Lagrangian-Eulerian Methods for Uniqueness in Hydrodynamic Systems

Peter Constantin

ABSTRACT. We present a Lagrangian-Eulerian strategy for proving uniqueness and local existence of solutions
of limited smoothness for a class of incompressible hydrodynamic models including Oldroyd-B type complex
fluid models and zero magnetic resistivity magneto-hydrodynamics equations.

1. Introduction

Many physical models consist of equations for fluids coupled with equations for other fields. Primary
examples occur in descriptions of complex fluids in which a solvent interacts with particles, and in magneto-
hydrodynamics, in which a fluid interacts with a magnetic field. One of the simplest complex fluids models,
an Oldroyd-B model, reduces to a time independent Stokes system

—Au+Vp=dive, divu=0
coupled with an evolution equation for the symmetric added stress matrix o,
o +u-Vo = (Vu)o + o(Vu)l — o+ (Vu) + (Vu)T

Clearly, from the Stokes equation with appropriate boundary conditions (for instance decay in the whole
space) it follows that the velocity gradient is of the same order of magnitude as the added stress, Vu ~ o.
This makes the evolution equation for o potentially capable of producing finite time blow up. The formation
of finite time singularities in this system is an outstanding open problem. While the balance 0 ~ Vu is
potentially dangerous for large data and long time, it also indicates clearly that if Vu is controlled then
o is controlled as well. In particular, the short time existence of solutions can be obtained in a class of
velocities that is close to the Lipschitz class. The fact that singular integral operators are not bounded
in L™ requires the use of slightly smaller spaces, and ¢ € C*(R?) N LP(R%) and correspondingly u €
C1He(RY) N WHP(R?) are spaces in which the problem admits short time existence. Here both a € (0, 1)
and p € (1,00) are arbitrary. It is natural then to ask about uniqueness of solutions in the same spaces.
Taking the difference o between two solutions o1 and o9 leads to an equation

o +u-Vo+u-Ve = (Va)o + (Vu)g +a(Vu)' +o(Va) — o+ (Vu) + (Vu)"

where u = uj — us is the difference of the corresponding velocities, and & = %(ul +ug)and g = %(01 +09)
are the arithmetic averages of velocities and of stresses. The right hand side is well-behaved in C'*. The
term u - V& is not defined for & € C®. The left hand side is a divergence, and this would suggest the use of
negative index Sobolev spaces, but the right hand does not permit it. These obstructions make an Eulerian
approach to a uniqueness proof difficult in this class of solutions. Uniqueness with this low regularity was
proved in ([[1]), using however a Lagrangian approach. The main reason why Lagrangian variables are
better behaved than Eulerian ones is that in Lagrangian variables the velocity v = u o X is obtained from
the Lagrangian added stress 7 = o o X by an expression

v=UroX 1oX
1
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where U is the linear operator that produces the solution of the steady Stokes equation from the added
stresses, and X is the Lagrangian path, which is a time-dependent diffeomorphism. The Gateaux derivative
(variational derivative or first variation, in the language of mechanics) of the map X — v is a commutator,
and it is better behaved than each of its terms. On the other hand, 7 obeys an ODE in Lagrangian varaibles,
so it is easily controlled for short time by g = (Vu) o X.

The present paper expands this approach to time-dependent relationships between v and o and we
prove uniqueness and local existence in large spaces C'“ N LP for a class of hydrodynamic models including
complex fluids of Oldroyd-B type, and ideal magneto-hydrodynamics. Local existence of very smooth
solutions of such systems is classical ([S]). We provide in this paper a correct statement and a complete
proof of a lemma (Lemma (1)) which was used in ([1]]) quoting ([3]]). A Lagrangian approach for Oldroyd-
B smooth flow was advocated in ([2]). Adding inertia, i.e. coupling with Navier-Stokes instead of Stokes,
requires a modified treatment. We prove general existence and uniqueness theorems in Lagarngian variables.
They apply in particular to the ideal MHD equations

ou+u-Vu—vAu+Vp=>b-Vb,
divu =0, divb=0,
Ob+u-Vb=b-Vu

in R%, and to nonlinear Oldroyd-B like systems

ou+ u-Vu—vAu+ Vp =divo,
divu = 0,
0o +u-Vo=F(Vu,o)

in RY, for quite general smooth F'. The results prove local existence and Lipschitz dependence on initial data
in Lagrangian coordinates, in classes of Holder continuous magnetic field b, added stress o, and velocity
gradient Vu.

The paper is organized as follows. In the next section we describe systems in which added stresses are
coupled to time dependent Stokes equations. The third section is devoted to statements and proofs about the
linear operators and the commutators involved. The fourth section presents the proof of Theorems [5]and [6}
for Stokes-based systems, which state that in Lagrangian variables the nonlinearity is locally Lipschitz in
path spaces. The solutions exist locally, and depend in a locally Lipschitz continuous manner in these certain
path spaces on initial data. In particular, the solutions are unique. Although simpler, the time-dependent
Stokes-based systems provide the principal challenges. Once the setting is clarified, the Navier-Stokes-based
systems are treated in these path spaces in a perturbative manner. The difference is that the Stokes-based
systems close at the level of (X, 7), whereas the Navier-Stokes-based systems require a treatment with
(X, 7,0:,X) simultaneously. The fifth section describes the changes needed in order to adapt the proof for
the case of inertia. The main results, Theorems [7] and [§] state local existence of solutions for Navier-Stokes-
based systems in Lagrangian variables and Lipschitz dependence of initial data in a path space

(X,7,0,X) € Lip(0,T; C1F*P) x Lip(0,T; C*P(RY)) x L>=(0,T; C1ToP)
forany ]l <p<ooandany 0 < a < 1.

2. Time-dependent Stokes flow coupled with added stress
We consider the time dependent forced Stokes equations
Oy —Au+Vp=dive, V-u=0 (1)

coupled with an equation
0o +u-Vo=F((Vu),o) (2)

We assume that F' is a smooth function. We also assume that F' has polynomial growth near zero

[F(g,7)] < C(lgl + IT])*.
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for some k£ € N. This is only to guarantee some decay at spatial infinity, because we work in LP N L™
spaces in R?. The typical examples include

F((Vu),0) = (Vu)o + o(Vu)T — o + (Vu) + (Vu)T
In the case of MHD, o = b is a vector, the right-hand side of the Stokes equation is given by div (b ® b) and
F=b-Vu.

The divergence operation is divo = V - 0. We work in R and require the velocities v and the stresses o to
vanish at infinity. The solution map for the Stokes equation is

u(z,t) = L(up)(x,t) + U(o)(z,t) 3)
where .
U(o) = / eU=)AHdiv o(s)ds 4)
with ’
H=I1+R®R, o)
where R = (—A)fév are the Riesz transforms, and with
L(uo)(t) = e ug (6)
Note that U(o) is divergence-free and vanishes at ¢ = 0, and L(ug) is divergence-free if ug is. Also,
Vu = e"»Vug + G(o) = L(Vug) + G(o) (7)
with .
G(o) = / e=)AVHdiv o (s)ds. (8)
The Lagrangian description is as follows. TheOLagrangian paths X solve
% =L(u)o X +U(ro X HoX ©)
with
T=00X (10)

and initial data X (a,0) = a. Let
glat) = (Vu)(X(a,1),) = L(Vug) o X + G(r0 X 1) 0 X. an

The equation for 7 is the ODE

dr
T F(g,7). (12)

The Eulerian variables are v and 0. The Lagrangian variables are X and 7. In Lagrangian variables, the
system is

{ X(a,t) = a+ [ UX(s),7(s))ds, (13)
7(a,t) = op(a) + f(f T(X(s),7(s))ds.
where the Lagrangian nonlinearities U (X, 7), 7 (X, ) are
U =L(ug)o X +U(roX")oX, (14)
T =F((L(Vuw)o X +G(ro X 1) oX),7)

We consider a differentiable one-parameter family of paths X, 7, with Eulerian form o, = 7.0 X 1 initial
data u.(0) and o.(0). We introduce the notations

dX.
Xé - de ’

15)

with Eulerian form
ne=XloX ", (16)

€ €
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also J
/ Te
= — 17
TE dE Y ( )
with Eulerian form
Se=T1lo0X " (18)
and )
du. (0
uLy = ;k (19)

Differentiating U/ in (I4)) with respect to € results in
U = (L(Vue(0)) o Xe) X{ + Lue) 0 Xe + (VU) (0¢) 0 Xe) X; = U(e - Voe) 0 X +U(Se) o Xe. (20)
The first two terms arise from differentiating L.(u.(0)) o X.. The third term arises from differentiating X, in

U(7e0 X7 1) 0 X.. The fourth term comes from differentiating X! in the same expression. The calculation
uses the fact that, for fixed 7,

d
—(ToX 1) = =V(ro X7 (X{o X,
which in turn follows from
dx;! S -1
7 = 7(VX€ )(Xe OXE )

The fifth term arises from differentiating 7.. Composing with X! from the right, and dropping e for ease
of notation, we deduce from (20)

U o X1 =L(Vuo)n + L(uy) + -V, U] () + U(9) 1)
Here
[n-V, Ul(o) = n(t) - VU(e) = U(n(s)) - Vo) (22)
is the space-time commutator. Note that
X'(0) =n(0) =0, 6(0) =15 =0g (23)
and therefore
U'(0) = ul. 24)
Differentiating 7 in with respect to € we obtain
T' = D1F(g,7)g + D2F(g,7)7' (25)

where
g = (L(VVug) o X)X + L(Vuy) o X + [VG(0) o X]X' —G(n-Vo)o X +G(d) o X (26)

is the e derivative of

g=L(Vug)o X +G(ro X 1o X. (27)
Composing with X ~! we obtain
g o X1 =L(VVuo)n +L(Vuy) + [V, G](o) + G(9) (28)
where
[n-V,Gl(0) =n(t) - VG(o) = G(n(s) - Vo). (29)

Summarizing we have
U o X7t =L(Vug)n + L(uh) + [n- V,Ul(o) + U(6)
T' = D1F(g,7)g + D2 F(g, 7)7’ (30)
g o Xt =L(VVuy)n+L(Vuh) + [n-V,G](c) + G(6)
where
n=XoX1 s=7oXxL (31)



Differentiating I/ with respect to the Lagrangian independent variable (label) a we have
(Vald)(a,t) = (L(Vug) o X + G(10 X 1) 0 X) (VX) = g(a, t)(VX)(a,t) (32)
and using the fact that % and label derivatives commute we have
Yl (a,1) = ¢'(a,1)(VaX (a,8)) + g(a,£)(VaX'(a,1)) (33)
with g given in(27) above and ¢’ given by (26).

3. Bounds on operators and commutators
We consider function spaces
oYl = Ca(Rd) N Lp(Rd)
with norm
[ fllap = Il fllcomay + ILf1 Lo way
for a € (0,1), p € (1,00), C'T*(R?) with norm

[ fllcrtemay = 1 fll oo ray + [V fllcomay
and
Cl+a,p — Cl+a(Rd) N Wl’p(Rd)
with norm
[ flitap = [1flcr+emey + Lf lwirma
We need also spaces of paths, L>°(0,T"; C*P) with the usual norm,

1o, r,00m) = sup [ f(#)llaps
te[0,7)

spaces Lip(0,T; C*P) with norm
1£(8) = f($)llap

Il ipo, 50y = sUp + [ fll oo 0,7:007)
(0T50%7) t#s,t,5€[0,T) |t — s (0.T1,6%%)
C?(0,T; C*P) with norm
1f(#) = f(s)llap
[ flleso,rcomy = sup =+ [ fll o 0,100
(0,T;CP) st 5€[0T] it —s|P (0,T;C:P)

and spaces C%(0, T; C'+P) with norm

1£(t) = f(s)llcr+an
| fllcsorcrtary = sup
T ?) t+#s,t,5€[0,T] |t — s|?

A 1 £l oo (0,1,01 01y -
We start with bounds on U and G.
THEOREM 1. Let0 < aa < 1,1 < p < oo and let T > 0. There exists a constant such that
[U(0)]| oo (0.7:000) < CVT |0 || poo (0,17:000) (34)
and
IL(w0) || oo (0,7;000) < Clluolap (35)
hold.
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THEOREM 2. Let 0 < a < 1,0< <1, 1< p<ooandletT > 0. The linear operator
o— G(o)
G :CP(0,T;C*") — L*(0,T; C*P)
is continuous. The linear operator
ug — L(Vug)
maps continuously C'T(R%) N W1P(R?) to L>(0,T; CP).
REMARK 1. G is actually continuous with values in the Banach space C?1°8(0, T; C*(R%) N LP(RY))

with norm

[Vllesr0s (cary = suPseio ry V(5 ) lapt
”’Y('vt)_’Y('vS)”a,P

sup 7
0T g (Y s (1)

Note that there is an unavoidable singularity at t = 0 because if o € C*P is time-independent, then
G(o) = (I—e)RHR - o
is bounded, but not time-Holder continuous in C“P att = 0.
THEOREM 3. Let 0 < a0 < 1, % < B <1, T > 0. The bilinear operator
(n,0) = [n-V,G|(0)
is continuous from
(n,0) € CP(0,T; C1(RY) x CB(0,T; C*P)
to
L>(0,T;C%P),
that is,
[[n - V,Glol|L=(0,1,000) < Clinllesoricrremayllolcsorcory- (36)
The requirement 5 > % is needed to compensate for the extra derivative; this is clearly seen if we

consider 7 just a function of time. The fact that 7 is not required to belong to LP in space is structural: the
terms involving the variations of Lagrangian paths need not decay.

THEOREM 4. Let 0 < a < 1,0 < B8 <1, T > 0. The bilinear operator
(n,0) = [n-V,Ul(0)
obeys
17 - V, Ul(0)]l Loo (0,75c00)
< CITPInllcs 0,100 ray) + T3 171l oo (0,751 +o (Ray o oo (0,7;00:0)
Proof of Theorem[2l We note first that
uy — e*Vug = L(Vug)

maps continuously C''+(R?) N W1P(R?) to L>(0, T; C*P). We consider therefore G(o). We write

(37

t
Glo)(t) = / (- IAYHY o (5)ds = G + G
0
with i
Gi(z,t) —/ eU=IAVHV o (s)ds
0

and

t
Gg(aj,t):/ t=IAVHV o (s)ds
t—1
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and 0 < [ < ¢ arbitrary, to be chosen later. The solution of the heat equation is given by convolution with
the Gaussian g;. We use the fact that Vg;_, is in the Hardy class H'(R%) and therefore

C
t—s

IVHV gi—sl 1 (ray <

to deduce
1G1 (s B)llap < C Jo~ IVEIVge—s 11 ey 7(5) | pls
< Clloll e o.7:000) log (L)
We split G in two pieces
GQ(Q?,t) =G3+ Gy

with
Gs(z,t) = / t eU=IAVHY (o(s) — o(t))ds
and o
Ga(z,t) = /t =AY HV o (t)ds.
Now o

1G3(, ) layp < Cllollcs(cary /til(t — 5) s = CHUHCﬁ(ca,p)ll—B
and, because
Ga(-t) = (]1 - R]HIRelA> e(t=0A
we obtain
|Ga(-sD)l[cor < Cllo||Loo(0,1;000)-

Choosing [ = % we obtain

GOl o0, 1:00.0) < C(L+ T P)loll oo o 7com
and this ends the proof of the theorem.
Considering the remark following the theorem, let 0 < ¢ < ¢t + h < T, and let us write
G(o)(t +h) —G(o)(t) =
[T et=)ATHY (0 (s + h) — o(s))ds + [J' e Hh=)AVHV o (5)ds =
Li(z,t) + Ix(z, t).

We write
Li(x,t) = I (z,t) + Lio(a,t) = [7 DAVHV (ot + h) — o(t))ds+
[5 U IAVHY (0 (s + h) — o(t + h) + o(t) — o(s))ds
Because
t
/ =AYV HVds = (I — ¢'®)RHR
0
we obtain

1111, ) e < CRP|lollos (o 1:00 (ma)-

A logarithm is lost in the estimate of I12. Using the properties of g;_,, we have

[ 112(, D)l o (ray < t
Clollesoricn ey Jo rs min{|t — s|%; h}ds <
Cllollcs o100 @ayh’ (1 +10g, £) < Cllol|osori0m@ayh” (1 + log 2F)

d
d
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Thus, for I; we obtain uniform Holder continuity in time on [0, 7"] with logarithmic loss, and in particular
with any exponent less than 5. For I we have

h
HI2HCC¥(R4) < Cfo ”VhHVQtJrh—sHLl(Rd)HU(‘, S)Hca(Rd)dS <
Cllol oo (o1:ca(ray) Jo' mrr=sds = Clloll Lo r0nmay log (1+ %) -
Thus I is Lipschitz continuous in time away from ¢t = 0, but not Holder continuous in time at ¢t = 0.

Because log(1+2) < Oz, if we measure Holder continuity in time of order 3 we have a singular coefficient
of order ¢~ near t = 0.

LEMMA 1. Let0 < a < 1,1 < p < oc. Letn € C*(R?) and let

(Ko)(z) = P.V. 9 k(z —y)o(y)dy
be a classical Calderon-Zygmund operator with kernel k which is smooth away from the origin, homoge-
neous of degree —d and with mean zero on spheres about the origin. Then the commutator [n) -V, K] can be
defined as a bounded linear operator in C*“P and

17V, Klollap < Clinllcrewelloflap (38)

REMARK 2. The conclusion of the lemma holds also for operators H which are products of classical
CZ operators. This follows from telescoping applications of the lemma.

Proof of Lemma (I). Let us note that both terms in the commutator, 1 - VKo and KnVo are well defined
and Holder continuous if ¢ is smooth. We compute first

- V. Klo(a) = [ K = )(nta) =) - Ty (u)dy

Now we introduce a smooth cutoff x (|z —y|) identically equal to 1 for |x —y| < 1 and compactly supported.
The conclusion of the lemma holds for

Cou(®) = [ | (1= xlz = y1)) bla = )n(2) = 1(0) - V0 )y

by integration by parts and inspection, using the LP bound for o.
We concentrate our attention on

Cunle) = [ xllo =yl = )n(e) = 1(a) - V0 )y
We first write
Cunle) = [ xle = 9Dkta = 0)n(e) = 0(w) - Volot) = (o)

and then we integrate by parts:
C’m(a:) = C(CL') + Cl (a:) + Cg(l')
with

C(x) = /d x|z = y)Vak(z — y)(n(z) —n(y))(o(y) — o(x))dy,

R
Ci(z) = y Vax(lz —y)k(z —y)(n(z) —n(y))(o(y) — o(x))dy
and
Cafa) = [ xlla = s = ) (V1)) () = o))
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It is easy to see that C; and C'y are Holder continuous and satisfy the bound @]) For instance, for Cy we
may add and subtract V.7 (z) and we obtain two terms which are typical terms in classical singular integral
theory; the proof we present below for C'(z) can be used as well. We investigate now C(x) and write

”) = (@) = =)+ [ Vala+ My —a)ay
We write also
K(z) = 2V k(2)

and note that it is homogeneous of order —d and smooth away from the origin. The averages on spheres
might not vanish. So, with these preparations C'(z) is

1
Clz) = /0 dX /Rd X(lz =y K(z — y)(Vn(z + Ay — 2)))(o(y) — o(z))dy
We write now
C(z) = A(x) + B(x)

where

1
Ar) = /0 dA /Rd x(|lz =y Kz —y)(Vn(z + Xy — ) — Vn(x))(o(y) — o(z))dy
and
B(z) = Vn(x) / x(|z —y)K(z —y)(o(y) — o(z))dy.
Rd

Now B € C*(R%) and obeys . It is obviously enough to check that
1) = [ xlla =DK@ =)o) ~ o)y

is in C%(R?) and its norm is bounded by that of &. To check this we take the difference
I(.T—Fh) —I(w) =L +1,+ 13
where I7 is
L= [l yi<apn), jothy)zap X(Z + R —yDK(z +h —y)(o(y) — o(z + h))dy
= Ji—yi<apn), josh—yzap X2 =y K (@ = y)(o(y) — o(z))dy
IQ is
IQ - f\x—y|24|h|, |z+h—y|<4|h| X(|x +h— yDK(Z’ +h— y)(o’(y) - O'(:C + h))dy
= Jo—yimanl, forn—yl<ap XUz =y K (2 = y)(o(y) — o(2))dy
and
I3 = f‘$_y|24|h|7 |z+h—y|>4|h| X(lz+h—y)K(x+h—y)(o(y) —o(x+h))dy
— Joyizan), forh—yzap X7 =y K (z —y)(o(y) — o(z))dy
For I; and I we note that both |z — y| < 5|h| and |z + h — y| < 5|h|, and we use the straightforward
inequality
5h
/ r~r%dr < Ch*.
0
The integral I3 is split into two pieces.
I3=14+ 15
with

L=

/ [xX(lz+h—y))K(z+h—y)—x(lz—y]) K(z—y)](20(y) —o(z+h)+o(z))dy
2 Jia—y|24ln], lx+h—y|>4]h]
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and
o(x+h)—o(x)

Is = /
2 lu—y|>4|h], [o-+h—y|>4]h|

x(|z+h—y)K(x+h—y)+ x(lz —y[) K(z - y)]dy.

For I, we use the smoothness of the kernel, the intermediate value theorem, and the Hélder bounds to obtain
o
14| < Cllollcarey /3h |hlr=2(r® + h*)dr < Cllo]|caraylh|*.
For I5 we recall that K (z) = 2Vk(z). We claim that integrals of

/ (e K (2)dz

|2124]h|,|zh|24][h|

are bounded uniformly, independently of h. Indeed, integrating by parts
f|z|25‘h| X(’Z’)Zjaik<z)dz =
- f|z|25\h| 5¢jx(\z|)k(z)dz - f|z|25|h| 8@'(X(’2D)ij(z)dz + f|z\:5\h\ ZjX(5’h‘)5Tﬁ|k(z)dS(Z)
= 0 4+ bounded.

Here we used that k£ has mean zero on spheres. On the other hand, on the annular regions we use simply the

homogeneity of K and
5h 1
/ —dr < C.
4h T

The integral A(x) is treated in a similar fashion. We write

Aw) = [ xlle = s K@ = y)oe. = 5)(o(0) — ola))dy
where )
o =1) = [ (Tna + Ay =) = Va(a)ax
We consider
Az +h) — A(z) = A1 + As + As

where A; and Ay, like I; and I5 above, are differences of integrals on |x —y| < 4|h| and |z +h —y| > 4|h|,
and, respectively, on |z — y| > 4]h| and |x + h — y| < 4|h|, while A3 is the difference of integrals
corresponding to both |z — y| > 4|h| and |z + h — y| > 4|h|. As before, using the triangle inequality, the
regions of integration for A; and Ay are regions where both |x — y| < 5|h| and |x + h — y| < 5|h| and
therefore, the integrals are small separately, without need to take the difference. Using the fact that

[0(z, z = y))| < [[nllcrvagale —yl*
we obtain that
|A1] + [A2| < ClRPY o]l gagaylInllciva ga)
We treat A as we treated I3: we split A3 = Ay + As, where
A4 =3 o yimapl, sy zap X2+ 2= yDE (@ +h —y) = x(jz — y) K (z — y)]
X[p(x +h,x+h—y)(o(y) —olz+h) + oz, —y)(o(y) — o(z))]dy
and, using the smoothness of the kernel and the bounds on ¢ and o, this leads to an integral inequality
1
/ hr=2(r® + h®)? < Ch*®
3h
SO

44| < Ol |0l oy [0l o1+ gy
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Finally we treat

A5 =5 i yiman), sy sap X2 + 2 = yDE (@ + 7 —y) + x(jz — y) K (z — y)]
X[+ hx+h—y)(o(y) —o(z+h) = d(z,z—y)(o(y) — o(z))|dy.

We note by polarization that
[0z +h,x+h—y)(o(y) — oz +h) — o,z —y)(o(y) —o(x)) |
< Cllollgaallnllcr+ega (lz =yl + [h)*|A]*

and therefore As is bounded directly using

1
/ r (R (r® + h®)dr < Ch®
4h

45| < Clloll e ga) lInllcr+oray 2]
This concludes the proof of the fact that

ICinllcemay < Cllollapllnllcrtame
The proof of the L? bound in Lemma (1)) is done using the observation that

Clo) =n-V,Klo =PV » K(z,y)o(y)dy —K((V -n)o)

where
K(z,y) = (nj(x) —n;(y)9ik(x —y).
Now the operator K is bounded in L? spaces and the operator 7" given by

o= PV | K(z,y)o(y)dy = (To)(x)
Rd
is a Calderon-Zygmund operator, that is, the kernel K is smooth away from the diagonal, obeys
1
K(z,y)| < C——
Kyl < O
and

h
K (2 + hy) = K(z,y)| + | K (2,y + h) = K(z,y)| < (’Ylaﬁ—|yd+1

for 2|h| < |& —y|, and T is bounded in L?(R¢). The boundedness in L? is verified quickly below. It follows
that 7" is bounded in L? (]Rd), 1 < p < oo (see for instance [6]). For the bound in L? we need to verify that

(Tf)(z)g(x)dz| < C| fll2rayllgll L2 (ra)-
Rd
We write
fRd(Tf)(x)g(x)dx = fRd dzPV f|z\§1 K(z,x —2)f(z — 2)g(x)dz
+ Jpa dx f\lel K(z,x —2)f(x — 2)g(z)dz =T + T5
Clearly
Ty < CHnHLOO(Rd)”HfHLQ(Rd)HgHLQ(Rd)
because )
K (z,y)] < CHWHLOO(Rd)W

in view of the homogeneity of k. For T} we use the fact that we have

PV / (n(z) — n(z — 2)Vk(z)dz| < Cllnllcrse
|2|<1
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uniformly in z € R<. Indeed, this is easily verified in a manner similar to the proof in the C case, using
the fact that
n(z) =0z — 2) — 2Vn(z) = O(|2"),
integration by parts, and the vanishing of spherical averages of k:
PV i1 (1(2) = (@ = 2))Vh()dz| < Jc0 10(2) = nlw = 2) = 2Vn(2)) [ VA(=) dz
V()] ‘PV fen sz(z)dz‘ < Cllnll oo ga-
Proof of Theorem 3

The commutator is

Clz,t) =[n-V,Gl(c) =n(t)-V /0 e IAVHV o (s)ds — /0 eU=IAYHY (n(s) - Vo(s))ds.

We need to show that ||C|| 0 (g 7,0 (ra)) 1s finite, under our assumptions on 7 and o. Recall our notation

that e(*=%)2 is given by convolution with g;_,. We start by the observation that we can replace 7(s) by 7(t)
in the second term of the commutator. Indeed

/O EIATHY ((n(s) — n(t)) - Vo(s))ds = L1 (t) + Ix(t)

with
t
1) = = [ IAVEV{T - (1) = n(0)]o(s) s
and
B(t) == [ (VHY Vg « {(n(5) = n(t)o(9)}ds.
Now

I = G{[V - (n(s) —n(t))lo}
and it belongs to L>°(0,T; C*P) by Theorem because (V-n) € C80,T; C*(R?)). Regarding I, we
have
12 lap < C fy IVHVV s sl 11y (n(5) = 1) ())llapds
< Clnllesorico@aplloleomces Jy(t — )72t = 5)°ds
< Ot 2 nll s o700 mayy oL o o i)
So now we have to examine

t t
Cy =n(-,t)- V/ A VHV o (s)ds — / U=IAYHVY (n(t) - Vo(s))ds.
0 0

Now we observe that we can replace o(s) by o(s) — o(t) in both integrals. Indeed, replacing o(s) in C by
o(t) integrates in time to

n(-,t)- Vv / t U IAYHV o (t)ds — / t et =IATHV (n(t) - Vo (t))ds = [n(t) - V, (I — e'®) RHR]o (t)
0 0
and the commutator
[(t) - V, (I — e"*)RHR]o(t)
is bounded by Lemmal[I] It remains to investigate
Co=n(-t) -V [y eTAVHV (0(s) — o(t))ds - [5 eUAVHV (5(t) - V(a(s) — o(t)))ds
=n(1) -V [o(VVgis) ¥ H(o(s) = o(t))ds — [(VVgi—s) x H(n(t) - V(o (s) — o(t)))ds

We claim that we can move 7 - V inside the first time integral, past the convolution with the derivative of the
heat kernel. Indeed, the difference is

Dat)= [ [ (990 = n)n(e.0) = nly. ) E(o(5) — o)) 1)y
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We use now the fact that
1121V VVgi—s(2) 1 ey < C(t—5)7!

to deduce, after changing variables to z = 2 — y and writing n(z,t) —n(x — z,t) = —z fo Vn(x— Az, t)d\
that

t
D )]lap < CHU”LO@(OTCH& (R%)) HU”Cﬁ(OTca P) /0 (t— 3)71%615
So, finally we arrived at
t
Calt) = [ (VVg-) < nft) - V. Hl(o(s) — o(0)ds
0
We bound this using Lemma T}
t
1C5(8) la,p < Clnll Lo 0,701+« ey loll o8 0,7;009) /0 (t—s)"""ds

This concludes the proof of Theorem 3]
Proof of Theoremdl We bound

10(0)lavp < C/ IVgi—sllpr a)llo(s)llapds < Cllollzeeonc0r /

Proof of Theorem [d] The computation concerns

\/t—s

t t
t)-V / e =)AHV o (s)ds — / eU=IAHV (n(s) - Vo(s))ds
0 0

Replacing 7)(s) by n(t) in the second term in the commutator, introduces

B(t) = /0 ISE (n(s) — (1)) - Vo(s))ds = Ex(t) + Es(t)

where

and

Balt) = - [ Vg = i(ats) ~ n(0)o (o).
The first term is bounded by .

[E1()]lap < C\[H??HLOO (0,T;C1+e(R4)) ||UHLoo 0,T;CP)
and Fs(t) is bounded by

B2 (B)llap < CEPlnllcs0.1:00 (ray) |0 oo (0730000) -

We have to bound now

V(t)=n(t)-V /0 AUV (s)ds — / e IBHV((n(t) - Vo(s)))ds

0

We claim that we can put 7)(t) - V inside the first time integral, past the convolution with the gradient of the
heat kernel. Indeed, the difference

D(z,t) = /0 y VVgi—s(z)(n(z,t) — n(x — z,t))Ho(x — z,s)dz

can be bounded, after writing n(x,t) — n(x — z,t) = —=z fo Vn(x — Az, t)d\, and using

H’Z’vv.qt—sHLl(Rd) < C\/m
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by
||DHL°0(0,T;CW) < C\/TH??HLOO(O,T;CHO‘(RC!))HUHL”(O,T;C‘%P)
We are left with
t t
E = / Vell=)An(t) - V, Hlo(s)ds + / Vel =2 (divn(t))H(o(s))ds
0 0
which we bound using Lemma ]|

1| oo 073000 < CVTIl| Lo (0 701+ (aty) 0] Lo (0750009
Summing the bounds we conclude that holds.

4. Bounds on solutions

We start with a few kinematic observations. Let u € L>(0,T; C1**(R%)) be a velocity. Then the
Lagrangian maps X (a, t) are
X(a,t) =a+ x(a,t)
with y € Lip(0, T; C1**(R%)), x(a,0) = 0. Moreover X ~!(z,t) = A(z,t) obeys the transport equation
OA+u-VA=0

with A(z,0) = x and A(z,t) = = + a(x,t) with a € Lip(0, T; C1+*(R%)), a(x,0) = 0. (Obviously,
x(a,t) + a(X(a,t),t) = 0). The inverse exists even if u is not divergence-free. The gradients obey

t
IV X1 | ey < exp/o IV0(3)]| e ey s

The same is true for the gradients VX:

t
VX (8)] ooy < exp / IVa(8)l] o (s
Because
a—b= Xﬁl(X(avt)at) - X71<X(b7t)7t)
it follows that .
0= < 1X(@ ) = X ()| exp [ [Vuls) e s
0
and because

X(a,t) — X(b,t) = /01 dCLX((l — p)a+ pb,t)dp
it follows that .
X (a,t) = X (b,8)] < |a — bl exp / [V70(8) | o gty ds.
Therefore we have the important and quite general chord—arcobound

) |
1 ]a
AS R —x@.0) <

(39

where .
A(t) = exp/ [Vu(s)|| oo (rayds. (40)
0

Because of the chord-arc bound it is possible and convenient to measure the size of the Lagrangian nonlin-
earities in Holder spaces after composition with X ~!, i.e. in Eulerian variables. We consider the equation
(T2) now. Let us note that from, general ODE theory, we have a priori bounds for short time. Using the
same notation for Vu o X we have

IOl @) < K @1
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for t < T, where K and T depend on |[o | < (ray and a bound on supyg 7y || V|| Lo (ray. Consequently for
o=10X 1

lo ()l oo (ray < K 42)
Similarly
7Ol r ey < Kp (43)
and consequently
d
lo ()]l o ray < EpA(t). (44)

The exponent of A in the last inequality is 0 if we assume incompressibility. Also, by taking finite differences
in Lagrangian variables

ont(a,t) =7(a+ h,t) —7(a,t)
we obtain

%5,; — Flgla+ h), 7(a + h)) — F(g(a), 7(a))

and deduce, via

d
519071 < 1 D2F (g, )| oo ety [OnT | + | D1E (9, )| oo ety |99

that
[Tl e (ra) < Ca (45)
with Cy, depending on ||o¢ || ¢a (ray and supyg 7) || V|| e ra). Passing to the Eulerian seminorm costs A
lo(®)llcea ey < Call+A%) (46)
Also, integrating in time and measuring in C®(R?) we obtain
[7(t1) = 7(t2)l|ce(ray < [t1 — t2|Da (47)
and consequently
lo(t1) — o(t2)lca(may < [t1 — t2|Da (48)
Similarly, integrating in time and measuring in L?(R) we obtain
[7(t1) — 7(t2) | pp(ray < [t1 — t2[Cp (49)
and similarly
lo(t1) — o(t2)lpmey < [t — t2|Cp (50)

whic we can bound using (#4)). So we proved

PROPOSITION 1. Let u € L>®(0,T; C**%(R%)) and let o(0) € C*P for some o € (0,1) and 1 < p <
oo. Then the solution of the equation (2) with initial datum o(0) belongs to Lip(0,T; C*P) and obeys the

bounds (#2)), (44), [6), @8) and (50) above. Its Lagrangian counterpart T, obeys {@1), (3), {#3), @7) and
(Z2%

We do not use this proposition in the sequel.

Short time existence of solutions of (I} [2) can be proved in the same manner as short time exis-
tence of solutions to 3D incompressible Euler equations. The stresses are Lipschitz continuous with val-
ues in C*P spaces, 0 € Lip(0,T;C*R%) N LP(RY)), and the Eulerian velocities are bounded u €
L>(0,T; C'e(RY) N WHP(R?)), for any o € (0,1) and any 1 < p < oco. Note that we do not require
p > d. In fact, the bounds in the previous section can be used to prove a local existence theorem. In this
section we investigate properties of linearizations along families of Lagrangian paths and prove existence
and uniqueness results.

We take a uniformly bounded family of paths, depending in a differentiable manner of a parameter e,
X, € Lip(0,T;C'**(R%)) and a uniformly bounded family depending in a differentiable manner of ¢,
7. € Lip(0, T; C*P) with initial data o (0). We assume that X — I is bounded in Lip(0, T; C*+(R%) N



16 PETER CONSTANTIN

W1P(R?)). We consider uniformly bounded, e-differentiable family of initial data, u.(0) € C1+*(R%) N
WLp(RY).
Measuring U’ given by in C*P using and the bounds (34), we obtain
(7 P——
< €(T) {HX/HCﬁ(O,T;Ca»P) A | X" | oo (0,1, 01 00y +- HT/HL“(O,T;CQ’P)} + O/ (0)]|caw

Let us denote the norms in the right hand side of by N(T):

(5D

N(T) = sup {|Xllcaoz.com) + X,z @rorems) + Il = @rnn) + W O)lcos ) (52)

We make the convention that C'(T") denotes a constant that depends continuously, nondecreasingly, and
explicitly on 7', and we will use ¢(7") for constants that vanish at least like max {75, T%} at T = 0. Time
independent constants are written as C. The constants C(T") , €(T") depend on the assumed uniform bounds
on the families X, 7. Let us introduce

t
X'(a,t) = / U'(a, s)ds. (53)
0
Integrating in time, we have from (51
HXIHLOO((LT;Ca,p) < e(T)N(T) (54)

In order to close the estimates we have to consider a stronger path norm:
M(T) = sup { IXllcoricrveny + 7l onocony + 1O lgrras | (55)
€

Clearly, N(T) < M(T). Let us bound ¢’ given in , using , Theorem and Theorem The term
(LVVug)n is bounded using
ILYVug|lcar < CE 2 [[u(0)]|groes
combined with the bound
17()lco ey < ¢ M(T)
which follows from the definition || and the fact that (0) = 0. We use here 5 > % We obtain

lg'®)llcer < C(T)M(T). (56)
Now we use (33) and (56) to bound
IVU N[ 0. comy < C(T)M(T). (57)
Consequently, using in (53) we have
IV || oo 0,700y < TCM(T) = e(T)M(T) (58)
and also
X | o0 10140y < THPO(T)M(T) = e(T)M(T). (59)

We used here that an O(1) bound on the time derivative gives, for short time an O(¢' =) bound on the C*?
norm in time (if the initial data vanishes).
We turn to and bound using (56)

17" oo (0,ms000my < C(T)M(T). (60)

We define now .
rlat) = / T'(a, 5)ds + o' (0) ©61)

0

and deduce from (60)
I7llcsoicam) < €(T)M(T) +[|o"(0) o (62)
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Summarizing what we have obtained in (59) and (62)
1X" N co0,m:c1+0m) + 17l 80,5000y < €(T)M(T) + [|0”(0)]|cow (63)

This is the main inequality of this section. It will be used in several situations. First, let us consider the map
S,

(X, 7) = S(X,7) = (Xnew; Tnew) (64)
defined by
Xnew(a,t) =a+ /tU(X(S),T(S))ds (65)
and
Tnew (@, t) / T(X (s))ds (66)

where U, 7T are given in (T4).

THEOREM 5. Let 0 < a0 < 1, 1 <B<1,1<p<ooandletuy € CHP and og € C*P be fixed.
There exists T sufficienytly small such that the map S maps the set

T C Py = Lip(0,T; C1*P) x Lip(0, T; C%P)

T={(X.7)| |(X ~L7)lp, <T, & <[VaX(a,t)| < 3} ©7
to itself, S : T — I. Furthermore, the map is a contraction in the space
P = CP0,T;CHP) x CP(0,T; C*P) (68)
ie.,
[S(X1,711) = S(X2,m2)|[p < % (X1 = Xo,m1 = 7)p- (69)

for (X1,m11) €Z, (X2, m2) € T.

Proof. The fact that S : Z — Z follows from the bounds in Theorem I]and Theorem [2|by choosing 7" small
enough, and T twice the size of the initial data (ug, og) in C'T*P x C*P. The contractivity is proved by
forming the families X = (2 —€) X1 + (e — 1) X2, 7e = (2— €)1 + (e — 1)72 for € € [1, 2]. We note that 7
is convex, and that u’o = 0, because ug does not depend on ¢, and 06 = 0 because o( does not depend on e.

S(X1,m) —S(Xg, 1) = </ Xde/ 7r€de> (70)

where X’ and 7 are obtained via and (61) using the families X, .. Applying and choosing 7
small enough proves the contractivity. The local existence and uniqueness theorem is:

THEOREM 6. Let 0 < v < 1, 1 < p < 00, and let ug € C1TP be divergence-free, and oo € C*P be
given.
(A) There exists T > 0 and a solution (u, o) of, with u € L®(0,T; C***P) and o € Lip(0,T; C¥P).
(B) Two solutions u; € L>®(0,T;C**P) and o; € Lip(0,T;C%P), j = 1,2 obey the strong Lipschitz
bound
10: X2 — 0: X1l oo 0,101 40wy + 10672 — 0471 || oo (0,130000)

C(T) {[lu2(0) = u1(0)lgr+er + [|2(0) = 01(0)]| o}

for their Lagrangian counterparts. In particular, two such solutions with same initial data must coincide.

(71)

Proof. Part (A), the existence, follows because a fixed point of S provides a solution in Z. The initial velocity
being divergence-free and the equation (3) guarantee incompressibility. Part (B) is proved forming the family
(X, 7e) as in the proof of Theorem above, with (X7, 71) being the Lagrangian solution associated to the
solution (u1, 01) and with (X3, 72) being the Lagrangian solution associated to the solution (uz, 02).

Xe=2-eX1+(e—1)Xe, 7e=2—-¢em+(e—1)m
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for € € [1, 2]. Note that

Xé:XQ*Xl, Té:TQ*Tl, (72)
and also, because these are solutions,
2
Xo— X1 = / Xe’de (73)
1
and
2
Ty —T] = / mede + 02(0) — 01(0) (74)
1

Noting moreover that uj, = u2(0) — u1(0), o, = 02(0) — 01(0) we have

2 1y, _ _ _ Y/
{fXEde—Xg X, =X, 73)

[ mede = 12 — 11 — 02(0) + 01(0) = 7" — 02(0) + 01(0).
Choosing % < f < 1 and integrating in € we obtain
X2 — Xallesor,c1tary + IT2 — 71 — 02(0) + 01(0) [ 080, 1,000y <
() {I1Xz = Xillosoricrees) + 1172 = Tilloooricon + [42(0) = wr(Ogrsan ) (76)
+llo2(0) = 1(0)]|avp
Taking €(T") < % we obtain the strong Lipschitz bound

1X2 = Xillooomicrreny + 172 = Till oo ricery < a7
C(T) {[lu2(0) — u1(0)[|g1+ap + [lo2(0) — 1(0)[[ap}

Now, in view of this implies
M(T) < C(T) {||u2(0) = u1(0)llcr+er + [lo2(0) = 01 (0)]
and therefore, going back to (51, and (60), and using

2
8tX2 - 8tX1 = / Uéde
1

apt (78)

and )
Oymo — Oy = / ’T!de
1
we obtain (71).

5. Coupling to Navier-Stokes
The Navier-Stokes equations are nonlinear
Oou—Au+Vp=div(c —u®u), divu=0. (79)

In order to prove uniqueness of solutions of the system formed by coupled to (Z) we still have to
work in a class of velocities that are at least Lipschitz continuous. This is a vastly subcritical situation for
Navier-Stokes equations, so we treat the inertial stress div (u ® u) perturbatively. We write

u=L(uy) + U(o) — U(u @ u) (80)

and
Vu =L(Vug) + G(o) — U(V(u®u)). (81)
We wrote U(V (u ® u)) above instead of the equivalent G(u ® u), in order to take advantage of the fact that
in our framework Vu € C'*P. We introduce again the Lagrangian variables X and 7, but we keep a separate

tab for the Lagrangian velocity
v=uoX. (82)
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We set up the map

V(X,7,v) =Lug) o X + U(to X o X ~U(v@v)o X 1o X, (83)
we denote again
=L(Vup) o X +G(ro X HoX -UNV((v@v)o X 1)) oX (84)
and we maintain
T(X,7,0) = F(g, 7). (85)
The system is now solved in Lagrangian coordinates:
(X, 7,v) — S(X,1,v) = (X", 7" ") (86)
where
Xnew(t) = a+ fo (X(5),7(s),v(s))ds
T (t) = 09 + [y T(X(5),7(s),v(s))ds 87)
vt (t) = V(X, 7, 0)
Note that
VX, 70) =UX,7) ~U((v@v)o X 1) oX (88)
where U is the same as the one given in (T4). Note also that
anew
new — 89
v 7 (89)
and therefore the relation v = dd)t( is maintained in an iteration. Because the last equation of is not

integrated in time, we measure v in L°°(0, T; C'+(R?) 0 W1P(RY)). We take again a family X67 Tes Ves

denote
d

deG == U (90)
€
and keep the rest of the notation X/, 7, 7/, d the same. Note that
dXx!
/ — € 91
Ve =g oD

We differentiate the nonlinearities VV and 7 with respect to €. After composition with X! and dropping e
for ease of notation, we have
VoX l=UUoX1—[n-V,U(u®u) - U((v®v)+ (v ®v))oX 1)
T'=D\F(g,7)g + D2F(g,7)7' 92)
goX =gy o X 1= V,U(V(u®u) - UV((('®v)+ (ver)) oX 1)

where U’ and ¢/, ; are the same as in and u = v o X ~!. We verify that S maps the set

T C Py = Lip(0, T; C*+P) x Lip(0, T; C*P) x L*(0, T; C+er)

93
T={(X,7.0)| (X -Lrv)p, <T,1<|VaX(a,t)] < 3,0=2X ©3)

to itself for I' larger than the size of the initial data o, ug and small enough 7". In order to check this, we
use the bounds used in the previous section. In addition, in view of (34) we see that

IU((v ®v) 0 X 1) 0 X|| 1o o,ri01400) < VTC|0l[70 (0 0 40m) (94)
for invertible X satisfying the constraint § < |V, X (a,t)| < 3.
The new terms introduced in V' and in ¢’ are bounded using and Theorem Using we get
HV/HLOO(O,T;C%P) <e(T) {HX,HCﬁ(O,T;CHavP) + HT/HCB(O,T;ca»p) + ”U/”Loo(o,T;cw)} + C||U6||Ca’f’-
95)

In order to bound ¢’ o X ~! we use to bound the term g/, ;0 X ~1 then li together with the uniform
bound on V(u®u) in order to bound [n- V, U](V(u®u)), and (34) for the last term in g’ o X ~1. We obtain

19l Lo (0,7,000y < C(T)M(T) 4 €(T) ||| oo (0,101 0.9 (96)
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where M (T') is given by (53). The relation

VaV(a,t) = g(a,t)(VaX(a,t)) 97)
is directly verified. Differentiating in €, we obtain
(VaV')(a, 1) = g'(a,t)(VaX)(a,t) + g(a, t)(VaX')(a, 1) 98)
and then we obtain using (95)) and (96))
IVl Lo 0, 1501+0my < €(T) V| oo 0,701+00) + C(T)M(T). (99)
We recall that 7 is given by (61) and introduce
t
X'(a,t) —/ V'(a, s)ds. (100)
0
We have therefore
1X |8 0,001 +0m) + 1Tl 0075000y < €(T)MU(T) + [l0”(0) || cow (101)

where
My (T) = sup {||Xé||cﬁ(o,T;01+w) + 178 0,m:00w) + Vel Loo 0,01 40wy + ||U/E(O)HCI+O‘7P} (102)
€

The inequalities (99) and (TOI) are the main inequalities of this section. They can be used to prove local
existence and Lipschitz dependence on initial data in Lagrangian variables.

THEOREM 7. Let 0 < o < 1, 1 < p < 00, % < B < 1, let ug € C'TP be divergence-free and let
oo € CP. Then there exists ' > 0, T > 0, & > 0 such that the map S defined in (87) maps T defined in
(93)) to itself. Moreover

1
IS(X1, 71,v1) — S(X2, 72, v2)[|p < 5\\(X1,T1701) — (X2, m2,v2)|p (103)
where

(X1, 71, v1) = (X2, 72, 02) lp = (| X1 —Xoll e 0,01 +0my + 171 =72l 08 0, 17,0000) +6[| 01— 2| oo (0,701 00y
(104)

Proof. We already gave sufficient grounds to verify the fact that S maps Z to itself for appropriate I" and
T In order to verify the contraction property, given a pair (X, 75, v; = %), j = 1,2, we form the family
Xe=2-6X1+(e—1)Xo,7e =(2—¢€)11 + (¢ — 1)72 and v = (2 — €)v; + (¢ — 1)vg and use the fact

that ) ) )
S(Xa,12,v2) — S(X1,11,01) = </ X’Ede,/ Wede,/ V’Ede>
1 1 1

Now uj, = 0 and ¢/ (0) = 0 because the initial data are fixed and therefore

M(T) = || X2 — Xalleso,ricrrery + 111 — T2llos 0,000

and
My(T) = M(T) + |lv1 — v2| Lo~ o, 1,c14aw).-
From (99) we deduce
[0 = V1 Lo omycrteary < €(T)|lor = vall oo o,micr40m) + C(T)M(T) (105)
and from (TI0T)) we deduce
[XTY = X3 gao,rsc1temy + |71 — 72l c8(0,0,000) < €(T)Mi(T) (106)

Letus fix C(T) = K in and let 7" be small enough so that ¢(7') < 7 and (7)) < 5 5- We choose

1
(1+4K
6= &, multiply li by ¢ and add to |i we obtain 1'
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THEOREM 8. Let 0 < a < 1,1 < p < oo, let ug € C' TP be divergence-free and let oo € CP.
(A) There exists T > 0 and a solution (u,c) of the system (79), [2) with w € L>(0,T; C'**P) and with
o € Lip(0,T; C*P).
(B) Two solutions u; € L*(0, T}, Cl1teP) and oj € Lip(0,T;C*P), j = 1,2 obey the strong Lipschitz
bound
10: X2 — 0, X1 | oo (0,7.0140w) + 10672 — Ov71|| Lo (0.1,000) (107)
< C(T) {llu2(0) = u1(0)llcr+er + [lo2(0) = 01(0)[|ap}

for their Lagrangian counterparts. In particular, two such solutions with the same initial data must coincide.

Proof. The proof is very similar to the proof of Theorem@ Choosing % < B < 1, using and integrating
in € in (101)) we obtain

1 X2 — Xillesor,01t0m) + I72 = 71— 02(0) + 01(0) |08 0,7;0000) <

e(T) {||X2 — Xilleso,ricrvery + |72 = Tillcso 00wy + v2 — leLw(o,T;cHw)} (108)

+e(T)[u2(0) = u1(0)lc1+ar + [lo2(0) = 01(0) [ap-
On the other hand, using

2
Vg — V] = / Vide
1
and integrating with respect to € in we obtain
[v2 = V1l oo 0,101+ 00y < €(T) o2 — V1l poe(0,7,01+0w) + C(T)M(T) (109)

Fixing C(T) = K and choosing again 7" small enough such that ¢(7") < 1 and ¢(7') < m we obtain
that
1X2 — Xillosoricrran) + 172 = Tilloso,ricery + g l1v2 = vill oo (001 +0om) (110)
< C(T) {llu2(0) = u1(0)[[cr+ar + [|02(0) = a1(0)[lap}
and therfore we have
X2 — Xillos0,m,01+am) + 172 = T1llo8(0,1,000) + 101X — O: X4 || poc (07,014 0w) < (111)
C(T) {llu2(0) = ur(0)[lc1+ar + [lo2(0) — 01(0)[lap }
The bound follows because, as before,
17" || oo (0,7,c0my < C(T) My (T)
and (111)) provides a bound for M (T).
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