`(εK,`)).

Let SK = {v place of K : v|pDK∞} and S = {` place of Q : `|pDK∞}. Recall that by
the discussion in Section 2.1 and Corollary 6, we have

Sel+p (φK) = ker
{
H1(GK,{p,p},M

+
K)

resp−−→ H1(Kp,M
+
Kp

)
}

= ker

{
H1(GK,SK ,M

+
K)

∏
v∈SK,v 6=p resp
−−−−−−−−−→ H1(Kv,M

+
Kv

)

}
=

{
(x, y) ∈ H1(GQ,S,M)⊕H1(GQ,S,M(εK)) :

∏
v∈SK ,v 6=p

resv(x, y) = 0

}
=
{

(x, y) ∈ H1(GQ,S,M)⊕H1(GQ,S,M(εK)) : res` x = res` y = 0 ∀p 6= ` ∈ S, resp x = − resp y
}
.
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The last equality follows since the condition that resp(x, y) = 0 is equivalent to resp x =
− resp y by the isotypic decomposition mentioned above.

Looking at local conditions, we thus have the following exact sequence:

(3) 0→ H1
f (Q,M(εK))→ Sel+p (φK)→ H1

p (Q,M)

where the second and third maps are given by y 7→ (x, y) and (x, y) 7→ x under the coordi-
nates given by Sel+p (φK) ⊂ H1(GQ,S,M)⊕H1(GQ,S,M(εK)), respectively, andH1

f (Q,M(εK))

and H1
p (Q,M) are described in Section 2.1:

H1
f (Q,M(εK)) = ker

{
H1(GQ,S,M(εK))

∏
`∈S res`−−−−−→

∏
`∈S

H1(I`,M`(εK,`))

}
and

H1
p (Q,M) = ker

{
H1(GQ,S,M)

∏
`∈S,` 6=p res`−−−−−−−→

∏
`∈S, 6̀=p

H1(I`,M`)

}
.

The brunt of the proof of the Main Theorem will be showing one can add a “→ 0” to the
right side of the above exact sequence. To this end, we show this assertion can be reduced
to the “Key Lemma” proven in Section 3. Let

H1
p (GQ,S,M(εK)) = ker

{
H1(GQ,S,M(εK))

∏
`∈S,` 6=p res`−−−−−−−→

∏
`∈S, 6̀=p

H1(I`,M`(εK,`))

}
.

Proposition 8. Let S = {` place of Q : `|pDK∞}. Suppose the map

resp : H1
p (GQ,S,M(εK))→ H1(Qp,Mp(εK,p))

were surjective. Then Sel+p (φK) � H1
p (Q,M).

Proof. The map Sel+p (φK)→ H1
p (Q,M) is given by (x, y) 7→ x (under the coordinates given

by Sel+p (φK) ⊂ H1(GQ,S,M) ⊕ H1(GQ,S,M(εK))). Thus, if resp : H1
p (GQ,S,M(εK)) →

H1(Qp,Mp(εK,p)) = H1(Qp,Mp) were surjective, then for any x ∈ H1
p (Q,M), there would

exist y ∈ H1
p (GQ,S,M(εK)) such that resp x = − resp y. Thus we have found an element

(x, y) ∈ Sel+p (φK) which maps to x under Sel+p (φK)→ H1
p (Q,M), and we are done. �

3. Proof of the Main Theorem

Lemma 9 (Key Lemma). Let S = {` place of Q : `|pDK∞}. The map∏
`∈S

res` : H1(GQ,S,M(εK))→
∏
`∈S

H1(Q`,M`(εK,`))

is surjective. In particular, the map

resp : H1
p (GQ,S,M(εK)) = ker

( ∏
`∈S, 6̀=p

res`

)
→ H1(Qp,Mp(εK,p))

is surjective.
9



Proof. By Tate global and local duality, we have an exact sequence

H1(GQ,S,M(εK))
resS :=

∏
`∈S res`−−−−−−−−−→

∏
`∈S

H1(Q`,M`(εK,`))

∼=
∏
`∈S

H1(Q`,M`(εK,`)
∗(1))∗

λ∗S :=
∏
`∈S λ

∗
`−−−−−−−→ H1(GQ,S,M(εK)∗(1))∗

where (1) denotes the Tate twist by χcyc,p and for ` ∈ S, λ∗` is the dual of the natural
restriction map

λ` : H1(GQ,S,M(εK)∗(1))→ H1(Q`,M`(εK,`)
∗(1)).

Our assertion that resS is surjective is equivalent to the assertion (kerλS)∗ = imλ∗S =
coker resS = 0, which is equivalent to kerλS = 0. (Note that kerλS itself defines a Selmer
group attached to M(εK)∗(1).) Observe that M(εK)∗(1) = Zp[φ]JΓK(φεKχcyc), and so
M(εK)∗(1)/(γ − 1)M(εK)∗(1) ∼= Zp[φ](φεKχcyc) as GQ,S-modules. Hence, from the asso-
ciated long exact sequence of cohomology, we get an injection

H1(GQ,S,M(εK)∗(1))/(γ − 1)H1(GQ,S,M(εK)∗(1)) ↪→ H1(GQ,S,Zp[φ](φεKχcyc)).

From this, we get an injection

kerλS/(γ − 1) kerλS ↪→ ker{H1(GQ,S,Zp[φ](φεKχcyc))
resS−−→

∏
`∈S

H1(Q`,Zp[φ](φ`εK,`χcyc,`))}

= ker{H1(GQ,S,Zp[φ](φεKχcyc))
resS−−→

∏
`∈S

H1(I`,Zp[φ](φ`εK,`χcyc,`))}

where the last equality follows because for ` ∈ S,

H1(Q`,Zp[φ](φ`εK,`χcyc,`)) ↪→ H1(I`,Zp[φ](φ`εK,`χcyc,`))

by the inflation-restriction exact sequence: for ` = p, the kernel of inflation is zero since
Zp[φ](φεKχcyc)

Ip = 0 since φεKχcyc is ramified at p (which one sees because εK is unramiifed
at p since p is split in K, and φp is of finite order and χcyc,p is of infinite order), and for ` 6= p,
this follows because GF` has profinite order prime to p so that H1(F`,Zp[φ](φεKχcyc)

I`) = 0.
We claim that

Sel+S (φεKχcyc) := ker{H1(GQ,S,Zp[φ](φεKχcyc))
resS−−→

∏
`∈S

H1(I`,Zp[φ](φ`εK,`χcyc,`))}

is both torsion and torsion-free, and hence trivial. To show torsion-freeness, we show
H1(GQ,S,Zp[φ](φεKχcyc)) is torsion-free. Recall the short exact sequence of GQ,S-modules

0→ pZp[φ](φεKχcyc)→ Zp[φ](φεKχcyc)→ Zp[φ](φεKχcyc)/pZp[φ](φεKχcyc)→ 0.

Taking the long exact sequence in group cohomology, we get a natural surjection

Zp[φ](φεKχcyc)
GQ,S/pZp[φ](φεKχcyc)

GQ,S � H1(GQ,S,Zp[φ](φεKχcyc))[p].

Again using the fact that GQ,S � Γ (as p is the only prime ramified in Q(µp∞)/Q), one can
check that Zp[φ](φεKχcyc)

GQ,S = 0. Thus H1(GQ,S,Zp[φ](φεK))[p] = 0, and so the action
by Zp is torsion-free (Z×p = Zp − pZp, so multiplication by anything not divisible by p is
invertible, and hence has trivial kernel).
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To show that Sel+S (φεKχcyc) is torsion, note that since it is torsion-free, then

Sel+S (φεKχcyc)⊗Zp[φ] Qp[φ]/Zp[φ] ↪→ SelS(φεKχcyc)

:= ker{H1(GQ,S,Qp[φ]/Zp[φ](φεKχcyc))
resS−−→

∏
`∈S

H1(I`,Qp[φ]/Zp[φ](φ`εK,`χcyc,`))}.

This latter group is in fact finite, which we see as follows. By Greenberg’s functional
equation of Selmer groups ([3, Theorem 2]), we have a pseudo-isomorphism ∼ (i.e. a Λφ-
homomorphism with finite kernel and cokernel) of Λφ-modules SelS(φεKχcyc) ∼ SelS(φ−1εK)ι

where SelS(φ−1εK) is defined analogously to SelS(φεKχcyc) above and the superscript ι de-
notes that Λφ acts through the involution ι : Γ → Γ, ι(γ) = γ−1. (In loc. cit., this is
formulated by saying both Selmer groups have the same characteristic ideal.)

We will now show that SelS(φ−1εK) is finite. Let γ ∈ Γ be a topological generator, so that
we can write Λφ = Zp[φ]JΓK = Zp[φ]Jγ−1K. Assume first that φ 6= 1, which is equivalent to φ
being ramified at p since φ is only possibly ramified at p by assumption. By a standard Selmer
group control theorem (see [9, Proposition 4.4], for example), we have, since φ−1

p εK,p 6= 1 (φ
is ramified and εK unramified at p),

SelS(φ−1εK) ∼= H1
f (Q,Λ∗φ(φ−1εK))[γ − 1].

By Iwasawa’s theorem ([9, Proposition 4.8]), since φ−1εK is odd, we have that the Pontryagin
dual Xf (φ

−1εK) is a torsion Λφ-module. In particular,

(H1
f (Q,Λ∗φ(φ−1εK))[γ − 1])∗ = Xf (φ

−1εK)/(γ − 1)Xf (φ
−1εK)

which we will now show is finite. By the structure theorem of finitely-generated Λφ-modules,

Xf (φ
−1εK) ∼

r∏
i=1

Λφ/(fi)

where fi ∈ Λφ, and in fact fi 6= 0 for all i since Xf (φ
−1εK) is a torsion Λφ-module. Now by

the Weierstrass preparation theorem, we have that fi = $rifi,0fi,1 where $ is a uniformizer
of Zp[φ], ri ∈ Z≥0, fi,0 ∈ Zp[φ][γ − 1] is “distinguished”, i.e. a monic polynomial in the
variable γ − 1 such that each non-leading coefficient is a non-unit (i.e. divisible by $), and
fi,1 ∈ Zp[φ]Jγ− 1K×. Thus, we see that each fi is congruent to a positive power of $ modulo
(γ − 1), and hence Xf (φ

−1εK)/(γ − 1)Xf (φ
−1εK) is finite. Hence, dualizing, we see that

H1
f (Q,Λ∗φ(φ−1εK))[γ − 1] is finite, as claimed.

Now assume that φ = 1. Since εK is odd and p2 - DK (indeed p - DK), it is a consequence
of the Main Theorem of Iwasawa Theory (see Corollary 10 of loc. cit.) that

#SelS(εK) = #(C`(Q(µDK )/Q)⊗Z Zp)εK

and so, in particular, is finite.
Thus we have shown that Sel+S (φεKχcyc) = 0, and so kerλS = 0. By our initial discussion,

we are done. �

Remark 10. To show that SelS(φ−1εK) is finite in the proof of Lemma 9, we could have
used the following formula, which is an application of a more general result originally due
to Wiles and Darmon-Diamond-Taylor (see [11], [2] or [1, Chapter IV, Theorem 2]) to show
that SelS(φ−1εK) is finite. The proof again uses local and global duality, and was inspired
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by the work of Greenberg. First, we recall the Selmer group defined by dual local conditions
to those of SelS(φ−1εK):

TS(φεKχcyc) := ker{H1(GQ,S,Zp[φ](φεKχcyc))
∏
`∈S res`−−−−−→ H1(I`,Zp[φ](φ`εK,`χcyc,`))}.

Proposition 11. We have that SelS(φ−1εK) and TS(φεKχcyc) are finite, and in fact

#SelS(φ−1εK)

#TS(φεKχcyc)
=

#H0(Q, (Qp[φ]/Zp[φ])(φ−1εK))

#H0(Q,Zp[φ](φεKχcyc))

∏
`≤∞

#H1(F`, (Qp[φ]/Zp[φ])(φ−1εK))

#H0(Q`, (Qp[φ]/Zp[φ])(φ−1εK))
.

Finally, we have the following corollary of Proposition 8 and Lemma 9.

Corollary 12. We have an exact sequence

0→ H1
f (Q,M(εK))→ Sel+p (φK)→ H1

p (Q,M)→ 0.

Proof. This follows immediately from Lemma 9, (3) and Proposition 8. �

Proof of Theorem 1. By Corollary 12 and the discussion in Section 2.1, we get the factoriza-
tion of ideals of Λ+

K,φK
= Λφ

charΛ+
K,φK

Xp(φK) = charΛφXf (φεK)charΛφXp(φ)

which, by the Main Theorems of Iwasawa Theory over K and Q, implies that

(LKatz,+
p (φ−1

K )) = (Lp(φ−1))(Lp(φχ−1
cyc)

ι)

and we are done. �
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