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MOTIVATION: Plasma Confinement Fusion

Primary objective: building a confinement device (e.g. tokamak, stellarator) to
keep a hot plasma confined to a finite volume.

LetT ⊂ R3 be a domain with smooth boundary (e.g. diffeomorphic to the solid
torus). TheMagnetohydrostatic (MHS) equations inT read

curl B × B = ∇P, inT,
∇ · B = 0, inT,
B · n̂ = 0, on ∂T,

whereP is the pressure.
Guiding idea is to use magnetic fields. To leading order, charged particles (ions)
move along field lines.
A basic requirement for confinement is the existence of a flux functionψ : T → R
satisfyingB · ∇ψ = 0, |∇ψ| > 0. Provided |∇P| > 0 the pressure is always a flux
function.
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Tokamaks and Axisymmetry

Example of “good” magnetohydrostatic equilibria are those exhibiting flux
surfaces:

Landreman (2019).

Drifts make their orbits slip off their initial field line over time.

Landreman (2019).
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Stellarators andQuasisymmetry

Idea of Stellarator (Lyman Spitzer): find equilibria where the geometry is the
source of twisted field lines and not strong plasma current.

Landreman (2019).

No known examples of such an object which is anMHS equilibrium!



Stellarators andQuasisymmetry

Idea of Stellarator (Lyman Spitzer): find equilibria where the geometry is the
source of twisted field lines and not strong plasma current.

Landreman (2019).

No known examples of such an object which is anMHS equilibrium!



Stellarators andQuasisymmetry

Idea of Stellarator (Lyman Spitzer): find equilibria where the geometry is the
source of twisted field lines and not strong plasma current.

Landreman (2019).

No known examples of such an object which is anMHS equilibrium!



Existence outside of symmetry?

H. Grad conjectured no smooth equilibria with flux functions exist outside
symmetry.

Conjecture (Grad, 1967): Any non-isolated and smooth equilibrium of un-
forced MHS on a domain T ⊂ R3 (diffeomorphic to the solid torus) which
has a pressure p possessing nested level sets foliatingT is axisymmetric.

Grad’s conjecture remains open.
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Existence outside of symmetry?

Let J = curl B and write J = J⊥ + uBwhere J⊥ · B = 0. FromMHSwe have
J⊥ = B×∇p

|B|2 .

The function u is determined from

div J = B · ∇u + div J⊥ = 0. (1)

which becomes themagnetic differential equation

B · ∇u = −(B ×∇p) · ∇|B|−2.

Themagnetic fieldB is tangent to the level sets ofψ. Pick coordinates (θ, ϕ) on
each level set so thatB · ∇ = ∂θ + ι(ψ)∂ϕ. If p = p(ψ) then u satisfies an
equation of the form

(∂θ + ι(ψ)∂ϕ) u = (c(ψ)∂θ + d(ψ)∂ϕ) f
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Existence outside of symmetry?

Writing u(ψ, θ, ϕ) =
∑

m,n∈Z ûmn(ψ)eimθ+inϕ, we have

(m + ι(ψ)n)ûmn(ψ) = (c(ψ)m + d(ψ)n)̂fmn

If u is smooth and ι(ψ) is nonconstant then the only possibility is that

wheneverm + ι(ψ)n = 0, we have either ûmn = 0 or c(ψ)m + d(ψ)n = 0.
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QUESTION: Inwhat sensearefluid solutions rigid (forced toconformtospa-
tial symmetries) or flexible (canbedeformed tonearby solutionswhichbreak
symmetry). We address these questions first in 2d Euler.
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Rigidity for 2d Euler

LetD ⊂ R2. The stationary two dimensional Euler equations read

u · ∇u = −∇p, inD,
∇ · u = 0, inD,
u · n̂ = 0, on ∂D.

QUESTION: When do solutions conform to symmetries ofD?

Fixed boundary analogue of Grad’s conjecture.
Large class of steady states:

∆ψ = F(ψ), inD,
ψ = (const.), on ∂D,

The velocity u = ∇⊥ψ is a solution of the Euler equation withω = curl u = F(ψ).
An important subclass of solutions are Arnol’d stable. They require either

−λ1 < F′(ψ) < 0, or 0 < F′(ψ) <∞

where λ1 := λ1(D) > 0 is the smallest eigenvalue of−∆ inD.
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Stability as a mechanism for rigidity.

THEOREM: Let (M, g) be a compact two-dimensional Riemannianmanifold
with smooth boundary ∂M and let ξ be a Killing field for g tangent to ∂M. Let
u ∈ C2(M) be an Arnol’d stable state. ThenLξu = 0.

With u = ∇⊥
g ψ, differentiate∆gψ = F(ψ) to obtain the equation(

∆g − F′(ψ)
)
Lξψ = 0, inM,

Lξψ = 0, on ∂M.

Consequences: all Arnol’d stable stationary solutions are

• shears u = v(y2)ey1 on the periodic channel

• radial u = v(r)eθ on the disk (or annulus)

• non-existent onmanifolds without boundary with two transverse Killing fields
e.g. the two-torus or the sphere.

Arnol’d stability is a mechanism for rigidity. Are there others?
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Rigidity for 2d Euler

If the domainD0 is a periodic channel

D0 = {(y1, y2) | y1 ∈ T, y2 ∈ [0, 1]},

solutions exhibit rigidity without stability

THEOREM: (Hamel & Nadirashvili, 2017) Let D0 be a periodic channel and
u0 : D0 → R2 be a C2(D0) be solution of Euler with infD0 u0 > 0. Then u0 is
a shear, namely u0(y1, y2) = (v(y2), 0) for some scalar function v(y2).

Coti-Zelati, Elgindi, Widmayer (2020) prove similar statement for Poiseuille &
Kolmogorov flows. Gómez-Serrano, Park, Shi, Yao (2020) for signed vorticity.

We generalize N&H theorem to encompass other systems. Proved in two parts.

(a) Ifψ ∈ C1 with∇ψ ̸= 0 and g ∈ C1 satisfies∇⊥ψ · ∇g = 0, then there exists a
G such that g = G(ψ). This shows that any such steady state satisfies some
elliptic problem of the form

∆ψ + f(y2)∂y2ψ + g(y2, ψ) + h(ψ) = 0, inD0.

(b)Application of method of moving planes to show that if gy2 , fy2 ≥ 0, all
solutions of the above satisfyψ(y1, y2) = ψ(y2).
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Applications to fluid systems (Constantin-Drivas-G.)

∆ψ − y2Θ′(ψ)− G′(ψ) = 0.

THEOREM: (Boussinesq rigidity) LetD0 be a periodic channel and suppose
that u0 : D0 → R2 and θ0 : D0 → R be a C2(D0) solution with infD0 u0 > 0.
Then there exists LipschitzΘ0 s.t. θ0 = Θ0(ψ0). If furthermore

Θ′
0(ψ0) ≤ 0,

then u0 is a shear, i,e, u0(y1, y2) = (v(y2), 0) for some scalar function v(y).

This says that in the “stably stratified” regime, all solutions are shear flows.

∂2

∂r2ψ +
∂2

∂z2ψ − 1

r
∂

∂rψ + r2p′(ψ0)− CC′(ψ0) = 0.

THEOREM: (Axisymmetric Euler rigidity) LetD = {(r, z) ∈ [1/2, 1]× T}.
Suppose p,C : R → R are Lipchitz functions and that ψ : D → R is C2(D)
solution of the Grad-Shafranov equation with infD |∇ψ| > 0. If

p′(ψ) ≥ 0,

thenψ is radial, i.e. ψ(r, z) = ψ(r).
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Flexibility for 2d Euler

Problem: Given a solution u0 = ∇⊥ψ0 of the steady 2D Euler equations

∆ψ0 = ω0(ψ0)

for some vorticity ω0 := ω0(ψ0) on a domain D0 and a “nearby” domain D,
find a solution u = ∇⊥ψ with possibly different vorticityω(ψ).
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for some vorticity ω0 := ω0(ψ0) on a domain D0 and a “nearby” domain D,
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Idea: Seek solution of the formψ = ψ0 ◦ γ−1 for a diffeomorphism γ : D0 → D.



Following Vanneste-Wirosoetisno (2005), write γ = Id +∇η +∇⊥ϕ. The η is
determined from fixing ρ = det∇γ constrained to satisfy

´
D0
ρ = Vol(D):

∆η = ρ− 1 +N1(∂
2ϕ, ∂2η).

The other component of the diffeomorphism is fixed by demanding

∆ψ = ω(ψ),

which, upon substitutingψ = ψ0 ◦ γ−1, becomes an equation of the form(
∆− ω′

0(ψ0)
)
∂sϕ = ρ2ω(ψ0)− ω0(ψ0) +N2(∂

2ϕ, ∂2η),

where ∂s := ∇⊥ψ0 · ∇ is a derivative along streamlines.

Hypothesis 1 (H1): The following problem admits only the trivial solution.(
∆− ω′

0(ψ0)
)

u = 0 in D0,

u = 0 on ∂D0.

Sufficient condition: Arnol’d stability! i.e. ω′
0 > −λ1 where λ1 > 0 is the smallest

eigenvalue of−∆ inD0 with homogeneous boundary conditions.
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∆ψ = ω(ψ),

which, upon substitutingψ = ψ0 ◦ γ−1, becomes an equation of the form(
∆− ω′

0(ψ0)
)
∂sϕ = ρ2ω(ψ0)− ω0(ψ0) +N2(∂

2ϕ, ∂2η),

where ∂s := ∇⊥ψ0 · ∇ is a derivative along streamlines.

Hypothesis 1 (H1): The following problem admits only the trivial solution.(
∆− ω′

0(ψ0)
)

u = 0 in D0,

u = 0 on ∂D0.

Sufficient condition: Arnol’d stability! i.e. ω′
0 > −λ1 where λ1 > 0 is the smallest

eigenvalue of−∆ inD0 with homogeneous boundary conditions.



Then γ is found by solving a nonlinear elliptic system for v := ∂sϕ and η

∆η = ρ− 1 +N1(∂
2ϕ, ∂2η),

(∆− ω′
0(ψ0))v = ω(ψ0)− ω0(ψ0) +N2(∂

2ϕ, ∂2η, 1− ρ),

Boundary conditions that γ : ∂D0 → ∂D that translate to Dirichlet condition for
v and a Neumann condition for η.

In order to recover ϕ from v, one uses ω. Specifically, inverting∆− ω′
0(ψ0),

v =
(
∆− ω′

0(ψ0)
)−1

hbc

(
ω(ψ0)− ω0(ψ0) +N2

)
.

Note that if v = ∂sϕ for some periodic function ϕ on streamline (dividing by |∇ψ0|
and integrating in arc-length), then its integral must vanish. We require

Hypothesis 2 (H2): There exists a constantC > 0 such that for all c in the
range ofψ0 the particle travel time on streamlines is bounded

µ(c) =
˛
{ψ0=c}

dℓ
|∇ψ0|

≤ C, c ∈ rang(ψ0).
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Integrating over streamlines, to have v = ∂sϕwemust have

0 =

˛
ψ0

vds = (Kψ0ω)(ψ0)− (Kψ0(ω0 −N2))(ψ0), (2)

where we have introducedKψ0 : Ck−2,α(I) → Ck,α(I)where I = im(ψ0)

(Kψ0u)(c) := 1

µ(c)

˛
{ψ0=c}

(
∆− ω′

0(ψ0)
)−1

hbc
[u ◦ ψ0]

dℓ
|∇ψ0|

.

Weneed a hypothesis to chooseω := ω(ψ0) to make (2) hold true, i.e.

(Kψ0ω)(ψ0) = (Kψ0(ω0 −N2))(ψ0).

Hypothesis 3 (H3): Fix k ≥ 2, and let I = im(ψ0). For any g ∈ Ck,α(I) such
that g(ψ0(∂D0)) = 0, there exists a u ∈ Ck−2,α(I) such thatKψ0u = g.
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Hypothesis 3 (H3) follows if we adopt the slightly stronger hypothesis (H1):

Hypothesis 1′ (H1′): The operator (∆− ω′
0(ψ0)) is positive definite, i.e. ∀

f ∈ H1
0(D0) there existsC > 0 such that ⟨(∆− ω′

0(ψ0)) f, f ⟩L2 ≥ C∥f∥2H1 .

This holds in the case of the 2d Euler equation if the base state is Arnol’d stable.

The idea behind (H1′) =⇒ (H3) is thatKψ0u := Pψ0(∆− ω′
0(ψ0))

−1
hbc[u]where

(Pψ0 f)(c) := 1

µ(c)

˛
{ψ0=c}

f dℓ
|∇ψ0|

, for all c ∈ im(ψ0)

is a projection on L2. Checked by calculation in action-angle coordinates. Then, in
a Hilbert spaceH, ifP is a projection andA is bounded positive operator then the
compressionPAP is positive inPH since

⟨PAPx, x⟩H = ⟨APx,Px⟩H ≥ C⟨Px,Px⟩H.

A strictly positive bounded operator in L2 like (∆− ω′
0(ψ0))

−1 remains positive
after compression. Thus the operatorPA is invertible fromPH → PH.
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Theorem (Constantin-Drivas-G.): LetD0 ⊂ R2 with smooth boundary ∂D0.
Suppose ψ0 ∈ Ck,α(D0) for some α > 0, k ≥ 2 satisfies∆ψ0 = ω0(ψ0) for
some ω0 ∈ Ck−2,α(R). Suppose (H1), (H2) and (H3) and that

´
D0
ρ = VolD.

Then there are ε1, ε2 depending only onD0, ω0 and ∥ψ0∥Ck,α such that if

∥∂D − ∂D0∥Ck,α(R) ≤ ε1,

∥1− ρ∥Ck,α(D0)
≤ ε2,

there is a diffeomorphism γ : D0 → D with Jacobian det(∇γ) = ρ, and
a function ω : R → R so that ψ = ψ0 ◦ γ−1 ∈ Ck,α(D) and ψ satisfies
∆ψ = ω(ψ). Thus, u = ∇⊥ψ is an Euler solution inD nearby u0.

REMARK: (H1′) is satisfied and thus so is (H3) for Arnol’d stable solution:

−λ1 < ω′
0 < 0, or 0 < ω′

0 <∞.

The condition is open, so are nearby deformations are Arnol’d stable,

Arnol’d stable solutions are non-isolated and structurally stable.
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Return toMHS
Consider again

curl B × B = ∇P, inT,
∇ · B = 0, inT,
B · n̂ = 0, on ∂T.

In cylindrical coordinates (R,Φ,Z), all axisymmetric equilibria with flux functions
take the form

B =
1

R2
(C(ψ)ReΦ + ReΦ ×∇ψ) ,

whereψ = ψ(R,Z) satisfies the axisymmetric Grad-Shafranov equation

∂2
Rψ + ∂2

Zψ − 1

R∂Rψ + R2P′(ψ) + CC′(ψ0) = 0, inD,

ψ = const. on ∂D

whereD = T ∩ {Φ = 0}.
Are there any other “symmetric” solutions with flux functions?
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Quasisymmetry

Let ξ be a non-vanishing vector field tangent to∂T. We sayB is quasisymmet-
ricwith respect to ξ if there is a functionψ with |∇ψ| > 0 satisfying

div ξ = 0

B × ξ= ∇ψ
ξ · ∇|B|= 0

The second point implies
B · ∇ψ = ξ · ∇ψ = 0
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The second point implies
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Quasisymmetry

The constraint

ξ · ∇|B|= 0

has the following consequence.

Any quasisymmetric field satisfyingMHS has the
form

B =
1

|ξ|2 (C(ψ)ξ +∇ψ × ξ) .

Themagnetic differential equation is

B · ∇u = −p′(ψ)(B ×∇ψ)·∇|B|−2

= −p′(ψ)
(
C(ψ)ξ ×∇ψ · ∇|B|−2 + |∇ψ|2ξ · ∇|B|−2) . (3)

For fields of this type this is schematically

∂θu + ι(ψ)∂ϕu = c(ψ)∂θf,

so Grad’s argument does not rule out these solutions.
Even so, there are no known examples of this type!
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Quasisymmetry

Let π(X,Y) = ∇Xξ · Y +∇Yξ · X denote the deformation tensor of ξ.

From

B =
1

|ξ|2 (C(ψ)ξ +∇ψ × ξ)

the equation div B = 0 says

C(ψ)π(ξ, ξ) + π(ξ, ξ ×∇ψ) = 0,

and ξ · ∇|B|2 = 0 says

π(ξ, ξ) +
2

C(ψ)π(ξ, ξ ×∇ψ) + 1

C(ψ)2 π(ξ ×∇ψ, ξ ×∇ψ) = 0.

When ξ is a Killing field, these are trivial!
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To satisfyMHSψ needs to satisfy the quasisymmetric Grad-Shafranov equation

∆ψ − ξ × curl ξ
|ξ|2 · ∇ψ +

ξ · curl ξ
|ξ|2 C(ψ) + CC′(ψ) + |ξ|2P′(ψ) = 0.

It is not clear if this is even consistent with solutions satisfying ξ · ∇ψ = 0!
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Application of the deformation theorem.

Return to magnetohydrostatics & stellarator confinement fusion,

Theorem (Constantin-D.rivas-G) There exist approximate quasisymmetric
MHS solutions with flux functions provided they are sustained by forcing f
with |f| ≲ |ξ − ξ0|where ξ0 is the nearest Euclidean Killing field to ξ and ξ is
the symmetry direction.

Idea of proof:
Choose ametric g for which a given ξ does generate an isometry.
Look for a solution of the form

Bg =
1

|ξ|2g

(
C(ψ)ξ +

√
|g|ξ ×g ∇gψ

)
Surprisingly

div Bg = 0, B × ξ = ∇ψ.
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Require thatBg satisfies theMHS equations with respect to themetric g,

B ×g curlg B = −∇gP

This gives a two-dimensional Grad-Shafranov equation

divg

(√
|g|

|ξ|2g
∇gψ

)
− C(ψ) ξ

|ξ|g
·g curlg

(
ξ

|ξ|2g

)
+

C(ψ)C′(ψ)√
|g||ξ|2g

+
P′(ψ)√

|ξ|
= 0,

which is consistent withLξψ = 0!

Solve this by deforming a solution to the axisymmetric Grad-Shafranov equations.
The resulting field satisfies the usual MHS equations up an error controlled by
|ξ − ξ0|. Also satisfies the third constraint of quasisymmetry to the same order.
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Thanks for your attention!


