Take home final exam, Math 529

Due May 15, 2017

Please email me a .pdf file or put a hard copy in my mailbox. Please solve one of the two problems.

Problem 1. Consider the equation

$$
\begin{equation*}
\partial_{t} u+u \cdot \nabla u+\Lambda^{s} u=f \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
\nabla \cdot u=0 \tag{2}
\end{equation*}
$$

in two dimensions, on the unit torus, \mathbb{T}^{2} i.e.

$$
\begin{equation*}
u\left(x+2 \pi e_{i}, t\right)=u(x, t), \quad i=1,2 \tag{3}
\end{equation*}
$$

with $e_{i}, i=1,2$ the canonical basis of \mathbb{R}^{2}. The forces f are time independent and smooth, $f \in W^{2, \infty}\left(\mathbb{T}^{2}\right)^{2}$,

$$
\begin{equation*}
\Lambda=(-\Delta)^{\frac{1}{2}} \tag{4}
\end{equation*}
$$

and $s>0$. Prove that the equation has a global attractor of finite Hausdorff dimension, and give a bound for its dimension.

Problem 2.

A. Prove that the n-dimensional Burgers equation

$$
\begin{equation*}
\partial_{t} u_{i}+\sum_{j=1}^{n} u_{j} \partial_{j} u_{i}-\Delta u_{i}=0, \quad i=1, \ldots n \tag{5}
\end{equation*}
$$

with $u=u(x, t), x \in \mathbb{R}^{n}, t \geq 0$, and initial data $u_{0} \in H^{s}\left(\mathbb{R}^{d}\right)$, $s>1+\frac{n}{2}$ has global solutions in $H^{s}\left(\mathbb{R}^{d}\right)$.
B. Consider the two dimensional Navier-Stokes equation on the unit torus,

$$
\begin{equation*}
\partial_{t} u+\nu A u+B(u, u)=f \tag{6}
\end{equation*}
$$

with $f \in H$. Prove Lemma 14.3 of the blue book: There exists a function $c(t)$ defined for all $t>0$, depending on $\nu,|f|$, and ρ such that, for every $u_{1}, u_{0} \in B_{\rho}^{V}$ the following estimate holds:

$$
\begin{equation*}
\left|S(t) u_{1}-S(t) u_{0}-S^{\prime}\left(t, u_{0}\right)\left(u_{1}-u_{0}\right)\right| \leq c(t)\left|u_{1}-u_{0}\right|^{2} . \tag{7}
\end{equation*}
$$

The notation is from the blue book: $|f|$ is norm in H, i.e. L^{2} norm, B_{ρ}^{V} is the ball in V of radius ρ, with the norm in V being H^{1} norm, $S(t) u_{0}$ is the solution of the Navier-Stokes equation with initial datum u_{0} and $S^{\prime}\left(t, u_{0}\right) v_{0}=v(t)$ is the solution of the linearization of the Navier-Stokes equation along the path $u(t)=S(t) u_{0}$, i.e., v solves

$$
\begin{equation*}
\partial_{t} v+\nu A v+B(u, v)+B(v, u)=0 \tag{8}
\end{equation*}
$$

with initial datum v_{0}.

