The wave equation

Intoduction to PDE

1 The Wave Equation in one dimension

The equation is
Pu 0%
—_— C [
ot? Ox?
Setting & = x + ¢t, & = x — ct and looking at the function v(&;,&) =

u (%, %), we see that if u satisfies (1) then v satisfies

= 0. (1)

O¢, 0e,v = 0.
The “general” solution of this equation is
v=f(&)+9(&)
with f, g arbitrary functions. In other words, the “general” solution of (1) is
u(z,t) = f(x +ct) + gz — ct) (2)
The two functions w; = f(x + ct) and wy = g(x — ct) solve
Oywy — cOyw; = 0

and
8t’LU2 + c@xwg =0

describing propagation to the left (in positive time) and propagation to the
right of a wave of arbitrary constant shape. The solution to the initial value
problem

u(z,0) = ug(x)
{ Byu(x,0) = uy (x) (3)



is obtained from the equations u(x,t) = f(z +ct) + g(z — ct) and Jyu(x,t) =
cf'(x + ct) — cg'(x — ct) by setting t = 0. We obtain

u=/f+g
%Ulzf/—gl

and so, differentiating the first equation, solving and then integrating, we

obtain
[ =5(ug+ 1U1) + constant
g =5(ugp — 1U;) 4+ constant

where U; is some primitive of u;. Returning to the formula for u we obtain

x+ct
e t) = 5 (oo +ct) +uale =) 45 [ wm@ds @)

26 r—ct

If ug, uy have compact support K then at any 7" > 0 the solution u(z,t) will
have compact support Kr formed with the union of the points on the rays
x *+ ct = constant starting at t = 0 in K and arriving at 7" in K. The signal
travels with finite speed c. A point lying at distance larger than ¢I" from K
cannot be reached by the signal in less than T time.

2 The wave equation in R"

The equation is

with ¢ > 0. We prescribe

{ g(xa 0) = f(z) (6)

We use the method of spherical means due to Poisson. For a function h =
h(xy,...,z,) we define Mj,(x,r) by

M) = iy [ hiwas) @
Clearly
My(z,r) = - / h(z + r€)dS(€)
Wn Jlgl=1
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We can use this formula to extend the definition of M, (x,r) for all r € R.
Note that for fixed x this is an even function of r,

Mh(x> —7’) = Mh('r? 7’)
and also
Mh(l',O) = h(l’)
if h is continuous. Let us compute 0, Mj:
o.M, = £-VhdS =r"! £ Ve(h(z +1r))dS
S§n—1 S§n—1

The vector £ is the external normal to the unit ball. Thus, using the Gauss
formula

Op My (z,1) = f‘£|<1A§ (x 4+ ré&)dé = f|£|<1 Ayh(z + ré)dz

= 0 f§|<1 (x +r)d§ = A" — flx—y\<1 h(y)dy

= A0 wn fO dpf\y—xhp (4)dS(y) = Aq [ - nfor pnith(xaP)dp}
= Tl_n J“OT ,On_lAg;Mh(l’, p)dp

n~1 and differentiating we obtain

Multiplying by r
0, (r”_lﬁrMh(:v,T)) = " AL M, (2, 7)

which is the Darboux equation:

8_2+n—18
or? r  Or

)Mh(x r) = Ay My (z,7) (8)

Note that the left hand side is the radial part of the Laplacian. Moreover,
since

o.M, = - / Auh(x +1€)de
Wn Jgl<1
we have that
O Mp(x,0) =0 (9)

If u(z,t) solves (5) then

2

(Agu)(z +78,1) = -

2 @U(I + T§7 t)



and so
1 02

2o

On the other hand, from the Darboux equation

(ALM,) (z,t,r) = M, (x,t,r)

7 n—-10
(AQUMU) (l’,t,’f‘) - (ﬁ + r E) Mu

Thus, the spherical means of a solution of the wave equation solve the spher-
ically symmetric wave equation

0 # n—-10
{@—c2<w+ . E)}Muzo (10)

We will continue the calculation now for n = 3 where the ansatz a(r) = =2
transforms the Laplacian

# n—-10 1.,
(w* ; 5)“?‘%

In general, the trick a = rzh gets rid of the singular term "“~19.b but

(n—1)(n—3 "
,,«2

introduces the singular term )p. Thus, writing

1
M, (x,t,r) = =Ny(z,t, 1)
r

we obtain that the function N, (x,t, u) satisfies the one dimensional wave

equation
0? 5 02
(@ —C w) Nu<l‘,t,7') =0 (11)
Now
Ny(z,0,7) = rM,(x,0,7) = rMs(x,r) = Ny(z,7)
and

atNu(xy 07 7') = TatMu(xa Oa 7") = ng(xa 7") = Ng(xﬂ T)
It follows that

r+ct

1
Ny(z,t,r) = 3 (Ng(x, 7+ ct) + Ne(x,r —ct)) + %
r—ct

Ny(,&)dE



Dividing by r we obtain

M, (z,t,r) =
L ((r+ct)Mp(w,r+ct) + (r — ct)My(w,r — ct)) + 5= [ EM(x, €)dE

2cr Jr

Now M and M, are even, and therefore it follows that

My (z,t,1) = (12)
(r+ct)Mf(x,r+ct)2—r(ct—r)Mf(x,ct—r) + ﬁ fcztit 5M9(1'7 §>d€
Recalling that M, (z,t,0) = u(x,t), we let r — 0
M, (2,8,0) = 2((r + ct) My(w, 7 + ct)) g + CFMalErEl)
=0y (tMy(z, ct)) + tMy(z, ct)
= oot iy e IS ) + 00 (5237 fy e F)ASW))
Carrying out the differentiation we have
(SL’ t) 47r02t ly—z|= ctg( )dS( )+at <47r02t ly—z|= ct >
e WS @) + 2 [ () + (y— 1) Vf( aS(y
(13)

The formula (13) gives the unique solution of the problem (5), (6). The do-
main of inflence of a point is the set in space-time where a disturbance which
was initially situated at the point can occur. We see that if the disturbance
was initially (¢ = 0) located at z € R3 then it will propagate on a spherical
front S(x,ct) = {y € R3| |x — y| = ct}. The union of these spheres is the
future-oriented light cone

Iy ={(y.0] |z -yl =ct, t >0}

The domain of influence is the light cone. This is the (strong) Huyghens
principle. If you sit at a fixed location in R?, and wait, the evolution is an
inflating sphere of radius ct, and after a while the signal passes. This is why
we can communicate (sound, light) in 3d.

Note that there is a loss of regularity because the solution sees derivatives
of f. In order to make this clear, let us note that if the initial data are
spherically symmetric, then the solution is spherically symmetric as well (the
equation commutes with rotations). Note that if & is spherically symmetric



then h(y) = My(0,|y|). Denoting |y| = p, looking at (12) and reading at
x =0, r = p we obtain

(p+ct)f(p+ct)+(p—ct)f(p—ct) 1 [Pt
% 5,

u(p,t) = £9(§)dg

p—ct

If g = 0 and f is continuous but is not differentiable, like for instance f(z) =
V1 —|z]? for |z| <1, f(x) =0 for |x| > 1, then the solution u(p,t) becomes
infinite at p = 0 at time t = ¢~!. We have a linear focusing effect in L*>. In
L? we have conservation. Let

B() = [ (¥l + (0

Then

d
—FE(t)=0

We took ¢ = 1. The energy balance is true in any dimension. Indeed,

d
2 B = O
X7 (1) /Rgu udzx

Ou = (07 — A)u

where

is the d’Alembertian.

3 Hadamard’s method of descent

This method finds solutions of a PDE by considering them as particular
solutions of equations in more variables. We seek solutions of

Ou— (02, +02)u=0 (14)

as solutions of the 3D wave equation in z3 = 0. We assume thus that
f(x1, 29, 3) = f(21,22,0) and g(x1, g2, x3) = g(1, 72, 0) With a slight abuse
of notation. We use (13) at x3 = 0 noting that

{yl ly — 2| = ct} = {yl (11 — 21)° + (2 — 22)* + 45 = 7}

and that
dS(y) = (cosa)'dyrdys
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where

|y3|

cosy = ——.

ct
The integral f|y—a:|:ctg(y1’y2’ y3)dS(y) is clearly equal to 2f‘

because g does not depend on y3. Introducing

y—a|

p=+(y1—21)?+ (y2 — 22)?

the integral becomes

1
/ g(y)dS = QCt/ 91, y2) ——=dy1dy>
ly—x|=ct Dy(ct) 2t? — p?

D, (ct) = {(y1,2)| p < ct}

The formula (13) becomes

where

U(ZEh 1’2, = 271—0 ffp<ct \/thgi) yldyQ
<271'c ffp<ct \/;;zi) yldyQ)

=ct, y3>0 gds

(15)

We see that in n = 2 the strong Huyghens principle does not hold. The
domain of influence of a point is the solid disk D, (ct). Once received, the

signal never dies: communication is impossible in 2d.

4 The inhomogeneous Cauchy problem

We wish to solve
Ou=F

(16)

with initial conditions given by (6). Because of linearity of the equation, we

can solve separately the initial value and the forcing:
U(l‘, t) = ul(l‘v t) + u2($7 t)

with
Ou; =0, wu(z,0) = f(z), dwu(z,0) = g(z)

and

Ous = F, wu(z,0) =0, dyu(x,0)=0.



Thus, WLOG f = g = 0. Let us denote by Wg(x,t,s) the solution of the
homogeneous problem,

Ow =10
{ w(z,s) =0, ow(x,s)=F(z,s) (17)
In n = 3 we have
1
Wg(x,t, s :—/ F(y,s)dS 18
()= g [ Fsise) 09

for t > s. Now we claim that the solution of (16) is given by

u(m,t):/o Wg(z,t,s)ds (19)

This is Duhamel’s priciple. It is the analogue of Laplace’s “variation of
constants” formula from ODEs. Let us check that it works.

t t
Owu(z,t) = Wg(z, t,t —0) +/ OWp(x,t,s)ds = / OWr(x,t,s)ds
0 0

because Wg(z,t,t —0) = 0. Then

2

E(x,t,5)ds

t
8t2u= 6tWF(:c,t,t—O)+/0 W

t
Ay — / (AR (2.8, 5)ds
0

and because
OWp(z,t,t —0) = F(x,t)

we verified that u solves the inhomogeneous equation.

5 Decay of solutions
We discuss solutions of the homogeneous wave equation

Ou=0 (20)



in R™ with initial data (6). From the representation (13) it is clear that, when
n =3 and f, g have compact support, say f € C3(B(0,R)), g € Co(B(0, R))
for some R > 0, then it follows that

lu(z,t)] < Ct™*

for large ¢, uniformly for all (z,¢) € R* Indeed, the term involving g is

bounded by

t—l

!/_:ﬂ@MSFﬂ%AH%@Hx—m_@MA<RD

where H%(S) is the two dimensional Hausdorff measure (area in our case).
Because the area of any part of a sphere inside B(0, R) is bounded by a
constant depending only on R, this term is done. Similarly, the second term
is bounded

72 oy (f (W) + (y — 2) - Vf(y))dS(y)
<ot () B (ol e — ol = t.Jol < RY)

If% < 2 we are done, and if ‘ti' > 2 then |y| > |z|—t > t,s0 H*({y||z—y| =
t,lyl < R}) =0 fort > R. We see also that the decay is sharp: we can
choose g > 0, g > 1 on some fixed region and f = 0 and then there are
nontrivial contributions of the order Ct~'. (Of course, we cannot fix =,
that would contradict the strong Huyghens principle; we are talking about
uniform bounds, i.e. we are allowed to move z around). We present now two
approaches to prove the same result for general dimensions, namely

lu(z, )| < Ct "z

for ¢ large, uniformly in R"*!. The first appoach is based on ocillatory
integrals; the second, due to Klainerman, uses the symmetries of the wave
equation.

5.1 Oscillatory integrals

For the first approach, we write

) = 2m) [ [sin(ee]) €] 19(6) + costeie) Fe)] de

n
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which we rewrite as
u(z,t) = uy(z,t) +u_(z,t)

with
us(x,t) = (2%)_”/ ei(”git‘gl)Ai(f)df

n

and with

Au(©) = 5 (Tl 716 5(0))

Both terms u.y decay. Let us look at u., the other term is treated the same
way. Without loss of generality we may take coordinates aligned with the
direction of z, so, without loss of generality we may assume

r = Re,

where e, = (0,0,...,1), R = |z|. Thus

uy(z,t) = (27r)_"/ el Benttlel A (€)de

n

Now we take a small number e and take a smooth cutoff on the unit sphere
X (%) supported in |&,[2 > (1 — €?)[£]?. We write

uy(z,t) = alz, t) + b(x, t)

where
a(z,t) = (27)" / i REHIED o (¢ e
with
M@=A4@xQ§)
and
b t) = (2m) " [ B (e ag
with

56 = 4.9 [1-x ()]

10



Now on the support of 3 we have that p = /& + ... &2 satisfies p > €[€].
In the integral representing b we write

el _ 61 e _ [161 A e _ _ LN (eitel
ztpdp itp dp ’

where L = %dip and N is arbitrary. We integrate by parts, taking advantage
of the fact that e does not depend on p:

b t) = (2m) (-1 [ () (3()dg

We assume that f, g are smooth and decay fast enough. Then AL (§) are
smooth and decay fast enough. In order to have this behavior for small £ as
well, we need to assume that g(&) = O(|¢]), for instance that g = Dg; with
D some directional derivative and ¢g; smooth and decaying at infinity. Then
we can assure that on the support of S we have

(LHNBYE)] < (D™ One Y 10{AL(E)]

l7I<N
with Cy . depending on €, N and x. We have thus
bt < O™ [ 167 3 10iALe)lag
lil<N

This integral converges if N < n — 1 (because of the behavior near zero; if
we excise a region near zero, then we have arbitrary decay), so

b(x,t)] < Ct"Ht

a better decay than ¢~ 2z . Let us consider now a(z,t). We denote
R

and write the phase as
RE, + t|€| = th(Acosf + 1)

where

§n

cosf = >

€
11



We introduce polar coordinates and have

a(z,t) =
T e Jo €O Do (0, w) (sin 6)" 2k dOdkd S, o (w)

On the support of a we have |cosf| > /1 — €2, so it is close to 1. We
disitinguish two situations: if the phase is bounded away from zero, or if
the phase could vanish. The first situation occurs if cos@ > 0 (and hence it
is about 1) or if cosd < 0 (and hence it is about —1) and A < 1 — € or if
cosf < 0, and X\ > (1 —2€e?)~!. In these situations we write

eikt(/\cose+1) _ 1 ieikt(AcoSOJrl)
" it(Acos6+1) dk
N
_ 1 d ikt(Acos0+1) _ 7 N ikt(Acos6+1)
- |:it()\c059+1) dk] € =L (6 )

After cutting off and integrating by parts, the resulting expression decays
faster than any power of t. We are left with the behavior of

ar(x,t) =

@2m)™ [Tk Tk [y s dSp_a(w) [T ;e Aest Dok 6, w)(sin 6)"2d6

for § = §(e) small and with 1 —e < X\ < (1 — 2¢?)~L. Because A is close to 1,
we write

al(ac t) =
f 6zkt(l )\)kn Ldk fSn QdS f € zkAt(cosGJrl (k,Q,w)(sin@)”*ZdG

Changing variables to % = 1+ cos @, the inner integral is of the form

”
/ RN oy (k, z,w)2" " 2dz
—
with v = \/5(1 + /1 + €2)7te and for an appropriate a;. Thus
‘/ 1’“’\7522 oy (k, z,w) 2" 2dz| < C(kAt)an

holds with C' depending only on n, €, y a and angular derivatives of A, (§).
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5.2 Method of commuting vector fields of Klainerman

We start by the observation that if f is a radial function in R", i.e. f(x) =
F(|z|), then

f(z)* = —2/ F(r)F'(r)dr < C’|x|_(”_1)||f||L2(Rn)HVf||L2(Rn).

z|

Radial functions in H*(R") decay like |z|~"2". Of course, we can’t expect
this to be true for all functions in H*(R™). Radial functions belong to the
kernel of the angular momentum operators

Qij = $7;8j — x](?l

It turns out that a general “decay” estimate, of the kind obeyed by the radial
functions exists, provided an account is made of the size of the momentum
operators. Let A be a Lie algebra of first order operators with smooth co-
efficients (vector fields), finitely generated and let X7,... Xy be generators.
We use the notation

(@) ap =Y ( > XX, -XilU(I)F) (21)

1=0 \i1,...ii=1

mmM:(Ame&mQ% 2)

Let Oy be the Lie algebra generated by the angular momentum operators
Qi 1 <4,7 <n.

and denote

ij
Lemma 1. Let m > [251] 4+ 1. There eists a constant C = C(m,n) such
that for every smooth function f on S*™! and all n € S** we have

1
2

s ([ 110r.as©) " (29

This follows from the Sobolev embedding.

Lemma 2. There exists a constant C' = C(n) such that, for every smooth
function f, and all x #0 € R"

_n-l 1 1
F@)] < Cll™ T 013, 1o VI, oy (24)

13



Let x € R™ be fixed. We write x = rw with w € S*'. We fix w and write

F(rw)? < 20 ( / |f<pw>|2p”-1dp)2 ( / |8pf(pw)|2p”‘1dp)2

From Lemma 1 it follows that

Flpw)P <C / F(0€) [, mdS(€)

Sn—1

with m =1+ [25%]. Then note also that

| oo [ 1800,a5(©) = [ 1@, e

We note the similar inequality for d,f(pw), and we are done.

We want to use now additional vector fields that commute with the wave
operator. For simplicity of notation we will use 2° = ¢t = —x, z; = 27 for
coordinates. Indices running from 0 to 3 will be denoted by greek letters,
indices running from 1 to 3 by latin ones. We denote by 7,5 the Lorentz
metric, n°? its inverse (it is the same matrix) recall that o = —1, n;; = d;5,
all the rest of the entries are zero. The translation operators are

0

HOamn’
The angular momentum operators are

0 0

=T, — Ty
e " Oxv Y O

We denote by S the dilation

Q

SO

oxH’

We use summation convention. The commutation relations are
[T, 1] =0, [Ty, Qapl = 1uaTs — nusTa,
[T/“ S] - TH?
[Q/u/a Qaﬁ] = nanﬁV - nuBQaV + nanuB - nVBQuou

14



[Q,,,5] = 0.

2

Thus, (7)) generate a Lie algebra denoted 7T, (£2,,) generate a Lie algebra
denoted Q, (Q,,,5) generate a Lie algebra denoted L (for Lorentz) and (7,
Q,,,5) generate a Lie algebra denoted II (for Poincaré). Note that

[D7 Tu] =0, [D, Q/W] =0

and
O, 8] =20.

Thus the dilation of a solution of O = 0 is again a solution, and obviously
the same is true for all elements in I1. We will use conservation of energy of
solutions and their II derivatives to obtain decay. We begin by recalling the
classical local Sobolev lemma in R"™:

Lemma 3. There ewists a constant C' = C(m,n) so that, for m > 1+ [3],
every R > 0, every smooth uw and all x € B(0, R) we have

lu(z)] < czm: RI73 > [0%u(z)Pd (25)
- B(

O Jal=j

This is easily seen done by reducing the problem to R = 1 using a dila-
tion, and then using an extension theorem in H™(B(0,1)), extending u to a
function in v € H™(R™) of comparable H™ norm, and supported in B(0, 2).
We take a smooth compactly supported cutoff function x equal identically
to 1 in a neighborhood of B(0, 1) and write the Fourier inversion formula for
xv. Using the weights (1+]¢|?)2 we see that the L'(R") norm of the Fourier
transform of yv is bounded by a constant multiple of the H™(B(0,1)) norm
of w.

Now we note that for (¢,z) = (2° z) not on the wave cone |z|* = t* we
can express regular 0; derivatives in terms of the vector fields generating L:

T, = (x'Q + 2,5) (26)

7’2—t2

2

with obvious notation r? = |(21, o, . .., z,)|?, 72 — 12 = napr®2®. We denote

o_ = (1+|r—t]):.

15



Lemma 4. For every k > 0 there exists C' = C(n, k) so that for every smooth
function and every point x = (2°,x',..., x") we have

8k

WU@ < C(o-) ™ Ju(@) | (27)

holds for all oy + -+ - + o, = k.

The proof is done by induction. For k£ = 1 we saw that

ou 1 1
= Q) S
ox? r—tr—i—t(x - 5)

SO

ou
ox”

In order to take care of the region |r —¢| < 1 we augment to II. We obtain,
for any function wu,

C

_|7‘—

glule

< < u@)ma. (28)

o_

ox”

For higher derivatives we use the commutation relations, which look symbol-
ically like [T, 1I] = T. For instance, by (28), we have

0%u C
< —|T;
‘axual,l,l = o | #u(x)‘l_[,l

and a term of the form X7,u with X € IIU{I} is of the form
XTu=T,X(u)+T
with T € T, so we apply (28) to deduce

C
| XT,ul < U—|U(I‘)|H,2

Now we consider a point (¢, x) in the interior of the wave cone

|z <

Then, clearly,

o_(t,x) > (29)

|+
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Let R = £ and apply Lemma 3:

N

MR / S [07u(y) Pdy
=0 ly|I<R

|| <j

Using, for each y the inequality (27) of Lemma 4 and recalling (29) which is
valid for (¢,y), we obtain

1

u(t, )| < O RITERT (fng IU(t,y)\%,jdy) )

1
= 018 5% (fes 1ot vy
< Ct = |Jult, )mm

We proved:

Lemma 5. Let m > 1+ [%]|. There exists a constant C = C(m,n) so that,
for all smooth functions u and all points (t,z) with t > 0, t > 2|z|, we have

Jult, 2)| < CtF[fu(t, ) [rm- (30)
On the other hand, for |z| > £ we can use (24):
_n-1
ult, @) < C 5 Jult, Yo (31)

Combining (30) and (31) we have

Proposition 1. Let m > [5] + 2. There exists a constant C = C(m,n) so
that for all t > 0, x € R™ and smooth functions u we have

[u(t, )] < C(L+8)""7 Jult, ) |lum (32)

We control the region t < 1, |z| < 3 using usual Sobolev inequalities on
cach time slice. If ¢ < 1 but |z| > § orif ¢ > 1 and |z| > £ we use (31) and
if t > 1, |z < £ we use (30).

Just as Lemma 2, Proposition 1 is not a true decay result, it is just a
convenient tautology. However, for solutions of the wave equation, we can

easily control the right hand side.
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Theorem 1. Let m > [5] + 2. Let u(t,z) solve
Ou=0
and assume that the functions
uo(x) = u(0,x), wui(x) = wu(0,x)
are such that
IVau(0, ) [mm <00, [|9u(0, -)[[mm < 00
Then
Vau(t,2)] < OO+ 877 [IVoul0,)lln + 100, ) 11,0]

Note that we need to use the equation in order to express the high I, m
norms at time ¢ = 0 in terms of spatial derivatives of the initial data.
The proof follows by considering v = 9;I'u where I" € II. Note that

[0, 2@y < Cll[0(0, )l 2@y + [[(=2)72810(0, ) || L2rem)]
holds for any solution of the wave equation. So we have

IValult, )l 2@y < ClI(Valu)(0, )| 2@y + [1(8:Tw) (0, )| 2w
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