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ABSTRACT. We present a Lagrangian-Eulerian strategy for proving uniqueness and local existence of solutions
of limited smoothness for a class of incompressible hydrodynamic models including Oldroyd-B type complex
fluid models and zero magnetic resistivity magneto-hydrodynamics equations.

1. Introduction

Many physical models consist of equations for fluids coupled with equations for other fields. Primary
examples occur in descriptions of complex fluids in which a solvent interacts with particles, and in magneto-
hydrodynamics, in which a fluid interacts with a magnetic field. One of the simplest complex fluids models,
an Oldroyd-B model, reduces to a time independent Stokes system

−∆u+∇p = divσ, divu = 0

coupled with an evolution equation for the symmetric added stress matrix σ,

∂tσ + u · ∇σ = (∇u)σ + σ(∇u)T − σ + (∇u) + (∇u)T

Clearly, from the Stokes equation with appropriate boundary conditions (for instance decay in the whole
space) it follows that the velocity gradient is of the same order of magnitude as the added stress, ∇u ∼ σ.
This makes the evolution equation for σ potentially capable of producing finite time blow up. The formation
of finite time singularities in this system is an outstanding open problem. While the balance σ ∼ ∇u is
potentially dangerous for large data and long time, it also indicates clearly that if ∇u is controlled then
σ is controlled as well. In particular, the short time existence of solutions can be obtained in a class of
velocities that is close to the Lipschitz class. The fact that singular integral operators are not bounded
in L∞ requires the use of slightly smaller spaces, and σ ∈ Cα(Rd) ∩ Lp(Rd) and correspondingly u ∈
C1+α(Rd) ∩W 1,p(Rd) are spaces in which the problem admits short time existence. Here both α ∈ (0, 1)
and p ∈ (1,∞) are arbitrary. It is natural then to ask about uniqueness of solutions in the same spaces.
Taking the difference σ between two solutions σ1 and σ2 leads to an equation

∂tσ + ū · ∇σ + u · ∇σ̄ = (∇ū)σ + (∇u)σ̄ + σ̄(∇u)T + σ(∇ū)T − σ + (∇u) + (∇u)T

where u = u1−u2 is the difference of the corresponding velocities, and ū = 1
2(u1+u2) and σ̄ = 1

2(σ1+σ2)
are the arithmetic averages of velocities and of stresses. The right hand side is well-behaved in Cα. The
term u · ∇σ̄ is not defined for σ̄ ∈ Cα. The left hand side is a divergence, and this would suggest the use of
negative index Sobolev spaces, but the right hand does not permit it. These obstructions make an Eulerian
approach to a uniqueness proof difficult in this class of solutions. Uniqueness with this low regularity was
proved in ([1]), using however a Lagrangian approach. The main reason why Lagrangian variables are
better behaved than Eulerian ones is that in Lagrangian variables the velocity v = u ◦ X is obtained from
the Lagrangian added stress τ = σ ◦X by an expression

v = U(τ ◦X−1) ◦X
1
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where U is the linear operator that produces the solution of the steady Stokes equation from the added
stresses, and X is the Lagrangian path, which is a time-dependent diffeomorphism. The Gateaux derivative
(variational derivative or first variation, in the language of mechanics) of the map X 7→ v is a commutator,
and it is better behaved than each of its terms. On the other hand, τ obeys an ODE in Lagrangian varaibles,
so it is easily controlled for short time by g = (∇u) ◦X .

The present paper expands this approach to time-dependent relationships between u and σ and we
prove uniqueness and local existence in large spaces Cα ∩Lp for a class of hydrodynamic models including
complex fluids of Oldroyd-B type, and ideal magneto-hydrodynamics. Local existence of very smooth
solutions of such systems is classical ([5]). We provide in this paper a correct statement and a complete
proof of a lemma (Lemma 1) which was used in ([1]) quoting ([3]). A Lagrangian approach for Oldroyd-
B smooth flow was advocated in ([2]). Adding inertia, i.e. coupling with Navier-Stokes instead of Stokes,
requires a modified treatment. We prove general existence and uniqueness theorems in Lagarngian variables.
They apply in particular to the ideal MHD equations ∂tu+ u · ∇u− ν∆u+∇p = b · ∇b,

divu = 0, div b = 0,
∂tb+ u · ∇b = b · ∇u

in Rd, and to nonlinear Oldroyd-B like systems ∂tu+ u · ∇u− ν∆u+∇p = divσ,
divu = 0,
∂tσ + u · ∇σ = F (∇u, σ)

in Rd, for quite general smooth F . The results prove local existence and Lipschitz dependence on initial data
in Lagrangian coordinates, in classes of Hölder continuous magnetic field b, added stress σ, and velocity
gradient∇u.

The paper is organized as follows. In the next section we describe systems in which added stresses are
coupled to time dependent Stokes equations. The third section is devoted to statements and proofs about the
linear operators and the commutators involved. The fourth section presents the proof of Theorems 5 and 6,
for Stokes-based systems, which state that in Lagrangian variables the nonlinearity is locally Lipschitz in
path spaces. The solutions exist locally, and depend in a locally Lipschitz continuous manner in these certain
path spaces on initial data. In particular, the solutions are unique. Although simpler, the time-dependent
Stokes-based systems provide the principal challenges. Once the setting is clarified, the Navier-Stokes-based
systems are treated in these path spaces in a perturbative manner. The difference is that the Stokes-based
systems close at the level of (X, τ), whereas the Navier-Stokes-based systems require a treatment with
(X, τ, ∂tX) simultaneously. The fifth section describes the changes needed in order to adapt the proof for
the case of inertia. The main results, Theorems 7 and 8 state local existence of solutions for Navier-Stokes-
based systems in Lagrangian variables and Lipschitz dependence of initial data in a path space

(X, τ, ∂tX) ∈ Lip(0, T ;C1+α,p)× Lip(0, T ;Cα,p(Rd))× L∞(0, T ;C1+α,p)

for any 1 < p <∞ and any 0 < α < 1.

2. Time-dependent Stokes flow coupled with added stress

We consider the time dependent forced Stokes equations

∂tu−∆u+∇p = divσ, ∇ · u = 0 (1)

coupled with an equation
∂tσ + u · ∇σ = F ((∇u), σ) (2)

We assume that F is a smooth function. We also assume that F has polynomial growth near zero

|F (g, τ)| ≤ C(|g|+ |τ |)k.
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for some k ∈ N. This is only to guarantee some decay at spatial infinity, because we work in Lp ∩ L∞
spaces in Rd. The typical examples include

F ((∇u), σ) = (∇u)σ + σ(∇u)T − σ + (∇u) + (∇u)T

In the case of MHD, σ = b is a vector, the right-hand side of the Stokes equation is given by div (b⊗ b) and

F = b · ∇u.
The divergence operation is divσ = ∇ · σ. We work in Rd and require the velocities u and the stresses σ to
vanish at infinity. The solution map for the Stokes equation is

u(x, t) = L(u0)(x, t) + U(σ)(x, t) (3)

where

U(σ) =
∫ t

0
e(t−s)∆Hdivσ(s)ds (4)

with
H = I +R⊗R, (5)

where R = (−∆)−
1
2∇ are the Riesz transforms, and with

L(u0)(t) = et∆u0 (6)

Note that U(σ) is divergence-free and vanishes at t = 0, and L(u0) is divergence-free if u0 is. Also,

∇u = et∆∇u0 + G(σ) = L(∇u0) + G(σ) (7)

with

G(σ) =
∫ t

0
e(t−s)∆∇Hdivσ(s)ds. (8)

The Lagrangian description is as follows. The Lagrangian paths X solve
dX

dt
= L(u0) ◦X + U(τ ◦X−1) ◦X (9)

with
τ = σ ◦X (10)

and initial data X(a, 0) = a. Let

g(a, t) = (∇u)(X(a, t), t) = L(∇u0) ◦X + G(τ ◦X−1) ◦X. (11)

The equation for τ is the ODE
dτ

dt
= F (g, τ). (12)

The Eulerian variables are u and σ. The Lagrangian variables are X and τ . In Lagrangian variables, the
system is {

X(a, t) = a+
∫ t

0 U(X(s), τ(s))ds,
τ(a, t) = σ0(a) +

∫ t
0 T (X(s), τ(s))ds.

(13)

where the Lagrangian nonlinearities U(X, τ), T (X, τ) are{
U = L(u0) ◦X + U(τ ◦X−1) ◦X,
T = F

((
L(∇u0) ◦X + G(τ ◦X−1) ◦X

)
, τ
) (14)

We consider a differentiable one-parameter family of pathsXε, τε, with Eulerian form σε = τε ◦X−1
ε , initial

data uε(0) and σε(0). We introduce the notations

X ′ε =
dXε

dε
, (15)

with Eulerian form
ηε = X ′ε ◦X−1

ε , (16)
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also

τ ′ε =
dτε
dε
, (17)

with Eulerian form
δε = τ ′ε ◦X−1

ε , (18)
and

u′ε,0 =
duε(0)
dε

. (19)

Differentiating U in (14) with respect to ε results in

U ′ = (L(∇uε(0)) ◦Xε)X ′ε + L(u′ε,0) ◦Xε + ((∇U) (σε) ◦Xε)X ′ε−U(ηε · ∇σε) ◦Xε + U(δε) ◦Xε. (20)

The first two terms arise from differentiating L(uε(0))◦Xε. The third term arises from differentiating Xε in
U(τε ◦X−1

ε )◦Xε. The fourth term comes from differentiating X−1
ε in the same expression. The calculation

uses the fact that, for fixed τ ,
d

dε
(τ ◦X−1

ε ) = −∇(τ ◦X−1
ε )(X ′ε ◦X−1

ε ),

which in turn follows from
dX−1

ε

dε
= −(∇X−1

ε )(X ′ε ◦X−1
ε ).

The fifth term arises from differentiating τε. Composing with X−1
ε from the right, and dropping ε for ease

of notation, we deduce from (20)

U ′ ◦X−1 = L(∇u0)η + L(u′0) + [η · ∇, U] (σ) + U(δ) (21)

Here
[η · ∇, U](σ) = η(t) · ∇U(σ)− U(η(s)) · ∇σ) (22)

is the space-time commutator. Note that

X ′(0) = η(0) = 0, δ(0) = τ ′0 = σ′0 (23)

and therefore
U ′(0) = u′0. (24)

Differentiating T in (14) with respect to ε we obtain

T ′ = D1F (g, τ)g′ +D2F (g, τ)τ ′ (25)

where

g′ = (L(∇∇u0) ◦X)X ′ + L(∇u′0) ◦X + [∇G(σ) ◦X]X ′ −G(η · ∇σ) ◦X + G(δ) ◦X (26)

is the ε derivative of
g = L(∇u0) ◦X + G(τ ◦X−1) ◦X. (27)

Composing with X−1 we obtain

g′ ◦X−1 = L(∇∇u0)η + L(∇u′0) + [η · ∇, G](σ) + G(δ) (28)

where
[η · ∇,G](σ) = η(t) · ∇G(σ)−G(η(s) · ∇σ). (29)

Summarizing we have U
′ ◦X−1 = L(∇u0)η + L(u′0) + [η · ∇,U](σ) + U(δ)
T ′ = D1F (g, τ)g′ +D2F (g, τ)τ ′

g′ ◦X−1 = L(∇∇u0)η + L(∇u′0) + [η · ∇,G](σ) + G(δ)
(30)

where
η = X ′ ◦X−1, δ = τ ′ ◦X−1. (31)
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Differentiating U with respect to the Lagrangian independent variable (label) a we have

(∇aU)(a, t) =
(
L(∇u0) ◦X + G(τ ◦X−1) ◦X

)
(∇X) = g(a, t)(∇X)(a, t) (32)

and using the fact that d
dε and label derivatives commute we have

∇aU ′(a, t) = g′(a, t)(∇aX(a, t)) + g(a, t)(∇aX ′(a, t)) (33)

with g given in(27) above and g′ given by (26).

3. Bounds on operators and commutators

We consider function spaces

Cα,p = Cα(Rd) ∩ Lp(Rd)

with norm
‖f‖α,p = ‖f‖Cα(Rd) + ‖f‖Lp(Rd)

for α ∈ (0, 1), p ∈ (1,∞), C1+α(Rd) with norm

‖f‖C1+α(Rd) = ‖f‖L∞(Rd) + ‖∇f‖Cα(Rd)

and
C1+α,p = C1+α(Rd) ∩W 1,p(Rd)

with norm
‖f‖1+α,p = ‖f‖C1+α(Rd) + ‖f‖W 1,p(Rd)

We need also spaces of paths, L∞(0, T ;Cα,p) with the usual norm,

‖f‖L∞(0,T ;Cα,p) = sup
t∈[0,T ]

‖f(t)‖α,p,

spaces Lip(0, T ;Cα,p) with norm

‖f‖Lip(0,T ;Cα,p) = sup
t6=s,t,s∈[0,T ]

‖f(t)− f(s)‖α,p
|t− s|

+ ‖f‖L∞(0,T ;Cα,p),

Cβ(0, T ;Cα,p) with norm

‖f‖Cβ(0,T ;Cα,p) = sup
t6=s,t,s∈[0,T ]

‖f(t)− f(s)‖α,p
|t− s|β

+ ‖f‖L∞(0,T ;Cα,p)

and spaces Cβ(0, T ;C1+α,p) with norm

‖f‖Cβ(0,T ;C1+α,p) = sup
t6=s,t,s∈[0,T ]

‖f(t)− f(s)‖C1+α,p

|t− s|β
+ ‖f‖L∞(0,T ;C1+α,p).

We start with bounds on U and G.

THEOREM 1. Let 0 < α < 1, 1 < p <∞ and let T > 0. There exists a constant such that

‖U(σ)‖L∞(0,T ;Cα,p) ≤ C
√
T‖σ‖L∞(0,T ;Cα,p) (34)

and
‖L(u0)‖L∞(0,T ;Cα,p) ≤ C‖u0‖α,p (35)

hold.
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THEOREM 2. Let 0 < α < 1, 0 < β ≤ 1, 1 < p <∞ and let T > 0. The linear operator

σ 7→ G(σ)

G : Cβ(0, T ;Cα,p)→ L∞(0, T ;Cα,p)
is continuous. The linear operator

u0 7→ L(∇u0)
maps continuously C1+α(Rd) ∩W 1,p(Rd) to L∞(0, T ;Cα,p).

REMARK 1. G is actually continuous with values in the Banach space Cβ log(0, T ;Cα(Rd) ∩ Lp(Rd))
with norm

‖γ‖Cβ log(Cα,p) = supt∈[0,T ] ‖γ(·, t)‖α,p+
supt,s∈[0,T ],t6=s

‖γ(·,t)−γ(·,s)‖α,p
|t−s|β log

“
2T
|t−s|

”
+log

“
1+
|t−s|
t

” .
Note that there is an unavoidable singularity at t = 0 because if σ ∈ Cα,p is time-independent, then

G(σ) = (I− et∆)RHR · σ
is bounded, but not time-Hölder continuous in Cα,p at t = 0.

THEOREM 3. Let 0 < α < 1, 1
2 < β ≤ 1, T > 0. The bilinear operator

(η, σ) 7→ [η · ∇,G](σ)

is continuous from
(η, σ) ∈ Cβ(0, T ;C1+α(Rd)× Cβ(0, T ;Cα,p)

to
L∞(0, T ;Cα,p),

that is,
‖[η · ∇,G]σ‖L∞(0,T ;Cα,p) ≤ C‖η‖Cβ(0,T ;C1+α(Rd))‖σ‖Cβ(0,T ;Cα,p). (36)

The requirement β > 1
2 is needed to compensate for the extra derivative; this is clearly seen if we

consider η just a function of time. The fact that η is not required to belong to Lp in space is structural: the
terms involving the variations of Lagrangian paths need not decay.

THEOREM 4. Let 0 < α < 1, 0 < β ≤ 1, T > 0. The bilinear operator

(η, σ) 7→ [η · ∇,U](σ)

obeys
‖[η · ∇,U](σ)‖L∞(0,T ;Cα,p)

≤ C[T 1−β‖η‖Cβ(0,T ;Cα(Rd)) + T
1
2 ‖η‖L∞(0,T ;C1+α(Rd))]‖σ‖L∞(0,T ;Cα,p)

(37)

Proof of Theorem 2. We note first that

u0 7→ et∆∇u0 = L(∇u0)

maps continuously C1+α(Rd) ∩W 1,p(Rd) to L∞(0, T ;Cα,p). We consider therefore G(σ). We write

G(σ)(t) =
∫ t

0
e(t−s)∆∇H∇σ(s)ds = G1 +G2

with

G1(x, t) =
∫ t−l

0
e(t−s)∆∇H∇σ(s)ds

and

G2(x, t) =
∫ t

t−l
e(t−s)∆∇H∇σ(s)ds
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and 0 < l < t arbitrary, to be chosen later. The solution of the heat equation is given by convolution with
the Gaussian gt. We use the fact that∇gt−s is in the Hardy class H1(Rd) and therefore

‖∇H∇gt−s‖L1(Rd) ≤
C

t− s
to deduce

‖G1(·, t)‖α,p ≤ C
∫ t−l

0 ‖∇H∇gt−s‖L1(Rd)‖σ(s)‖α,pds
≤ C‖σ‖L∞(0,T ;Cα,p) log

(
t−l
t

)
We split G2 in two pieces

G2(x, t) = G3 +G4

with

G3(x, t) =
∫ t

t−l
e(t−s)∆∇H∇(σ(s)− σ(t))ds

and

G4(x, t) =
∫ t

t−l
e(t−s)∆∇H∇σ(t)ds.

Now

‖G3(·, t)‖α,p ≤ C‖σ‖Cβ(Cα,p)

∫ t

t−l
(t− s)−1+βds = C‖σ‖Cβ(Cα,p)l

1−β

and, because

G4(·, t) =
(
I−RHRel∆

)
e(t−l)∆

we obtain
‖G4(·, t)‖Cα,p ≤ C‖σ‖L∞(0,T ;Cα,p).

Choosing l = t
2 we obtain

‖Gσ‖L∞(0,T ;Cα,β) ≤ C(1 + T 1−β)‖σ‖Cβ(0,T ;Cα,p)

and this ends the proof of the theorem.
Considering the remark following the theorem, let 0 ≤ t < t+ h ≤ T , and let us write

G(σ)(t+ h)−G(σ)(t) =∫ t
0 e

(t−s)∆∇H∇(σ(s+ h)− σ(s))ds+
∫ h

0 e
(t+h−s)∆∇H∇σ(s)ds =

I1(x, t) + I2(x, t).

We write
I1(x, t) = I11(x, t) + I12(x, t) =

∫ t
0 e

(t−s)∆∇H∇(σ(t+ h)− σ(t))ds+∫ t
0 e

(t−s)∆∇H∇(σ(s+ h)− σ(t+ h) + σ(t)− σ(s))ds

Because ∫ t

0
e(t−s)∆∇H∇ds = (I− et∆)RHR

we obtain
‖I11(·, t)‖Cα ≤ Chβ‖σ‖Cβ(0,T ;Cα(Rd)).

A logarithm is lost in the estimate of I12. Using the properties of gt−s, we have

‖I12(·, t)‖Cα(Rd) ≤
C‖σ‖Cβ(0,T ;Cα(Rd))

∫ t
0

1
t−s min{|t− s|β;hβ}ds ≤

C‖σ‖Cβ(0,T ;Cα(Rd))h
β(1 + log+

t
h) ≤ C‖σ‖Cβ(0,T ;Cα(Rd))h

β(1 + log 2T
h )
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Thus, for I1 we obtain uniform Hölder continuity in time on [0, T ] with logarithmic loss, and in particular
with any exponent less than β. For I2 we have

‖I2‖Cα(Rd) ≤ C
∫ h

0 ‖∇H∇gt+h−s‖L1(Rd)‖σ(·, s)‖Cα(Rd)ds ≤
C‖σ‖L∞(0,T ;Cα(Rd))

∫ h
0

1
t+h−sds = C‖σ‖L∞(0,T ;Cα(Rd)) log

(
1 + h

t

)
.

Thus I2 is Lipschitz continuous in time away from t = 0, but not Hölder continuous in time at t = 0.
Because log(1+x) ≤ Cxβ , if we measure Hölder continuity in time of order β we have a singular coefficient
of order t−β near t = 0.

LEMMA 1. Let 0 < α < 1, 1 < p <∞. Let η ∈ C1+α(Rd) and let

(Kσ)(x) = P.V.

∫
Rd
k(x− y)σ(y)dy

be a classical Calderon-Zygmund operator with kernel k which is smooth away from the origin, homoge-
neous of degree −d and with mean zero on spheres about the origin. Then the commutator [η · ∇,K] can be
defined as a bounded linear operator in Cα,p and

‖[η · ∇,K]σ‖α,p ≤ C‖η‖C1+α(Rd)‖σ‖α,p (38)

REMARK 2. The conclusion of the lemma holds also for operators H which are products of classical
CZ operators. This follows from telescoping applications of the lemma.

Proof of Lemma (1). Let us note that both terms in the commutator, η · ∇Kσ and Kη∇σ are well defined
and Hölder continuous if σ is smooth. We compute first

[η · ∇,K]σ(x) =
∫

Rd
k(x− y)(η(x)− η(y)) · ∇yσ(y)dy

Now we introduce a smooth cutoff χ(|x−y|) identically equal to 1 for |x−y| ≤ 1 and compactly supported.
The conclusion of the lemma holds for

Cout(x) =
∫

Rd
(1− χ(|x− y|)) k(x− y)(η(x)− η(y)) · ∇yσ(y)dy

by integration by parts and inspection, using the Lp bound for σ.
We concentrate our attention on

Cin(x) =
∫

Rd
χ(|x− y|)k(x− y)(η(x)− η(y)) · ∇yσ(y)dy

We first write

Cin(x) =
∫

Rd
χ(|x− y|)k(x− y)(η(x)− η(y)) · ∇y(σ(y)− σ(x))dy

and then we integrate by parts:
Cin(x) = C(x) + C1(x) + C2(x)

with

C(x) =
∫

Rd
χ(|x− y|)∇xk(x− y)(η(x)− η(y))(σ(y)− σ(x))dy,

C1(x) =
∫

Rd
∇xχ(|x− y|))k(x− y)(η(x)− η(y))(σ(y)− σ(x))dy

and

C2(x) =
∫

Rd
χ(|x− y|)k(x− y)(∇yη(y))(σ(y)− σ(x))dy.
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It is easy to see that C1 and C2 are Hölder continuous and satisfy the bound (38). For instance, for C2 we
may add and subtract∇xη(x) and we obtain two terms which are typical terms in classical singular integral
theory; the proof we present below for C(x) can be used as well. We investigate now C(x) and write

η(y)− η(x) = (y − x) ·
∫ 1

0
∇η(x+ λ(y − x))dλ

We write also
K(z) = z∇zk(z)

and note that it is homogeneous of order −d and smooth away from the origin. The averages on spheres
might not vanish. So, with these preparations C(x) is

C(x) =
∫ 1

0
dλ

∫
Rd
χ(|x− y|)K(x− y)(∇η(x+ λ(y − x)))(σ(y)− σ(x))dy

We write now
C(x) = A(x) +B(x)

where

A(x) =
∫ 1

0
dλ

∫
Rd
χ(|x− y|)K(x− y)(∇η(x+ λ(y − x))−∇η(x))(σ(y)− σ(x))dy

and

B(x) = ∇η(x)
∫

Rd
χ(|x− y|)K(x− y)(σ(y)− σ(x))dy.

Now B ∈ Cα(Rd) and obeys (38). It is obviously enough to check that

I(x) =
∫

Rd
χ(|x− y|)K(x− y)(σ(y)− σ(x))dy

is in Cα(Rd) and its norm is bounded by that of σ. To check this we take the difference

I(x+ h)− I(x) = I1 + I2 + I3

where I1 is

I1 =
∫
|x−y|≤4|h|, |x+h−y|≥4|h| χ(|x+ h− y|)K(x+ h− y)(σ(y)− σ(x+ h))dy

−
∫
|x−y|≤4|h|, |x+h−y|≥4|h| χ(|x− y|)K(x− y)(σ(y)− σ(x))dy

I2 is
I2 =

∫
|x−y|≥4|h|, |x+h−y|≤4|h| χ(|x+ h− y|)K(x+ h− y)(σ(y)− σ(x+ h))dy

−
∫
|x−y|≥4|h|, |x+h−y|≤4|h| χ(|x− y|)K(x− y)(σ(y)− σ(x))dy

and
I3 =

∫
|x−y|≥4|h|, |x+h−y|≥4|h| χ(|x+ h− y|)K(x+ h− y)(σ(y)− σ(x+ h))dy

−
∫
|x−y|≥4|h|, |x+h−y|≥4|h| χ(|x− y|)K(x− y)(σ(y)− σ(x))dy

For I1 and I2 we note that both |x − y| ≤ 5|h| and |x + h − y| ≤ 5|h|, and we use the straightforward
inequality ∫ 5h

0
r−1rαdr ≤ Chα.

The integral I3 is split into two pieces.
I3 = I4 + I5

with

I4 =
1
2

∫
|x−y|≥4|h|, |x+h−y|≥4|h|

[χ(|x+h−y|)K(x+h−y)−χ(|x−y|)K(x−y)](2σ(y)−σ(x+h)+σ(x))dy
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and

I5 =
σ(x+ h)− σ(x)

2

∫
|x−y|≥4|h|, |x+h−y|≥4|h|

[χ(|x+ h− y|)K(x+ h− y) + χ(|x− y|)K(x− y)]dy.

For I4 we use the smoothness of the kernel, the intermediate value theorem, and the Hölder bounds to obtain

|I4| ≤ C‖σ‖Cα(Rd)

∫ ∞
3|h|
|h|r−2(rα + hα)dr ≤ C‖σ‖Cα(Rd)|h|α.

For I5 we recall that K(z) = z∇k(z). We claim that integrals of∫
|z|≥4|h|,|z±h|≥4|h|

χ(|z|)K(z)dz

are bounded uniformly, independently of h. Indeed, integrating by parts∫
|z|≥5|h| χ(|z|)zj∂ik(z)dz =
−
∫
|z|≥5|h| δijχ(|z|)k(z)dz −

∫
|z|≥5|h| ∂i(χ(|z|))zjk(z)dz +

∫
|z|=5|h| zjχ(5|h|) zi

5|h|k(z)dS(z)
= 0 + bounded.

Here we used that k has mean zero on spheres. On the other hand, on the annular regions we use simply the
homogeneity of K and ∫ 5h

4h

1
r
dr ≤ C.

The integral A(x) is treated in a similar fashion. We write

A(x) =
∫

Rd
χ(|x− y|)K(x− y)φ(x, x− y)(σ(y)− σ(x))dy

where

φ(x, x− y) =
∫ 1

0
(∇η(x+ λ(y − x))−∇η(x))dλ

We consider
A(x+ h)−A(x) = A1 +A2 +A3

whereA1 andA2, like I1 and I2 above, are differences of integrals on |x−y| ≤ 4|h| and |x+h−y| ≥ 4|h|,
and, respectively, on |x − y| ≥ 4|h| and |x + h − y| ≤ 4|h|, while A3 is the difference of integrals
corresponding to both |x − y| ≥ 4|h| and |x + h − y| ≥ 4|h|. As before, using the triangle inequality, the
regions of integration for A1 and A2 are regions where both |x − y| ≤ 5|h| and |x + h − y| ≤ 5|h| and
therefore, the integrals are small separately, without need to take the difference. Using the fact that

|φ(x, x− y))| ≤ ‖η‖C1+α(Rd)|x− y|α

we obtain that
|A1|+ |A2| ≤ C|h|2α‖σ‖Cα(Rd)‖η‖C1+α(Rd)

We treat A3 as we treated I3: we split A3 = A4 +A5, where

A4 = 1
2

∫
|x−y|≥4|h|, |x+h−y|≥4|h|[χ(|x+ h− y|)K(x+ h− y)− χ(|x− y|)K(x− y)]

×[φ(x+ h, x+ h− y)(σ(y)− σ(x+ h)) + φ(x, x− y)(σ(y)− σ(x))]dy

and, using the smoothness of the kernel and the bounds on φ and σ, this leads to an integral inequality∫ 1

3h
hr−2(rα + hα)2 ≤ Ch2α

so
|A4| ≤ C|h|2α‖σ‖Cα(Rd)‖η‖C1+α(Rd)
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Finally we treat

A5 = 1
2

∫
|x−y|≥4|h|, |x+h−y|≥4|h|[χ(|x+ h− y|)K(x+ h− y) + χ(|x− y|)K(x− y)]

×[φ(x+ h, x+ h− y)(σ(y)− σ(x+ h))− φ(x, x− y)(σ(y)− σ(x))]dy.

We note by polarization that

|φ(x+ h, x+ h− y)(σ(y)− σ(x+ h))− φ(x, x− y)(σ(y)− σ(x)) |
≤ C‖σ‖Cα(Rd)‖η‖C1+α(Rd)(|x− y|+ |h|)α|h|α

and therefore A5 is bounded directly using∫ 1

4h
r−1(hα(rα + hα)dr ≤ Chα

|A5| ≤ C‖σ‖Cα(Rd)‖η‖C1+α(Rd)|h|α.
This concludes the proof of the fact that

‖Cin‖Cα(Rd) ≤ C‖σ‖α,p‖η‖C1+α(Rd)

The proof of the Lp bound in Lemma (1) is done using the observation that

C(σ) = [η · ∇,K]σ = PV

∫
Rd
K(x, y)σ(y)dy −K((∇ · η)σ)

where
K(x, y) = (ηj(x)− ηj(y)))∂jk(x− y).

Now the operator K is bounded in Lp spaces and the operator T given by

σ 7→ PV

∫
Rd
K(x, y)σ(y)dy = (Tσ)(x)

is a Calderon-Zygmund operator, that is, the kernel K is smooth away from the diagonal, obeys

|K(x, y)| ≤ C 1
|x− y|d

and

|K(x+ h, y)−K(x, y)|+ |K(x, y + h)−K(x, y)| ≤ C |h|
|x− y|d+1

for 2|h| ≤ |x−y|, and T is bounded in L2(Rd). The boundedness in L2 is verified quickly below. It follows
that T is bounded in Lp(Rd), 1 < p <∞ (see for instance [6]). For the bound in L2 we need to verify that∣∣∣∣∫

Rd
(Tf)(x)g(x)dx

∣∣∣∣ ≤ C‖f‖L2(Rd)‖g‖L2(Rd).

We write ∫
Rd(Tf)(x)g(x)dx =

∫
Rd dxPV

∫
|z|≤1K(x, x− z)f(x− z)g(x)dz

+
∫

Rd dx
∫
|z|≥1K(x, x− z)f(x− z)g(x)dz = T1 + T2

Clearly
|T2| ≤ C‖η‖L∞(Rd)‖‖f‖L2(Rd)‖g‖L2(Rd)

because

|K(x, y)| ≤ C‖η‖L∞(Rd)

1
|x− y|d+1

in view of the homogeneity of k. For T1 we use the fact that we have∣∣∣∣∣PV
∫
|z|≤1

(η(x)− η(x− z))∇k(z)dz

∣∣∣∣∣ ≤ C‖η‖C1+α
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uniformly in x ∈ Rd. Indeed, this is easily verified in a manner similar to the proof in the Cα case, using
the fact that

η(x)− η(x− z)− z∇η(x) = O(|z|1+α),
integration by parts, and the vanishing of spherical averages of k:∣∣∣PV ∫|z|≤1(η(x)− η(x− z))∇k(z)dz

∣∣∣ ≤ ∫|z|≤1 |(η(x)− η(x− z)− z∇η(x))||∇k(z)|dz

+|∇η(x)|
∣∣∣PV ∫|z|≤1 z∇k(z)dz

∣∣∣ ≤ C‖η‖C1+α(Rd).

Proof of Theorem 3.
The commutator is

C(x, t) = [η · ∇,G](σ) = η(·, t) · ∇
∫ t

0
e(t−s)∆∇H∇σ(s)ds−

∫ t

0
e(t−s)∆∇H∇(η(s) · ∇σ(s))ds.

We need to show that ‖C‖L∞(0,T ;Cα(Rd)) is finite, under our assumptions on η and σ. Recall our notation
that e(t−s)∆ is given by convolution with gt−s. We start by the observation that we can replace η(s) by η(t)
in the second term of the commutator. Indeed∫ t

0
e(t−s)∆∇H∇((η(s)− η(t)) · ∇σ(s))ds = I1(t) + I2(t)

with

I1(t) = −
∫ t

0
e(t−s)∆∇H∇{[∇ · (η(s)− η(t))]σ(s)}ds

and

I2(t) = −
∫ t

0
(∇H∇∇gt−s) ∗ {(η(s)− η(t))σ(s)}ds.

Now
I1 = G{[∇ · (η(s)− η(t))]σ}

and it belongs to L∞(0, T ;Cα,p) by Theorem 2 because (∇ · η) ∈ Cβ(0, T ;Cα(Rd)). Regarding I2, we
have

‖I2(t)‖α,p ≤ C
∫ t

0 ‖∇H∇∇gt−s‖L1(Rd)‖(η(s)− η(t))σ(s))‖α,pds
≤ C‖η‖Cβ(0,T ;Cα(Rd))‖σ‖L∞(0,T ;Cα,p)

∫ t
0 (t− s)−

3
2 (t− s)βds

≤ Ctβ−
1
2 ‖η‖Cβ(0,T ;Cα(Rd))‖σ‖L∞(0,T ;Cα,p)

So now we have to examine

C1 = η(·, t) · ∇
∫ t

0
e(t−s)∆∇H∇σ(s)ds−

∫ t

0
e(t−s)∆∇H∇(η(t) · ∇σ(s))ds.

Now we observe that we can replace σ(s) by σ(s)− σ(t) in both integrals. Indeed, replacing σ(s) in C1 by
σ(t) integrates in time to

η(·, t) · ∇
∫ t

0
e(t−s)∆∇H∇σ(t)ds−

∫ t

0
e(t−s)∆∇H∇(η(t) · ∇σ(t))ds = [η(t) · ∇, (I− et∆)RHR]σ(t)

and the commutator
[η(t) · ∇, (I− et∆)RHR]σ(t)

is bounded by Lemma 1. It remains to investigate

C2 = η(·, t) · ∇
∫ t

0 e
(t−s)∆∇H∇(σ(s)− σ(t))ds−

∫ t
0 e

(t−s)∆∇H∇(η(t) · ∇(σ(s)− σ(t)))ds
= η(·, t) · ∇

∫ t
0 (∇∇gt−s) ∗H(σ(s)− σ(t))ds−

∫ t
0 (∇∇gt−s) ∗H(η(t) · ∇(σ(s)− σ(t)))ds

We claim that we can move η ·∇ inside the first time integral, past the convolution with the derivative of the
heat kernel. Indeed, the difference is

D(x, t) =
∫ t

0

∫
Rd

(∇∇∇gt−s)(x− y)(η(x, t)− η(y, t))H(σ(s)− σ(t))(y)dyds
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We use now the fact that
‖|z|∇∇∇gt−s(z)‖L1(Rd) ≤ C(t− s)−1

to deduce, after changing variables to z = x−y and writing η(x, t)−η(x−z, t) = −z
∫ 1

0 ∇η(x−λz, t)dλ
that

‖D(·, t)‖α,p ≤ C‖η‖L∞(0,T ;C1+α(Rd))‖σ‖Cβ(0,T ;Cα,p)

∫ t

0
(t− s)−1+βds

So, finally we arrived at

C3(t) =
∫ t

0
(∇∇gt−s) ∗ [η(t) · ∇,H](σ(s)− σ(t))ds.

We bound this using Lemma 1:

‖C3(t)‖α,p ≤ C‖η‖L∞(0,T ;C1+α(Rd))‖σ‖Cβ(0,T ;Cα,p)

∫ t

0
(t− s)−1+βds

This concludes the proof of Theorem 3.
Proof of Theorem1. We bound

‖U(σ)‖α,p ≤ C
∫ t

0
‖∇gt−s‖L1(Rd)‖σ(s)‖α,pds ≤ C‖σ‖L∞(0,t;Cα,p)

∫ t

0

1√
t− s

ds

Proof of Theorem 4. The computation concerns

η(t) · ∇
∫ t

0
e(t−s)∆H∇σ(s)ds−

∫ t

0
e(t−s)∆H∇(η(s) · ∇σ(s))ds

Replacing η(s) by η(t) in the second term in the commutator, introduces

E(t) =
∫ t

0
e(t−s)∆H∇((η(s)− η(t)) · ∇σ(s))ds = E1(t) + E2(t)

where
E1(t) = −U((∇ · (η(s)− η(t))σ(s))

and

E2(t) = −
∫ t

0
∇∇gt−s ∗H((η(s)− η(t))σ(s))ds.

The first term is bounded by (34)

‖E1(t)‖α,p ≤ C
√
t‖η‖L∞(0,T ;C1+α(Rd))‖σ‖L∞(0,T ;Cα,p)

and E2(t) is bounded by

‖E2(t)‖α,p ≤ Ct1−β‖η‖Cβ(0,T ;Cα(Rd))‖σ‖L∞(0,T ;Cα,p).

We have to bound now

V (t) = η(t) · ∇
∫ t

0
e(t−s)∆H∇σ(s)ds−

∫ t

0
e(t−s)∆H∇((η(t) · ∇σ(s)))ds

We claim that we can put η(t) · ∇ inside the first time integral, past the convolution with the gradient of the
heat kernel. Indeed, the difference

D(x, t) =
∫ t

0

∫
Rd
∇∇gt−s(z)(η(x, t)− η(x− z, t))Hσ(x− z, s)dz

can be bounded, after writing η(x, t)− η(x− z, t) = −z
∫ 1

0 ∇η(x− λz, t)dλ, and using

‖|z|∇∇gt−s‖L1(Rd) ≤ C
1√
t− s
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by
‖D‖L∞(0,T ;Cα,p) ≤ C

√
T‖η‖L∞(0,T ;C1+α(Rd))‖σ‖L∞(0,T ;Cα,p)

We are left with

E =
∫ t

0
∇e(t−s)∆[η(t) · ∇,H]σ(s)ds+

∫ t

0
∇e(t−s)∆(div η(t))H(σ(s))ds

which we bound using Lemma 1

‖E‖L∞(0,T ;Cα,p) ≤ C
√
T‖η‖L∞(0,T ;C1+α(Rd))‖σ‖L∞(0,T ;Cα,p)

Summing the bounds we conclude that (37) holds.

4. Bounds on solutions

We start with a few kinematic observations. Let u ∈ L∞(0, T ;C1+α(Rd)) be a velocity. Then the
Lagrangian maps X(a, t) are

X(a, t) = a+ χ(a, t)
with χ ∈ Lip(0, T ;C1+α(Rd)), χ(a, 0) = 0. Moreover X−1(x, t) = A(x, t) obeys the transport equation

∂tA+ u · ∇A = 0

with A(x, 0) = x and A(x, t) = x + α(x, t) with α ∈ Lip(0, T ;C1+α(Rd)), α(x, 0) = 0. (Obviously,
χ(a, t) + α(X(a, t), t) = 0). The inverse exists even if u is not divergence-free. The gradients obey

‖∇X−1(t)‖L∞(Rd) ≤ exp
∫ t

0
‖∇u(s)‖L∞(Rd)ds

The same is true for the gradients∇X:

‖∇X(t)‖L∞(Rd) ≤ exp
∫ t

0
‖∇u(s)‖L∞(Rd)ds

Because
a− b = X−1(X(a, t), t)−X−1(X(b, t), t)

it follows that

|a− b| ≤ |X(a, t)−X(b, t)| exp
∫ t

0
‖∇u(s)‖L∞(Rd)ds,

and because

X(a, t)−X(b, t) =
∫ 1

0

d

dµ
X((1− µ)a+ µb, t)dµ

it follows that

|X(a, t)−X(b, t)| ≤ |a− b| exp
∫ t

0
‖∇u(s)‖L∞(Rd)ds.

Therefore we have the important and quite general chord-arc bound

λ−1 ≤ |a− b|
|X(a, t)−X(b, t)|

≤ λ (39)

where

λ(t) = exp
∫ t

0
‖∇u(s)‖L∞(Rd)ds. (40)

Because of the chord-arc bound it is possible and convenient to measure the size of the Lagrangian nonlin-
earities in Hölder spaces after composition with X−1, i.e. in Eulerian variables. We consider the equation
(12) now. Let us note that from, general ODE theory, we have a priori bounds for short time. Using the
same notation (11) for∇u ◦X we have

‖τ(t)‖L∞(Rd) ≤ K (41)
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for t ≤ T , where K and T depend on ‖σ0‖L∞(Rd) and a bound on sup[0,T ] ‖∇u‖L∞(Rd). Consequently for
σ = τ ◦X−1,

‖σ(t)‖L∞(Rd) ≤ K (42)
Similarly

‖τ(t)‖Lp(Rd) ≤ Kp (43)
and consequently

‖σ(t)‖Lp(Rd) ≤ Kpλ(t)
d
p . (44)

The exponent of λ in the last inequality is 0 if we assume incompressibility. Also, by taking finite differences
in Lagrangian variables

δhτ(a, t) = τ(a+ h, t)− τ(a, t)
we obtain

d

dt
δhτ = F (g(a+ h), τ(a+ h))− F (g(a), τ(a))

and deduce, via
d

dt
|δhτ | ≤ ‖D2F (g, τ)‖L∞(Rd)|δhτ |+ ‖D1F (g, τ)‖L∞(Rd)|δhg|

that
‖τ(t)‖Cα(Rd) ≤ Cα (45)

with Cα depending on ‖σ0‖Cα(Rd) and sup[0,T ] ‖∇u‖Cα(Rd). Passing to the Eulerian seminorm costs λα:

‖σ(t)‖Cα(Rd) ≤ Cα(1 + λα) (46)

Also, integrating in time (12) and measuring in Cα(Rd) we obtain

‖τ(t1)− τ(t2)‖Cα(Rd) ≤ |t1 − t2|Dα (47)

and consequently
‖σ(t1)− σ(t2)‖Cα(Rd) ≤ |t1 − t2|D̃α (48)

Similarly, integrating in time (12) and measuring in Lp(Rd) we obtain

‖τ(t1)− τ(t2)‖Lp(Rd) ≤ |t1 − t2|Cp (49)

and similarly
‖σ(t1)− σ(t2)‖Lp(Rd) ≤ |t1 − t2|C̃p (50)

whic we can bound using (44). So we proved

PROPOSITION 1. Let u ∈ L∞(0, T ;C1+α(Rd)) and let σ(0) ∈ Cα,p for some α ∈ (0, 1) and 1 < p <
∞. Then the solution of the equation (2) with initial datum σ(0) belongs to Lip(0, T ;Cα,p) and obeys the
bounds (42), (44), (46), (48) and (50) above. Its Lagrangian counterpart τ , obeys (41), (43), (45), (47) and
(49).

We do not use this proposition in the sequel.
Short time existence of solutions of (1, 2) can be proved in the same manner as short time exis-

tence of solutions to 3D incompressible Euler equations. The stresses are Lipschitz continuous with val-
ues in Cα,p spaces, σ ∈ Lip(0, T ;Cα(Rd) ∩ Lp(Rd)), and the Eulerian velocities are bounded u ∈
L∞(0, T ;C1+α(Rd) ∩W 1,p(Rd)), for any α ∈ (0, 1) and any 1 < p < ∞. Note that we do not require
p > d. In fact, the bounds in the previous section can be used to prove a local existence theorem. In this
section we investigate properties of linearizations along families of Lagrangian paths and prove existence
and uniqueness results.

We take a uniformly bounded family of paths, depending in a differentiable manner of a parameter ε,
Xε ∈ Lip(0, T ;C1+α(Rd)) and a uniformly bounded family depending in a differentiable manner of ε,
τε ∈ Lip(0, T ;Cα,p) with initial data σε(0). We assume that Xε − I is bounded in Lip(0, T ;C1+α(Rd) ∩
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W 1,p(Rd)). We consider uniformly bounded, ε-differentiable family of initial data, uε(0) ∈ C1+α(Rd) ∩
W 1,p(Rd).

Measuring U ′ given by (20) in Cα,p using (21) and the bounds (34), (37) we obtain

‖U ′‖L∞(0,T ;Cα,p)

≤ ε(T )
{
‖X ′‖Cβ(0,T ;Cα,p) + ‖X ′‖L∞(0,T ;C1+α,p) + ‖τ ′‖L∞(0,T ;Cα,p)

}
+ C‖u′(0)‖Cα,p

(51)

Let us denote the norms in the right hand side of (51) by N(T ):

N(T ) = sup
ε

{
‖X ′ε‖Cβ(0,T ;Cα,p) + ‖X ′ε‖L∞(0,T ;C1+α,p) + ‖τ ′ε‖L∞(0,T ;Cα,p) + ‖u′ε(0)‖Cα,p

}
(52)

We make the convention that C(T ) denotes a constant that depends continuously, nondecreasingly, and
explicitly on T , and we will use ε(T ) for constants that vanish at least like max{T 1−β, T

1
2 } at T = 0. Time

independent constants are written as C. The constants C(T ) , ε(T ) depend on the assumed uniform bounds
on the families Xε, τε. Let us introduce

X ′(a, t) =
∫ t

0
U ′(a, s)ds. (53)

Integrating in time, we have from (51)∥∥X ′∥∥
L∞(0,T ;Cα,p)

≤ ε(T )N(T ) (54)

In order to close the estimates we have to consider a stronger path norm:

M(T ) = sup
ε

{
‖X ′ε‖Cβ(0,T ;C1+α,p) + ‖τ ′ε‖Cβ(0,T ;Cα,p) + ‖u′ε(0)‖C1+α,p

}
. (55)

Clearly, N(T ) ≤ M(T ). Let us bound g′ given in (26), using (28), Theorem 2 and Theorem 3. The term
(L∇∇u0)η is bounded using

‖L∇∇u0‖Cα,p ≤ Ct−
1
2 ‖u(0)‖C1+α,p

combined with the bound
‖η(t)‖Cα(Rd) ≤ tβM(T )

which follows from the definition (55) and the fact that η(0) = 0. We use here β > 1
2 . We obtain

‖g′(t)‖Cα,p ≤ C(T )M(T ). (56)

Now we use (33) and (56) to bound

‖∇U ′‖L∞(0,T ;Cα,p) ≤ C(T )M(T ). (57)

Consequently, using (57) in (53) we have

‖∇X ′‖L∞(0,T ;Cα,p) ≤ TCM(T ) = ε(T )M(T ) (58)

and also
‖X ′‖Cβ(0,T ;C1+α,p) ≤ T 1−βC(T )M(T ) = ε(T )M(T ). (59)

We used here that an O(1) bound on the time derivative gives, for short time an O(t1−β) bound on the Cβ

norm in time (if the initial data vanishes).
We turn to (25) and bound using (56)

‖T ′‖L∞(0,T ;Cα,p) ≤ C(T )M(T ). (60)

We define now

π(a, t) =
∫ t

0
T ′(a, s)ds+ σ′(0) (61)

and deduce from (60)
‖π‖Cβ(0,T ;Cα,p) ≤ ε(T )M(T ) + ‖σ′(0)‖Cα,p (62)
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Summarizing what we have obtained in (59) and (62)

‖X ′‖Cβ(0,T ;C1+α,p) + ‖π‖Cβ(0,T ;Cα,p) ≤ ε(T )M(T ) + ‖σ′(0)‖Cα,p (63)

This is the main inequality of this section. It will be used in several situations. First, let us consider the map
S,

(X, τ) 7→ S(X, τ) = (Xnew, τnew) (64)

defined by

Xnew(a, t) = a+
∫ t

0
U(X(s), τ(s))ds (65)

and

τnew(a, t) = σ0(a) +
∫ t

0
T (X(s), τ(s))ds (66)

where U , T are given in (14).

THEOREM 5. Let 0 < α < 1, 1
2 < β < 1, 1 < p < ∞ and let u0 ∈ C1+α,p and σ0 ∈ Cα,p be fixed.

There exists T sufficienytly small such that the map S maps the set

I ⊂ P1 = Lip(0, T ;C1+α,p)× Lip(0, T ;Cα,p)
I = {(X, τ) | ‖(X − I, τ)‖P1

≤ Γ, 1
2 ≤ |∇aX(a, t)| ≤ 3

2}
(67)

to itself, S : I → I. Furthermore, the map is a contraction in the space

P = Cβ(0, T ;C1+α,p)× Cβ(0, T ;Cα,p) (68)

i.e.,

‖S(X1, τ1)− S(X2, τ2)‖P ≤
1
2
‖(X1 −X2, τ1 − τ2)‖P . (69)

for (X1, τ1) ∈ I, (X2, τ2) ∈ I.

Proof. The fact that S : I → I follows from the bounds in Theorem 1 and Theorem 2 by choosing T small
enough, and Γ twice the size of the initial data (u0, σ0) in C1+α,p × Cα,p. The contractivity is proved by
forming the families Xε = (2− ε)X1 + (ε− 1)X2, τε = (2− ε)τ1 + (ε− 1)τ2 for ε ∈ [1, 2]. We note that I
is convex, and that u′0 = 0, because u0 does not depend on ε, and σ′0 = 0 because σ0 does not depend on ε.

S(X1, τ1)− S(X2, τ2) =
(∫ 2

1
X ′εdε,

∫ 2

1
πεdε

)
(70)

where X ′ and π are obtained via (53) and (61) using the families Xε, τε. Applying (63) and choosing T
small enough proves the contractivity. The local existence and uniqueness theorem is:

THEOREM 6. Let 0 < α < 1, 1 < p < ∞, and let u0 ∈ C1+α,p be divergence-free, and σ0 ∈ Cα,p be
given.
(A) There exists T > 0 and a solution (u, σ) of (1), (2)with u ∈ L∞(0, T ;C1+α,p) and σ ∈ Lip(0, T ;Cα,p).
(B) Two solutions uj ∈ L∞(0, T ;C1+α,p) and σj ∈ Lip(0, T ;Cα,p), j = 1, 2 obey the strong Lipschitz
bound

‖∂tX2 − ∂tX1‖L∞(0,T ;C1+α,p) + ‖∂tτ2 − ∂tτ1‖L∞(0,T ;Cα,p)

≤ C(T ) {‖u2(0)− u1(0)‖C1+α,p + ‖σ2(0)− σ1(0)‖α,p}
(71)

for their Lagrangian counterparts. In particular, two such solutions with same initial data must coincide.

Proof. Part (A), the existence, follows because a fixed point of S provides a solution in I. The initial velocity
being divergence-free and the equation (3) guarantee incompressibility. Part (B) is proved forming the family
(Xε, τε) as in the proof of Theorem 5 above, with (X1, τ1) being the Lagrangian solution associated to the
solution (u1, σ1) and with (X2, τ2) being the Lagrangian solution associated to the solution (u2, σ2).

Xε = (2− ε)X1 + (ε− 1)X2, τε = (2− ε)τ1 + (ε− 1)τ2
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for ε ∈ [1, 2]. Note that
X ′ε = X2 −X1, τ ′ε = τ2 − τ1, (72)

and also, because these are solutions,

X2 −X1 =
∫ 2

1
X ′εdε (73)

and

τ2 − τ1 =
∫ 2

1
πεdε+ σ2(0)− σ1(0) (74)

Noting moreover that u′0 = u2(0)− u1(0), σ′0 = σ2(0)− σ1(0) we have{ ∫ 2
1 X

′
εdε = X2 −X1 = X ′,∫ 2

1 πεdε = τ2 − τ1 − σ2(0) + σ1(0) = τ ′ − σ2(0) + σ1(0).
(75)

Choosing 1
2 < β < 1 and integrating in ε (63) we obtain

‖X2 −X1‖Cβ(0,T ;C1+α,p) + ‖τ2 − τ1 − σ2(0) + σ1(0)‖Cβ(0,T ;Cα,p) ≤
ε(T )

{
‖X2 −X1‖Cβ(0,T ;C1+α,p) + ‖τ2 − τ1‖Cβ(0,T ;Cα,p) + ‖u2(0)− u1(0)‖C1+α,p

}
+‖σ2(0)− σ1(0)‖α,p

(76)

Taking ε(T ) ≤ 1
2 we obtain the strong Lipschitz bound

‖X2 −X1‖Cβ(0,T ;C1+α,p) + ‖τ2 − τ1‖Cβ(0,T ;Cα,p) ≤
C(T ) {‖u2(0)− u1(0)‖C1+α,p + ‖σ2(0)− σ1(0)‖α,p}

. (77)

Now, in view of (72) this implies

M(T ) ≤ C(T ) {‖u2(0)− u1(0)‖C1+α,p + ‖σ2(0)− σ1(0)‖α,p} (78)

and therefore, going back to (51), (57) and (60), and using

∂tX2 − ∂tX1 =
∫ 2

1
U ′εdε

and

∂tτ2 − ∂tτ1 =
∫ 2

1
T ′ε dε

we obtain (71).

5. Coupling to Navier-Stokes

The Navier-Stokes equations are nonlinear

∂tu−∆u+∇p = div (σ − u⊗ u), divu = 0. (79)

In order to prove uniqueness of solutions of the system formed by (79) coupled to (2) we still have to
work in a class of velocities that are at least Lipschitz continuous. This is a vastly subcritical situation for
Navier-Stokes equations, so we treat the inertial stress div (u⊗ u) perturbatively. We write

u = L(u0) + U(σ)− U(u⊗ u) (80)

and
∇u = L(∇u0) + G(σ)− U(∇(u⊗ u)). (81)

We wrote U(∇(u⊗ u)) above instead of the equivalent G(u⊗ u), in order to take advantage of the fact that
in our framework∇u ∈ Cα,p. We introduce again the Lagrangian variablesX and τ , but we keep a separate
tab for the Lagrangian velocity

v = u ◦X. (82)
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We set up the map

V(X, τ, v) = L(u0) ◦X + U(τ ◦X−1) ◦X − U((v ⊗ v) ◦X−1) ◦X, (83)

we denote again

g = L(∇u0) ◦X + G(τ ◦X−1) ◦X − U(∇((v ⊗ v) ◦X−1)) ◦X (84)

and we maintain
T (X, τ, v) = F (g, τ). (85)

The system is now solved in Lagrangian coordinates:

(X, τ, v) 7→ S(X, τ, v) = (Xnew, τnew, vnew) (86)

where  Xnew(t) = a+
∫ t

0 V(X(s), τ(s), v(s))ds
τnew(t) = σ0 +

∫ t
0 T (X(s), τ(s), v(s))ds

vnew(t) = V(X, τ, v)
(87)

Note that
V(X, τ, v) = U(X, τ)− U((v ⊗ v) ◦X−1) ◦X (88)

where U is the same as the one given in (14). Note also that

vnew =
dXnew

dt
(89)

and therefore the relation v = dX
dt is maintained in an iteration. Because the last equation of (87) is not

integrated in time, we measure v in L∞(0, T ;C1+α(Rd) ∩W 1,p(Rd)). We take again a family Xε, τε, vε,
denote

d

dε
vε = v′ε (90)

and keep the rest of the notation X ′ε, ηε, τ
′
ε, δε the same. Note that

v′ε =
dX ′ε
dt

(91)

We differentiate the nonlinearities V and T with respect to ε. After composition with X−1
ε and dropping ε

for ease of notation, we have V
′ ◦X−1 = U ′ ◦X−1 − [η · ∇,U](u⊗ u)− U(((v ⊗ v′) + (v′ ⊗ v)) ◦X−1)
T ′ = D1F (g, τ)g′ +D2F (g, τ)τ ′

g′ ◦X−1 = g′old ◦X−1 − [η · ∇,U](∇(u⊗ u))− U(∇(((v′ ⊗ v) + (v ⊗ v′)) ◦X−1))
(92)

where U ′ and g′old are the same as in (30) and u = v ◦X−1. We verify that S maps the set

I ⊂ P1 = Lip(0, T ;C1+α,p)× Lip(0, T ;Cα,p)× L∞(0, T ;C1+α,p)
I = {(X, τ, v) | ‖(X − I, τ, v)P1 ≤ Γ, 1

2 ≤ |∇aX(a, t)| ≤ 3
2 , v = dX

dt }
(93)

to itself for Γ larger than the size of the initial data σ0, u0 and small enough T . In order to check this, we
use the bounds used in the previous section. In addition, in view of (34) we see that

‖U((v ⊗ v) ◦X−1) ◦X‖L∞(0,T ;C1+α,p) ≤
√
TC‖v‖2L∞(0,T ;C1+α,p) (94)

for invertible X satisfying the constraint 1
2 ≤ |∇aX(a, t)| ≤ 3

2 .
The new terms introduced in V ′ and in g′ are bounded using (34) and Theorem 4. Using (51) we get

‖V ′‖L∞(0,T ;Cα,p) ≤ ε(T )
{
‖X ′‖Cβ(0,T ;C1+α,p) + ‖τ ′‖Cβ(0,T ;Cα,p) + ‖v′‖L∞(0,T ;Cα,p)

}
+ C‖u′0‖Cα,p .

(95)
In order to bound g′◦X−1 we use (56) to bound the term g′old◦X−1, then (37) together with the uniform

bound on∇(u⊗u) in order to bound [η ·∇,U](∇(u⊗u)), and (34) for the last term in g′ ◦X−1. We obtain

‖g′‖L∞(0,T ;Cα,p) ≤ C(T )M(T ) + ε(T )‖v′‖L∞(0,T ;C1+α,p) (96)
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where M(T ) is given by (55). The relation

∇aV(a, t) = g(a, t)(∇aX(a, t)) (97)

is directly verified. Differentiating in ε, we obtain

(∇aV ′)(a, t) = g′(a, t)(∇aX)(a, t) + g(a, t)(∇aX ′)(a, t) (98)

and then we obtain using (95) and (96)

‖V ′‖L∞(0,T ;C1+α,p) ≤ ε(T )‖v′‖L∞(0,T ;C1+α,p) + C(T )M(T ). (99)

We recall that π is given by (61) and introduce

X ′(a, t) =
∫ t

0
V ′(a, s)ds. (100)

We have therefore

‖X ′‖Cβ(0,T ;C1+α,p) + ‖π‖Cβ(0,T ;Cα,p) ≤ ε(T )M1(T ) + ‖σ′(0)‖Cα,p (101)

where

M1(T ) = sup
ε

{
‖X ′ε‖Cβ(0,T ;C1+α,p) + ‖τ ′ε‖Cβ(0,T ;Cα,p) + ‖v′ε‖L∞(0,T ;C1+α,p) + ‖u′ε(0)‖C1+α,p

}
(102)

The inequalities (99) and (101) are the main inequalities of this section. They can be used to prove local
existence and Lipschitz dependence on initial data in Lagrangian variables.

THEOREM 7. Let 0 < α < 1, 1 < p < ∞, 1
2 < β < 1, let u0 ∈ C1+α,p be divergence-free and let

σ0 ∈ Cα,p. Then there exists Γ > 0, T > 0, δ > 0 such that the map S defined in (87) maps I defined in
(93) to itself. Moreover

‖S(X1, τ1, v1)− S(X2, τ2, v2)‖P ≤
1
2
‖(X1, τ1, v1)− (X2, τ2, v2)‖P (103)

where

‖(X1, τ1, v1)−(X2, τ2, v2)‖P = ‖X1−X2‖Cβ(0,T ;C1+α,p)+‖τ1−τ2‖Cβ(0,T ;Cα,p)+δ‖v1−v2‖L∞(0,T ;C1+α,p)

(104)

Proof. We already gave sufficient grounds to verify the fact that S maps I to itself for appropriate Γ and
T . In order to verify the contraction property, given a pair (Xj , τj , vj = dXj

dt ), j = 1, 2, we form the family
Xε = (2− ε)X1 + (ε− 1)X2, τε = (2− ε)τ1 + (ε− 1)τ2 and vε = (2− ε)v1 + (ε− 1)v2 and use the fact
that

S(X2, τ2, v2)− S(X1, τ1, v1) =
(∫ 2

1
X ′εdε,

∫ 2

1
πεdε,

∫ 2

1
V ′εdε

)
Now u′0 = 0 and σ′(0) = 0 because the initial data are fixed and therefore

M(T ) = ‖X2 −X1‖Cβ(0,T ;C1+α,p) + ‖τ1 − τ2‖Cβ(0,T ;Cα,p)

and
M1(T ) = M(T ) + ‖v1 − v2‖L∞(0,T ;C1+α,p).

From (99) we deduce

‖vnew2 − vnew1 ‖L∞(0,T ;C1+α,p) ≤ ε(T )‖v1 − v2‖L∞(0,T ;C1+α,p) + C(T )M(T ) (105)

and from (101) we deduce

‖Xnew
1 −Xnew

2 ‖Cβ(0,T ;C1+α,p) + ‖τnew1 − τnew2 ‖Cβ(0,T ;Cα,p) ≤ ε(T )M1(T ) (106)

Let us fix C(T ) = K in (99) and let T be small enough so that ε(T ) ≤ 1
4 and ε(T ) ≤ 1

2(1+4K) . We choose
δ = 1

4K , multiply (105) by δ and add to (106): we obtain (103).
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THEOREM 8. Let 0 < α < 1, 1 < p <∞, let u0 ∈ C1 +α,p be divergence-free and let σ0 ∈ Cα,p.
(A) There exists T > 0 and a solution (u, σ) of the system (79), (2) with u ∈ L∞(0, T ;C1+α,p) and with
σ ∈ Lip(0, T ;Cα,p).
(B) Two solutions uj ∈ L∞(0, T ;C1+α,p) and σj ∈ Lip(0, T ;Cα,p), j = 1, 2 obey the strong Lipschitz
bound

‖∂tX2 − ∂tX1‖L∞(0,T ;C1+α,p) + ‖∂tτ2 − ∂tτ1‖L∞(0,T ;Cα,p)

≤ C(T ) {‖u2(0)− u1(0)‖C1+α,p + ‖σ2(0)− σ1(0)‖α,p}
(107)

for their Lagrangian counterparts. In particular, two such solutions with the same initial data must coincide.

Proof. The proof is very similar to the proof of Theorem 6. Choosing 1
2 < β < 1, using (75) and integrating

in ε in (101) we obtain

‖X2 −X1‖Cβ(0,T ;C1+α,p) + ‖τ2 − τ1 − σ2(0) + σ1(0)‖Cβ(0,T ;Cα,p) ≤
ε(T )

{
‖X2 −X1‖Cβ(0,T ;C1+α,p) + ‖τ2 − τ1‖Cβ(0,T ;Cα,p) + ‖v2 − v1‖L∞(0,T ;C1+α,p)

}
+ε(T )‖u2(0)− u1(0)‖C1+α,p + ‖σ2(0)− σ1(0)‖α,p.

(108)

On the other hand, using

v2 − v1 =
∫ 2

1
V ′εdε

and integrating with respect to ε in (99) we obtain

‖v2 − v1‖L∞(0,T ;C1+α,p) ≤ ε(T )‖v2 − v1‖L∞(0,T ;C1+α,p) + C(T )M(T ) (109)

Fixing C(T ) = K and choosing again T small enough such that ε(T ) ≤ 1
4 and ε(T ) ≤ 1

2(1+4K) we obtain
that

‖X2 −X1‖Cβ(0,T ;C1+α,p) + ‖τ2 − τ1‖Cβ(0,T ;Cα,p) + 1
4K ‖v2 − v1‖L∞(0,T ;C1+α,p)

≤ C(T ) {‖u2(0)− u1(0)‖C1+α,p + ‖σ2(0)− σ1(0)‖α,p}
(110)

and therfore we have
‖X2 −X1‖Cβ(0,T ;C1+α,p) + ‖τ2 − τ1‖Cβ(0,T ;Cα,p) + ‖∂tX2 − ∂tX1‖L∞(0,T ;C1+α,p) ≤
C(T ) {‖u2(0)− u1(0)‖C1+α,p + ‖σ2(0)− σ1(0)‖α,p}

(111)

The bound (107) follows because, as before,

‖T ′‖L∞(0,T,Cα,p) ≤ C(T )M1(T )

and (111) provides a bound for M1(T ).
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