Introduction to PDE

Spaces of functions

1 Spaces of smooth functions and distribu-
tions

Let us recall very rapidly facts about Banach spaces. A Banach space B is
a real or complex vector space that is normed and complete. Normed means
that it has a norm, i.e. a function

-1l B =Ry

that satisfies
lz+yll < [zl + [y, VzyeB
IAz|| = [A|||lz|| YAeC, x€B
|| =0=2=0, VxeB

Complete means that all Cauchy sequences converge. The norm makes B
into a metric space with translation invariant distance, d(x,y) = ||z —y||. We
recall the Baire category theorem that says that all complete metric spaces
are of the second category, i.e. cannot be written as a countable union of
closed sets with empty interiors. A linear operator

T: X =Y

between Banach spaces is continuous iff it is continuous at zero. Continuity
is equivalent with the existence of a constant C' > 0 so that

|Tz]| < Cllz|, Vxe X.
The norm of the operator is

IT|| = sup [T

=<1

The space L(X,Y) :={T : X — Y| T linear, continuous} is itself a Banach
space. We recall a few basic theorems in Banach space theory:



Theorem 1 (Banach-Steinhaus, uniform boundedness principle). Let T, :
X =Y bea family (as a € A, a set) of linear continuous operators between
Banach spaces. If for every x € X there is C, so that

[Toz]| < Cy
then there exists C' so that
sup ||T.] < C
acA
Vice-versa: if sup, ||T,|| = oo then there exists a dense G set such that for

every point x in it Sup,e 4 || Tuz|| = oo.

Theorem 2 (open mapping) Let T : X — Y be a linear map between Ba-
nach spaces. If T is onto then T is open (maps open sets to open stes).

Theorem 3 (closed graph) If the graph Gr C X x Y, Gr = {(z,y)| y =
Tz} of a linear map between Banach spaces is closed, then T is continuous.

Examples of classical Banach spaces are £, the spaces of sequences and the
classical Lebesgue spaces LP(§2) with 1 < p < oo, Q C R" open. The space
of continuous functions on a compact is C(K) = {f : K — C| f continuous}
where K C R™ is compact. The norm is || f|| = sup,cx |f(z)|. The Holder
class C*(€2) is the space of bounded contuous functions with norm

| fllce = sup | f(x)] —i—supM
z€N z#y |x_y|a

with 0 < a < 1. When a = 1 we have the Lipschitz class. We will describe
Sobolev classes shortly.

The dual of a Banach space B is B’ = £(B,C). Classical examples are
LP(QY =LQ), p +q1=1,1<p< o0,

Let X be a vector space over the real or complex numbers. We say that

is a seminorm, if it obeys
p(x+y) <plx) +ply), VoyeX

and
p(Ax) = |Ap(x) VYAeC,zxeX.

For later use let us recall also the complex Hahn-Banach theorem.
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Theorem 4 (Hahn-Banach) Let X C Y be a linear subspace of a complex
vector space. We assume that a seminorm p is given on'Y , and that a linear
map

F:X—=C

1s given on X such that
|F ()] < p(x)

holds on X. Then there exists a linear extension F of F,
F:Y —>C
satisfying ﬁ((E) = F(x) for allx € X and

IF(y)] < p(y)
forallyeY.

A topological vector space is a vector space that is also a Hausdorff
topological space, with continuous operations. The system of neighbor-
hoods at a point is the translate of the system of neighborhoods at zero.
A topological vector space is locally convex if zero has a base of neighbor-
hoods that are convex. (Convex sets are sets S such that, together with
two points x,y € S they contain the whole segment [z,y] C S, where
[z,y) = {z = 1=tz +ty| 0 <t < 1}. A locally convex topological
vector space is said to be metrizable if there is a translation-invariant metric
that gives the same topology. A family of seminorms is said to be sufficient
if for every z there is p in the family so that p(x) # 0. A sufficient famly of
seminorms on a vector space X defines a locally convex topology: it is the
coarsest topology such that all seminorms in the family are continuous. A
base of neighborhoods is

V=A{z|pi(r) <e,i=1,...m}

with m € N, ¢ > 0 and p; belonging to the sufficient family. Classical
examples of locally convex spaces are C™(2) and C*(€2). Let K C 2 be a
compact subset and let j < m be an integer. We define

prg(f) = sup |0%f(x)]

z€K, |a|<j



where 9* = 2% Then the topology of C™ () is defined by the semi-

G
norms pg. ;. The topology of C*°(Q) is defined by the same seminorms, but
with j arbitrarily large. The topology of C™(£2) is the topology of uniform
convergence on compacts, together with derivatives of order up to m. These
topologies are metrizable. A metric is obtained as follows. We take a se-
quence of compacts Kj such that K C Kjy1 and UgKy = €. Then, for
every k we define

m

p _N"o Prii(f = 9)
(f:9) JZOQ L+ pri(f = 9)

and then set
(oo}

o — dk(fag)
ilf9) _,;2 Tl

A locally convex space is said to be complete if all Cauchy sequences converge.
The spaces C™(€2), 0 < m < oo are complete. The space D(Q2) = C§°(12)
of infinitely differentiable functions with compact support has a topology
that is a strict inductive limit. We consider first compacts K C 2. For
each such compact we consider Dy (£2), formed with those C§°(€2) functions
which have compact support included in K. This is a vector space and
Pr,; are sufficient seminorms for j > 0. If K C L, the spaces are included
Dk(2) C DL(2). The inclusion is an isomorphism. Then we can take a
sequence of compacts K}, as above and identify D(£2) as the set theoretical
union of Dk, (2). The topology on D(£2) is the finest locally convex topology
so that all the inclusions D, (©2) C D(2) are continuous. A linear map
T : D(§2) — C is continuous iff its restrictions T' : Dk — C are continuous
for all K C €2 compact.

Definition 1 The dual of D(2),
D'(Q)={T:D(Q) — C| T linear, continuous}
is the set of distributions on §2.

More concretely thus, a linear map u is a distribution, u € D'(Q2), if and
only if, for every compact K C () there exist a nonnegative integer j and a
constant C' such that

lu(¢)] < Cpr,;(9)
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holds for all ¢ € Dk (Q2). The language of distributions is useful because it
provide a generous framework in which problems can be placed and analyzed.
It will turn out that locally distributions are derivatives of L' functions.
Clearly, if f € L] (Q) (i.e. f is integrable on compacts in ) then f defines
a distribution u by the rule

uo) = [ Fle)oteyts
Q
The Dirac mass at a point in zy € €2 is another example of a distribution

Oay (@) = p(0).
Another example is the principal value integral P.V.(%) € D'(R) given by

PV. <1> (¢) = lim o) 4y

€T e—0, e>0 |.’E|>E €T

In order to go further, we recall convolutions, partition of unity and mollifiers.
Let f,g,h € C§°(R™). The convolution

(fxg)(x) = . flz —y)g(y)dy

has the properties
frg=gx*f,
(f*g)xh=fx(g=*h),
O%(fxg)=(0"f)xg=[=(0),
spt(f = g) C spt(f) + spt(g).

In the last line we denoted by spt f the support of f, i.e. the closure of the set
where f does not vanish, sptf := {x| f(z) # 0}. We also use the notation
A + B for the sum of two sets, the set of all possible sums of elements

A4+ B ={c| Ja€ A, Ib € B, ¢c = a+b}. Let ¢ be a smooth positive
function ¢ > 0 in R", supported in the ball centered at zero of radius one,

spto C B(0,1)

with normalized integral [;, ¢(z)dz = 1. We define
(T
S

5



and recall that
e—0

holds in a variety of contexts. The convergence is true in L? for 1 < p < oo.
This means that, if f € LP(R™) then the convergence is in norm

lim||f — (f * &) l» = 0

If f is continuous, then the convergence holds uniformly on compacts. Note
that even if f € L] (R"), f * ¢, is well defined at each € R" and it is a
C® function. We call such a ¢, a standard mollifier. We recall a partition of

unity statement

Proposition 1 Let () be an open set and assume it is the union of a family of
open sets Qq, = Uyeafy. There exists a sequence ¢; of C3°(R™) functions
so that for each j there exists an index a such that spty; C Q,. For every
compact K C § only finitely many occurrences sptip; N K # 0 can happen,

and
Z Yi(x) =1

holds for every x € ).

We say that 1; is a partition of unity subordinated to (£2,)aea-

Let now € C 2 be two open sets. If u € D'(2) it is clear how to define
u|q,: it is the restriction as a linear map to D(€2;) which can be identified
with a subset of D(€2). We say that two distributions u;, uy € D'(2) agree in
Oy if uy)q, = ug)q,. Two distributions agree locally, if any point has an open
neighborhood where the two distributions agree. A partition of unity can be
used to show that if two distributions agree locally, they are identical. We
consider the space of rapidly decreasing functions a subset S(R™) of C*(R")
formed with functions that decay together with all derivatives faster than
any polynomial. The seminorms

Pm(f) = sup (14 [x])"|0%f(z)]

z€R™, || <y

define a metrizable, complete locally convex topology. It is customary to
denote by E(R™) = C*°(R"™) with the locally convex topology introduced
earlier. Then the following are continuous inclusions:

D(R™) C S(R™) C E(R™)
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Naturally, the duals (sets of linear continuous maps to the complex or real
field) are included in reverse order

£'(R") ¢ S'(R™) € D'(R")

We can put weak topologies on these duals, (pointwise convergence) and then
the inclusions are continuous. The elements of £'(R™) are distributions with
compact support. Indeed, if u € £'(R™), then there exists a constant C' and
a seminorm pg ., so that

[u(9)] < Cprm(d)

holds for all ¢ € £(R™). This implies that, as a element of D'(R"), ujgm\x =
0. The complement of the support of a distribution is naturally defined as
the largest open set where the distribution vanishes, and so it follows that
spt(u) C K. Conversely, if v € D'(R"™) has compact support K, then it is
easy to see that u(¢) = u(¢pyx) where x is a C5° function identically equal to
1 on a neighborhood of K. Then the map ¢ — u(¢x) extends uniquely to
¢ € E(R™) and defines a continuous linear map there. The distributions in
S'(R™) are called temperate distributions.
Distributions can be differentiated any number of times

Definition 2 Let u € D'(R2). Let « be a multi-index. Then we define 0®u €
D'(2) by

(0*u)(¢) = (—1)"lu(d¢)
For instance if H(x) is the Heaviside function, H(x) = 0 for x < 0 and
H(xz) =1 for x > 0 then H = §. In general, we can generate thus locally

distributions by taking derivatives of functions. The next proposition says
that this is actually the most general case.

Proposition 2 Let Oy C O C Q, with Q open, Q4 open and bounded. Let
u € D'(Q2). Then there exist a function f € L>®(€;) and m so that

U, =07 ...00 f
holds in the sense of distributions in D' (€);).

The idea of the proof is the following. First we prove an inequality, namely
that there exists m and a constant C such that

u(@)l < C [ 107" ... 0, ¢(x)| dx
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holds for all ¢ € D(£2;). Suppose for a moment we have this inequality. Then
we consider the linear subspace X of L'(€;) defined by

X ={| 3p€D(), v =0;"...00¢}

On this linear subspace we define the linear functional F': X — C by

F() = (=1)""u(¢)

Note that the inequality which we have not yet proved guarantees two things,
first that this is well defined, (meaning that it does not depend on the choice
of ¢) and that

|F()] < CllYll

Then by Hahn-Banach, there exists an extension F of F to L' () that is
a continuous linear functional on L'(£2;). But then, by duality, this implies
that there exists a function f € L*(£2;) so that

F(y) = i f@)v(x)ds
holds for all ¢ € L*(€;). This shows that, for any ¢ € D(£2;)
u(p) = (=)™ g f@)(©0r" ... 07 0)(x)dx

which finishes the proof, modulo the inequality. Now, the proof of the in-
equality: Because K = {); is a compact in 2 and u € D(Q2) there exists an
integer 7 and a constant C; such that

lu(@)] < Cy sup  [0%¢(x)]

zeR™,|a|<j

Let m = j 4+ 1 and write each derivative as a multiple integral

o) = [ o amety)dy
[

where the integral in the first direction is the integral of the integral, m — a;
times and the last integral is the integral of the integral m — «,, times. The
inequality follows because the variables belong to the projections of €2; on
the coordinate axes and those are included in finite intervals.



2 Sobolev spaces

We define the norm
1 llmp = > 10°f e

laj<m

and the space W™P(Q) to be the set
WmP(Q) = {f € LP(Q) | 9°f € LP(Q), |a| <m}

The derivatives are taken in the sense of distributions. The space endowed
with the norm || - ||, is a Banach space. Here m > 0 and 1 < p < co. Let
us prove the fact that W™P(Q2) is complete. Let f; be a Cauchy sequence.
Because LP(() is complete, it follows that for every «, |a| < m, there exist
functions f(® € LP(Q) so that 9°f; converge in the norm of LP(Q2) to f(*).
It remains to show that f(®) = 9 f(© in D'(Q). This is an easy consequence
of the definitions:

[ f@odr = lim; o [(0°f;)ddx
= (~1)limy e [ f;(0°9)dz = (=1)0°! [ fO(0°¢)dz
= [(0°fO)¢dx

holds for any ¢ € C§°(Q).

Proposition 3 Let 1 < p < oo, m > 0. Let Q C R" be open. Then
C>®(Q) NW™P(Q) is dense in W™P(Q).

For the proof, let us take a sequence of open, relatively compact sets €2; so
that ; C Q4 and UQ; = Q. Let ¢, be a partition of unity subordinated to
the family ;. Let u € W™P(Q). Note that 1;u € W™P(Q) and u = 3 ju.
Note also that spt(¢;u) C €2; is compact, so by choosing §; small enough we
have that

95 = (yu) * ¢s; € G5 ()
(Here ¢ is a standard mollifier.) By choosing J; small enough we can make
sure that

lg; = iullmp < 2777
Now g = Z]‘ g; belongs to C*°(Q2). Indeed, the sum is locally finite. (Taking
6; <279 ifz € Qand if spt(¢;)NB(x,2r) = O for j > N(r) then, taking M so
large that 2= < r and taking j > N, M we deduce that spt(g;)NB(z,r) = (.



The main point is that we do not need to change the choice of §; according
to where z is, just the number of intersecting sets depends on that.) Now

g = ullmp <Y Nlgs = Ysttllmy < €
J

The fact that g € W™P(Q) follows from this inequality. This concludes the
proof. The closure of D(Q2) in W™P(Q2) is denoted by Wi"P(Q2). It is cus-
tomary to denote by H™(Q)) = W™2(Q). Note that Wg"*(R") = W™P(R").
In general however the closure of smooth functions with compact support is
smaller than WP ().

The Sobolev embedding theorems are our next topic. We start with the
Gagliardo-Nirenberg-Sobolev inequality

Theorem 5 Let 1 < p <mn. Let

np
n—p

px =
There exists a constant C such that
[ fllzes@ny < ClIV | Loy
holds for all f € W'P(R™).

The proof goes like this. First we consider the case p = 1. WLOG we can
take f € C5°(R™). We write

f(x) = / 8if(ZL’1, ey Li—1, t, Litly- - In)dt

So, _
|f([[‘)| S/ |vf|('r17axz—latvxl-i-laxn)dt

—00

We do this for all i =1,...n:

/()

2 < [HL/ V(@1 sty w)dts |

[e.9]
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We integrate this with respect to z;. One factor in the product does not
depend on xy:

[ @) dey <
[ 910 o, %, (T, [, |Vf|dt>

1 1

< [ffooo IV f(ty, 2, . .. 7$”)dt1} o <H?:2 ffooo ffooo |vf|dt1dti> -

In the last piece we used Holder’s inequality with n — 1 factors. Now we
integrate dxy,. We obtain the result by induction:

[1fl7=tdz, ... dz) < k
IV, -t Thgs - @) dEy . dy] T X 1 (1)
T IVt @hgry oty ) dy . dEpdt] 7

For general p, we apply the result for p = 1 to an appropriately chosen

71
1= ldx] " <C/|f|" W

We use Holder and note that if 2% = px then (¢ — 1)p’ = px where p’ = 2=
is the conjugate exponent of p.
The general statement is

Wm(Q) L)

for mp < n, p < q < & o These inclusions hold for 2 bounded with

n

smooth boundary. (C1). If mp > n then W™2(Q) c C™ %*(Q) where
a=m—2—[m—2]>0. If Qis bounded with C" boundary, there exists
an extension operator

E:W™P(Q) — W™P(R")
such that (Fu)(z) = u(x) a.e. in Q,
[ Eullwme@ny < Cllullwma@)

We will give some proofs. For instance in the case 2 = R™ and p = 2 it is
easy to see that u € H™ if and only if

(1+ le*) = a(e) € L*(R")

11



n

where @ is the Fourier transform. Then, if £ < m — %, it is also easy to see

that .
11+ 1€1%)2a(E) | 1 @my < Cllullwmgny

Therefore it follows that 0%u is bounded and uniformly continuous if |a| <
m — 5. The extension theorem is done by looking locally near the boundary.
if the boundary is flat ¥ = {z| =z, = 0} and if u has compact support in
r, > 0, then the formula

B u(z) forx, >0
(Bu)(w) = { SN (!, —jx,),  forx, <0

7=1
defines the extension if A; are chosen to satisfy

m+1

SN =(DF k=0.1,...m.

Because of the Vandermonde determinant

Det(5%) =1 mi1, k=0..m = Wicicjemi1(j — 9)

we can find \;. Note that if u € C™(R%) then Eu € C™(R™). This gives the
extension, by checking the norms and using the density. This also shows that
if the boundary of the domain is smooth then we can approximate functions
in W™P(Q) by functions that are in C*°(R") restricted to Q. Indeed, by
a partition of unity, it is enough to consider functions compactly supported
near the boundary of (2. By a change of variables and a translation we reduce
the problem to a half-space. If u is supported there, we can first approximate
it by a smooth function f, compactly supported in z;,, > 0. Then we consider
fg( ) = f(z',x, +¢€). This  dips f below the boundary. We have that f6 is
close to f in W™?(Q) and f. € C>(R). Convolution with a mollifier finishes
the job.

Lemma 1 Let 1 < p < oco. There exists C > 0 so that for every [ €
C>*[R"), z € R", r >0, z € B(x,r) we have

/ ) — f()Pdy < Crmtvd / ly— 2"V F )Py
B(z,r)

B(z,r)

12



The proof goes like this. First we note that

fB(z,T) |f(y) — f(2)[Pdy = fB(z PNB(z,2r) |f(y) — f(2)[Pdy
fBzZr 1fy) = f()P XB(M)( )dy
o dp [ F ) = FE)XBen (1)dS, ()
_fo Ap [y oimp yennm 1f (@) = F(2)PAS,(y)

Now, because

ﬂw—f@%=é(y—@-vﬂz+dy—dﬂt

it follows that

V@%ﬂﬂ@?SW—ZWAIVﬂz+Ky—@Pﬁ

and thus

J]y slep e |f W) = f(2)[PdS,(y)
<ppf0 dtf‘y el=p.yeBla) |Vf(z+t( — 2)[PdS,(y)

Changing variables to w = z + t(y — z) € B(z,r) we have

f|y clepryenen W) = F(2)[PdS,(y)
<ppf0 tl ndtfw z|=tp,wEB xr)'vf( )|pdStp(w)

and then setting tp = p/

F oo @) = F()17AS,(y)
< g [T | fw — 2V f(w)|PdS, (w)

|lw—z|=p’, wEB(z,r)

= pn+p 2 fB(aﬁ,'f‘)ﬂB z,p "LU - Z|1 n‘vf< )‘pdw

Returning to the begining of the proof,

2r  p4p— —-n
fB(x,r)‘f(y)_f(ZdeySfO pr dememsz jw — 2"V f(w)[Pdw
< e w — 2"V f(w)Pduw

— n+p—1 B(z,r)

Now we can prove the Morrey inequality:
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Theorem 6 Let n < p < oo. there exists a constant C' so that for all
r>0,2€R" y 2z € B(x,r) we have

1 N\
i =ren<er (o [ wor)

For the proof, we apply Lemma (1) with p = 1. We compare f(y) and f(z)
to the average

_ 1
r,r) = z)dz
Fa,r) / e

WpT™

So, B
1(9) = )| < =2 fn 1) — F(2)d
< C fogu VF@l0 g

< (e 1V117) (Jy =0l 5 )

It is clear that

p—1

p(1—n) 17?%1 p(1—n) o 1—n
lw —y| 71 dw < lw—y| T dw =Cr >
B(zx,r) B(y,2r)

and that finishes the proof.

Lemma 2 (Local Poincaré). Let 1 < p <n. There exists a constant so that

1 F p* p% 1 P !
(wnrn / =T dy) <or (w / 9 dy)

The proof uses first the Lemma 1.

— 2
Wn% fB(Iﬂ”) ’f - f|pdy < (um%) fB(m,T) dy fB(r,r) ‘f(y) - f(w)|pdw
< wn%rpil fB(.r,'r) dy fB(m,T) IV f(w)Plw —y|'"dw
< Crpwn% fB(x,r) |Vf|pdw

So, we have that

1 _ ) N 1 ) 1
(wnrn /B(:c,r) ’f(y) - f(x’ 70)| dy) = Cr (wnfr” /;(I,T) \Vf(y)| dy)
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On the other hand, the inequality

1 1

1 px 1 1 P

(o [ ) <l [ was o[
wnr B(z,r) WnpT B(z,r) Wt B(z,r)

valid for all g, follows by rescaling from the same inequality for r = 1.
This follows by the extension theorem and the Gagliardo-Nirenberg-Sobolev
inequality. Indeed, let g € W'?(R") extend g € W?(B(0, 1)), with |[g]|1, <
Cllgll1p. Then

9l zrBo,1)) < Gl @ny < ClIVG||r@ny < Cllgllwreso,)
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