
Introduction to PDE

Spaces of functions

1 Spaces of smooth functions and distribu-

tions

Let us recall very rapidly facts about Banach spaces. A Banach space B is
a real or complex vector space that is normed and complete. Normed means
that it has a norm, i.e. a function

‖ · ‖ : B → R+

that satisfies
‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀ x, y ∈ B
‖λx‖ = |λ|‖x‖ ∀λ ∈ C, x ∈ B
‖x‖ = 0⇒ x = 0, ∀x ∈ B

Complete means that all Cauchy sequences converge. The norm makes B
into a metric space with translation invariant distance, d(x, y) = ‖x−y‖. We
recall the Baire category theorem that says that all complete metric spaces
are of the second category, i.e. cannot be written as a countable union of
closed sets with empty interiors. A linear operator

T : X → Y

between Banach spaces is continuous iff it is continuous at zero. Continuity
is equivalent with the existence of a constant C > 0 so that

‖Tx‖ ≤ C‖x‖, ∀x ∈ X.

The norm of the operator is

‖T‖ = sup
‖x‖≤1

‖Tx‖

The space L(X, Y ) := {T : X → Y | T linear, continuous} is itself a Banach
space. We recall a few basic theorems in Banach space theory:
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Theorem 1 (Banach-Steinhaus, uniform boundedness principle). Let Ta :
X → Y be a family (as a ∈ A, a set) of linear continuous operators between
Banach spaces. If for every x ∈ X there is Cx so that

‖Tax‖ ≤ Cx

then there exists C so that
sup
a∈A
‖Ta‖ ≤ C

Vice-versa: if supa ‖Ta‖ = ∞ then there exists a dense Gδ set such that for
every point x in it supa∈A ‖Tax‖ =∞.

Theorem 2 (open mapping) Let T : X → Y be a linear map between Ba-
nach spaces. If T is onto then T is open (maps open sets to open stes).

Theorem 3 (closed graph) If the graph GT ⊂ X × Y , GT = {(x, y) | y =
Tx} of a linear map between Banach spaces is closed, then T is continuous.

Examples of classical Banach spaces are `p, the spaces of sequences and the
classical Lebesgue spaces Lp(Ω) with 1 ≤ p ≤ ∞, Ω ⊂ Rn open. The space
of continuous functions on a compact is C(K) = {f : K → C | f continuous}
where K ⊂ Rn is compact. The norm is ‖f‖ = supx∈K |f(x)|. The Hölder
class Cα(Ω) is the space of bounded contuous functions with norm

‖f‖Cα = sup
x∈Ω
|f(x)|+ sup

x 6=y

|f(x)− f(y)|
|x− y|α

with 0 < α < 1. When α = 1 we have the Lipschitz class. We will describe
Sobolev classes shortly.

The dual of a Banach space B is B′ = L(B,C). Classical examples are
Lp(Ω)′ = Lq(Ω), p−1 + q−1 = 1, 1 ≤ p <∞.

Let X be a vector space over the real or complex numbers. We say that

p : X 7→ R+

is a seminorm, if it obeys

p(x+ y) ≤ p(x) + p(y), ∀ x, y ∈ X

and
p(λx) = |λ|p(x) ∀ λ ∈ C, x ∈ X.

For later use let us recall also the complex Hahn-Banach theorem.
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Theorem 4 (Hahn-Banach) Let X ⊂ Y be a linear subspace of a complex
vector space. We assume that a seminorm p is given on Y , and that a linear
map

F : X → C

is given on X such that
|F (x)| ≤ p(x)

holds on X. Then there exists a linear extension F̃ of F ,

F̃ : Y → C

satisfying F̃ (x) = F (x) for all x ∈ X and

|F̃ (y)| ≤ p(y)

for all y ∈ Y .

A topological vector space is a vector space that is also a Hausdorff
topological space, with continuous operations. The system of neighbor-
hoods at a point is the translate of the system of neighborhoods at zero.
A topological vector space is locally convex if zero has a base of neighbor-
hoods that are convex. (Convex sets are sets S such that, together with
two points x, y ∈ S they contain the whole segment [x, y] ⊂ S, where
[x, y] = {z = (1 − t)x + ty | 0 ≤ t ≤ 1}. A locally convex topological
vector space is said to be metrizable if there is a translation-invariant metric
that gives the same topology. A family of seminorms is said to be sufficient
if for every x there is p in the family so that p(x) 6= 0. A sufficient famly of
seminorms on a vector space X defines a locally convex topology: it is the
coarsest topology such that all seminorms in the family are continuous. A
base of neighborhoods is

V = {x | pi(x) < εi, i = 1, . . .m}

with m ∈ N, εi > 0 and pi belonging to the sufficient family. Classical
examples of locally convex spaces are Cm(Ω) and C∞(Ω). Let K ⊂ Ω be a
compact subset and let j ≤ m be an integer. We define

pK,j(f) := sup
x∈K, |α|≤j

|∂αf(x)|
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where ∂α = ∂|α|

∂
α1
1 ...∂αnn

. Then the topology of Cm(Ω) is defined by the semi-

norms pK,j. The topology of C∞(Ω) is defined by the same seminorms, but
with j arbitrarily large. The topology of Cm(Ω) is the topology of uniform
convergence on compacts, together with derivatives of order up to m. These
topologies are metrizable. A metric is obtained as follows. We take a se-
quence of compacts Kk such that Kk ⊂ Kk+1 and ∪kKk = Ω. Then, for
every k we define

dk(f, g) =
m∑
j=0

2−j
pKk,j(f − g)

1 + pKk,j(f − g)

and then set

d(f, g) =
∞∑
k=0

2−k
dk(f, g)

1 + dk(f, g)
.

A locally convex space is said to be complete if all Cauchy sequences converge.
The spaces Cm(Ω), 0 ≤ m ≤ ∞ are complete. The space D(Ω) = C∞0 (Ω)
of infinitely differentiable functions with compact support has a topology
that is a strict inductive limit. We consider first compacts K ⊂ Ω. For
each such compact we consider DK(Ω), formed with those C∞0 (Ω) functions
which have compact support included in K. This is a vector space and
pK,j are sufficient seminorms for j ≥ 0. If K ⊂ L, the spaces are included
DK(Ω) ⊂ DL(Ω). The inclusion is an isomorphism. Then we can take a
sequence of compacts Kk as above and identify D(Ω) as the set theoretical
union of DKk(Ω). The topology on D(Ω) is the finest locally convex topology
so that all the inclusions DKk(Ω) ⊂ D(Ω) are continuous. A linear map
T : D(Ω) → C is continuous iff its restrictions T : DK → C are continuous
for all K ⊂ Ω compact.

Definition 1 The dual of D(Ω),

D′(Ω) = {T : D(Ω)→ C | T linear, continuous}

is the set of distributions on Ω.

More concretely thus, a linear map u is a distribution, u ∈ D′(Ω), if and
only if, for every compact K ⊂ Ω there exist a nonnegative integer j and a
constant C such that

|u(φ)| ≤ CpK,j(φ)
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holds for all φ ∈ DK(Ω). The language of distributions is useful because it
provide a generous framework in which problems can be placed and analyzed.
It will turn out that locally distributions are derivatives of L1 functions.
Clearly, if f ∈ L1

loc(Ω) (i.e. f is integrable on compacts in Ω) then f defines
a distribution u by the rule

u(φ) =

∫
Ω

f(x)φ(x)dx

The Dirac mass at a point in x0 ∈ Ω is another example of a distribution

δx0(φ) = φ(x0).

Another example is the principal value integral P.V.( 1
x
) ∈ D′(R) given by

P.V.

(
1

x

)
(φ) = lim

ε→0, ε>0

∫
|x|>ε

φ(x)

x
dx

In order to go further, we recall convolutions, partition of unity and mollifiers.
Let f, g, h ∈ C∞0 (Rn). The convolution

(f ∗ g)(x) =

∫
Rn
f(x− y)g(y)dy

has the properties
f ∗ g = g ∗ f,

(f ∗ g) ∗ h = f ∗ (g ∗ h),

∂α(f ∗ g) = (∂αf) ∗ g = f ∗ (∂αg),

spt(f ∗ g) ⊂ spt(f) + spt(g).

In the last line we denoted by sptf the support of f , i.e. the closure of the set
where f does not vanish, sptf := {x | f(x) 6= 0}. We also use the notation
A + B for the sum of two sets, the set of all possible sums of elements
A + B = {c | ∃a ∈ A, ∃b ∈ B, c = a + b}. Let φ be a smooth positive
function φ > 0 in Rn, supported in the ball centered at zero of radius one,

sptφ ⊂ B(0, 1)

with normalized integral
∫
Rn φ(x)dx = 1. We define

φε(x) = ε−nφ
(x
ε

)
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and recall that
lim
ε→0

f ∗ φε = f

holds in a variety of contexts. The convergence is true in Lp for 1 ≤ p <∞.
This means that, if f ∈ Lp(Rn) then the convergence is in norm

lim
ε→0
‖f − (f ∗ φε)‖Lp = 0

If f is continuous, then the convergence holds uniformly on compacts. Note
that even if f ∈ L1

loc(Rn), f ∗ φε is well defined at each x ∈ Rn and it is a
C∞ function. We call such a φε a standard mollifier. We recall a partition of
unity statement

Proposition 1 Let Ω be an open set and assume it is the union of a family of
open sets Ωa, Ω = ∪a∈AΩa. There exists a sequence ψj of C∞0 (Rn) functions
so that for each j there exists an index a such that sptψj ⊂ Ωa. For every
compact K ⊂ Ω only finitely many occurrences sptψj ∩ K 6= ∅ can happen,
and ∑

j

ψj(x) = 1

holds for every x ∈ Ω.

We say that ψj is a partition of unity subordinated to (Ωa)a∈A.
Let now Ω1 ⊂ Ω be two open sets. If u ∈ D′(Ω) it is clear how to define

u|Ω1 : it is the restriction as a linear map to D(Ω1) which can be identified
with a subset of D(Ω). We say that two distributions u1, u2 ∈ D′(Ω) agree in
Ω1 if u1|Ω1

= u2|Ω1
. Two distributions agree locally, if any point has an open

neighborhood where the two distributions agree. A partition of unity can be
used to show that if two distributions agree locally, they are identical. We
consider the space of rapidly decreasing functions a subset S(Rn) of C∞(Rn)
formed with functions that decay together with all derivatives faster than
any polynomial. The seminorms

pm,j(f) = sup
x∈Rn, |α|≤j

(1 + |x|)m|∂αf(x)|

define a metrizable, complete locally convex topology. It is customary to
denote by E(Rn) = C∞(Rn) with the locally convex topology introduced
earlier. Then the following are continuous inclusions:

D(Rn) ⊂ S(Rn) ⊂ E(Rn)
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Naturally, the duals (sets of linear continuous maps to the complex or real
field) are included in reverse order

E ′(Rn) ⊂ S ′(Rn) ⊂ D′(Rn)

We can put weak topologies on these duals, (pointwise convergence) and then
the inclusions are continuous. The elements of E ′(Rn) are distributions with
compact support. Indeed, if u ∈ E ′(Rn), then there exists a constant C and
a seminorm pK,m so that

|u(φ)| ≤ CpK,m(φ)

holds for all φ ∈ E(Rn). This implies that, as a element of D′(Rn), u|Rn\K =
0. The complement of the support of a distribution is naturally defined as
the largest open set where the distribution vanishes, and so it follows that
spt(u) ⊂ K. Conversely, if u ∈ D′(Rn) has compact support K, then it is
easy to see that u(φ) = u(φχ) where χ is a C∞0 function identically equal to
1 on a neighborhood of K. Then the map φ 7→ u(φχ) extends uniquely to
φ ∈ E(Rn) and defines a continuous linear map there. The distributions in
S ′(Rn) are called temperate distributions.

Distributions can be differentiated any number of times

Definition 2 Let u ∈ D′(Ω). Let α be a multi-index. Then we define ∂αu ∈
D′(Ω) by

(∂αu)(φ) = (−1)|α|u(∂αφ)

For instance if H(x) is the Heaviside function, H(x) = 0 for x < 0 and
H(x) = 1 for x ≥ 0 then H ′ = δ. In general, we can generate thus locally
distributions by taking derivatives of functions. The next proposition says
that this is actually the most general case.

Proposition 2 Let Ω1 ⊂ Ω1 ⊂ Ω, with Ω open, Ω1 open and bounded. Let
u ∈ D′(Ω). Then there exist a function f ∈ L∞(Ω1) and m so that

u|Ω1 = ∂m1 . . . ∂mn f

holds in the sense of distributions in D′(Ω1).

The idea of the proof is the following. First we prove an inequality, namely
that there exists m and a constant C such that

|u(φ)| ≤ C

∫
Ω1

|∂m1 . . . ∂mn φ(x)| dx
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holds for all φ ∈ D(Ω1). Suppose for a moment we have this inequality. Then
we consider the linear subspace X of L1(Ω1) defined by

X = {ψ | ∃φ ∈ D(Ω1), ψ = ∂m1 . . . ∂mn φ}

On this linear subspace we define the linear functional F : X → C by

F (ψ) = (−1)mnu(φ)

Note that the inequality which we have not yet proved guarantees two things,
first that this is well defined, (meaning that it does not depend on the choice
of φ) and that

|F (ψ)| ≤ C‖ψ‖L1(Ω1)

Then by Hahn-Banach, there exists an extension F̃ of F to L1(Ω1) that is
a continuous linear functional on L1(Ω1). But then, by duality, this implies
that there exists a function f ∈ L∞(Ω1) so that

F̃ (ψ) =

∫
Ω1

f(x)ψ(x)dx

holds for all ψ ∈ L1(Ω1). This shows that, for any φ ∈ D(Ω1)

u(φ) = (−1)mn
∫

Ω1

f(x)(∂m1 . . . ∂mn φ)(x)dx

which finishes the proof, modulo the inequality. Now, the proof of the in-
equality: Because K = Ω1 is a compact in Ω and u ∈ D(Ω) there exists an
integer j and a constant C1 such that

|u(φ)| ≤ C1 sup
x∈Rn,|α|≤j

|∂αφ(x)|

Let m = j + 1 and write each derivative as a multiple integral

∂αφ(x) =

∫ x1

−∞
. . .

∫ xn

−∞
∂m1 . . . ∂mn φ(y)dy

where the integral in the first direction is the integral of the integral, m−α1

times and the last integral is the integral of the integral m− αn times. The
inequality follows because the variables belong to the projections of Ω1 on
the coordinate axes and those are included in finite intervals.
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2 Sobolev spaces

We define the norm
‖f‖m,p =

∑
|α|≤m

‖∂αf‖Lp(Ω)

and the space Wm,p(Ω) to be the set

Wm,p(Ω) = {f ∈ Lp(Ω) | ∂αf ∈ Lp(Ω), |α| ≤ m}

The derivatives are taken in the sense of distributions. The space endowed
with the norm ‖ · ‖m,p is a Banach space. Here m ≥ 0 and 1 ≤ p ≤ ∞. Let
us prove the fact that Wm,p(Ω) is complete. Let fj be a Cauchy sequence.
Because Lp(Ω) is complete, it follows that for every α, |α| ≤ m, there exist
functions f (α) ∈ Lp(Ω) so that ∂αfj converge in the norm of Lp(Ω) to f (α).
It remains to show that f (α) = ∂αf (0) in D′(Ω). This is an easy consequence
of the definitions: ∫

f (α)φdx = limj→∞
∫

(∂αfj)φdx
= (−1)|α| limj→∞

∫
fj(∂

αφ)dx = (−1)|α|
∫
f (0)(∂αφ)dx

=
∫

(∂αf (0))φdx

holds for any φ ∈ C∞0 (Ω).

Proposition 3 Let 1 ≤ p < ∞, m ≥ 0. Let Ω ⊂ Rn be open. Then
C∞(Ω) ∩Wm,p(Ω) is dense in Wm,p(Ω).

For the proof, let us take a sequence of open, relatively compact sets Ωj so
that Ωj ⊂ Ωj+1 and ∪Ωj = Ω. Let ψj be a partition of unity subordinated to
the family Ωj. Let u ∈ Wm,p(Ω). Note that ψju ∈ Wm,p(Ω) and u =

∑
j ψju.

Note also that spt(ψju) ⊂ Ωj is compact, so by choosing δj small enough we
have that

gj := (ψju) ∗ φδj ∈ C∞0 (Ωj)

(Here φ is a standard mollifier.) By choosing δj small enough we can make
sure that

‖gj − ψju‖m,p ≤ ε2−j−1.

Now g =
∑

j gj belongs to C∞(Ω). Indeed, the sum is locally finite. (Taking

δj ≤ 2−j, if x ∈ Ω and if spt(ψj)∩B(x, 2r) = ∅ for j ≥ N(r) then, takingM so
large that 2−M ≤ r and taking j ≥ N,M we deduce that spt(gj)∩B(x, r) = ∅.
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The main point is that we do not need to change the choice of δj according
to where x is, just the number of intersecting sets depends on that.) Now

‖g − u‖m,p ≤
∑
j

‖gj − ψju‖m,p ≤ ε

The fact that g ∈ Wm,p(Ω) follows from this inequality. This concludes the
proof. The closure of D(Ω) in Wm,p(Ω) is denoted by Wm,p

0 (Ω). It is cus-
tomary to denote by Hm(Ω) = Wm,2(Ω). Note that Wm,p

0 (Rn) = Wm,p(Rn).
In general however the closure of smooth functions with compact support is
smaller than Wm,p(Ω).

The Sobolev embedding theorems are our next topic. We start with the
Gagliardo-Nirenberg-Sobolev inequality

Theorem 5 Let 1 ≤ p < n. Let

p∗ =
np

n− p

There exists a constant C such that

‖f‖Lp∗(Rn) ≤ C‖∇f‖Lp(Rn)

holds for all f ∈ W 1,p(Rn).

The proof goes like this. First we consider the case p = 1. WLOG we can
take f ∈ C∞0 (Rn). We write

f(x) =

∫ xi

−∞
∂if(x1, . . . , xi−1, t, xi+1, . . . xn)dt

So,

|f(x)| ≤
∫ xi

−∞
|∇f |(x1, . . . , xi−1, t, xi+1, . . . xn)dt

We do this for all i = 1, . . . n:

|f(x)|
n
n−1 ≤

[
Πn
i=1

∫ ∞
−∞
|∇f |(x1, . . . , ti, . . . , xn)dti

] 1
n−1
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We integrate this with respect to x1. One factor in the product does not
depend on x1: ∫∞

−∞ |f(x)|
n
n−1dx1 ≤[∫∞

−∞ |∇f |(t1, x2, . . . , xn)dt1

] 1
n−1 ∫∞

−∞ dx1

(
Πn
i=2

∫∞
−∞ |∇f |dti

) 1
n−1

≤
[∫∞
−∞ |∇f |(t1, x2, . . . , xn)dt1

] 1
n−1
(

Πn
i=2

∫∞
−∞

∫∞
−∞ |∇f |dt1dti

) 1
n−1

In the last piece we used Hölder’s inequality with n − 1 factors. Now we
integrate dx2. We obtain the result by induction:∫

|f |
n
n−1dx1 . . . dxk ≤[∫

|∇f |(t1, . . . , tk, xk+1, . . . xn)dt1 . . . dtk
] k
n−1 ×[

Πn
i=k+1

∫
|∇f |(t1, . . . tk, xk+1, . . . , ti, . . . xn)dt1 . . . dtkdti

] 1
n−1

(1)

For general p, we apply the result for p = 1 to an appropriately chosen
|f |q. [∫

|f |
qn
n−1dx

]n−1
n

≤ C

∫
|f |q−1|∇f |

We use Hölder and note that if qn
n−1

= p∗ then (q− 1)p′ = p∗ where p′ = p
p−1

is the conjugate exponent of p.
The general statement is

Wm,p(Ω) ⊂ Lq(Ω)

for mp < n, p ≤ q ≤ np
n−mp . These inclusions hold for Ω bounded with

smooth boundary. (C1). If mp > n then Wm,p(Ω) ⊂ C [m−n
p

],α(Ω) where
α = m − n

p
− [m − n

p
] > 0. If Ω is bounded with Cr boundary, there exists

an extension operator

E : Wm,p(Ω)→ Wm,p(Rn)

such that (Eu)(x) = u(x) a.e. in Ω,

‖Eu‖Wm,p(Rn) ≤ C‖u‖Wm,p(Ω)

We will give some proofs. For instance in the case Ω = Rn and p = 2 it is
easy to see that u ∈ Hm if and only if

(1 + |ξ|2)
m
2 û(ξ) ∈ L2(Rn)
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where û is the Fourier transform. Then, if k < m − n
2
, it is also easy to see

that
‖(1 + |ξ|2)

k
2 û(ξ)‖L1(Rn) ≤ C‖u‖Wm,2(Rn)

Therefore it follows that ∂αu is bounded and uniformly continuous if |α| <
m− n

2
. The extension theorem is done by looking locally near the boundary.

if the boundary is flat Σ = {x | xn = 0} and if u has compact support in
xn ≥ 0, then the formula

(Eu)(x) =

{
u(x) for xn > 0∑m+1

j=1 λju(x′,−jxn), for xn < 0

defines the extension if λj are chosen to satisfy

m+1∑
j=1

jkλj = (−1)k, k = 0, 1, . . .m.

Because of the Vandermonde determinant

Det(jk)j=1,...,m+1, k=0,...m = Π1≤i<j≤m+1(j − i)

we can find λj. Note that if u ∈ Cm(Rn
+) then Eu ∈ Cm(Rn). This gives the

extension, by checking the norms and using the density. This also shows that
if the boundary of the domain is smooth then we can approximate functions
in Wm,p(Ω) by functions that are in C∞(Rn) restricted to Ω. Indeed, by
a partition of unity, it is enough to consider functions compactly supported
near the boundary of Ω. By a change of variables and a translation we reduce
the problem to a half-space. If u is supported there, we can first approximate
it by a smooth function f , compactly supported in xn ≥ 0. Then we consider
f̃ε(x) = f(x′, xn + ε). This dips f below the boundary. We have that f̃ε is

close to f in Wm,p(Ω) and f̃ε ∈ C∞(Ω). Convolution with a mollifier finishes
the job.

Lemma 1 Let 1 ≤ p < ∞. There exists C > 0 so that for every f ∈
C∞(Rn), x ∈ Rn, r > 0, z ∈ B(x, r) we have∫

B(x,r)

|f(y)− f(z)|pdy ≤ Crn+p−1

∫
B(x,r)

|y − z|1−n|∇f(y)|pdy
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The proof goes like this. First we note that∫
B(x,r)

|f(y)− f(z)|pdy =
∫
B(x,r)∩B(z,2r)

|f(y)− f(z)|pdy
=
∫
B(z,2r)

|f(y)− f(z)|pχB(x,r)(y)dy

=
∫ 2r

0
dρ
∫
|y−z|=ρ |f(y)− f(z)|χB(x,r)(y)dSρ(y)

=
∫ 2r

0
dρ
∫
|y−z|=ρ, y∈B(x,r)

|f(y)− f(z)|pdSρ(y)

Now, because

f(y)− f(z) =

∫ 1

0

(y − z) · ∇f(z + t(y − z))dt

it follows that

|f(y)− f(z)|p ≤ |y − z|p
∫ 1

0

|∇f(z + t(y − z)|pdt

and thus ∫
|y−z|=ρ, y∈B(x,r)

|f(y)− f(z)|pdSρ(y)

≤ ρp
∫ 1

0
dt
∫
|y−z|=ρ, y∈B(x,r)

|∇f(z + t(y − z)|pdSρ(y)

Changing variables to w = z + t(y − z) ∈ B(x, r) we have∫
|y−z|=ρ, y∈B(x,r)

|f(y)− f(z)|pdSρ(y)

≤ ρp
∫ 1

0
t1−ndt

∫
|w−z|=tρ, w∈B(x,r)

|∇f(w)|pdStρ(w)

and then setting tρ = ρ′∫
|y−z|=ρ, y∈B(x,r)

|f(y)− f(z)|pdSρ(y)

≤ ρn+p−2
∫ ρ

0
dρ′
∫
|w−z|=ρ′, w∈B(x,r)

|w − z|1−n|∇f(w)|pdSρ′(w)

= ρn+p−2
∫
B(x,r)∩B(z,ρ)

|w − z|1−n|∇f(w)|pdw

Returning to the begining of the proof,∫
B(x,r)

|f(y)− f(z)|pdy ≤
∫ 2r

0
ρn+p−2dρ

∫
B(x,r)∩B(z,ρ)

|w − z|1−n|∇f(w)|pdw
≤ (2r)n+p−1

n+p−1

∫
B(x,r)

|w − z|1−n|∇f(w)|pdw

Now we can prove the Morrey inequality:
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Theorem 6 Let n < p < ∞. there exists a constant C so that for all
r > 0,x ∈ Rn, y, z ∈ B(x, r) we have

|f(y)− f(z)| ≤ Cr

(
1

ωnrn

∫
B(x,r)

|∇f |p
) 1

p

For the proof, we apply Lemma (1) with p = 1. We compare f(y) and f(z)
to the average

f(x, r) =
1

ωnrn

∫
B(x,r)

f(z)dz

So, ∣∣f(y)− f(x, r)
∣∣ ≤ 1

ωnrn

∫
B(x,r)

|f(y)− f(z)|dz
≤ C

∫
B(x,r)

|∇f(w)||w − y|1−ndw

≤
(∫

B(x,r)
|∇f |p

) 1
p
(∫

B(x,r)
|w − y|

p(1−n)
p−1 dw

) p−1
p

It is clear that(∫
B(x,r)

|w − y|
p(1−n)
p−1 dw

) p−1
p

≤
(∫

B(y,2r)

|w − y|
p(1−n)
p−1 dw

) p−1
p

= Cr1−n
p

and that finishes the proof.

Lemma 2 (Local Poincaré). Let 1 ≤ p < n. There exists a constant so that(
1

ωnrn

∫
B(x,r)

|f(y)− f(x, r)|p∗dy
) 1

p∗

≤ Cr

(
1

ωnrn

∫
B(x,r)

|∇f(y)|pdy
) 1

p

The proof uses first the Lemma 1.

1
ωnrn

∫
B(x,r)

|f − f |pdy ≤
(

1
ωnrn

)2 ∫
B(x,r)

dy
∫
B(x,r)

|f(y)− f(w)|pdw
≤ C

ωnrn
rp−1

∫
B(x,r)

dy
∫
B(x,r)

|∇f(w)|p|w − y|1−ndw
≤ Crp 1

ωnrn

∫
B(x,r)

|∇f |pdw

So, we have that(
1

ωnrn

∫
B(x,r)

|f(y)− f(x, r)|pdy
) 1

p

≤ Cr

(
1

ωnrn

∫
B(x,r)

|∇f(y)|pdy
) 1

p

14



On the other hand, the inequality(
1

ωnrn

∫
B(x,r)

|g|p∗
) 1

p∗

≤ C

[
rp

1

ωnrn

∫
B(x,r)

|∇g|p +
1

ωnrn

∫
B(x,r)

|g|p
] 1
p

valid for all g, follows by rescaling from the same inequality for r = 1.
This follows by the extension theorem and the Gagliardo-Nirenberg-Sobolev
inequality. Indeed, let g ∈ W 1,p(Rn) extend g ∈ W 1,p(B(0, 1)), with ‖g‖1,p ≤
C‖g‖1,p. Then

‖g‖Lp∗(B(0,1)) ≤ ‖g‖Lp∗(Rn) ≤ C‖∇g‖Lp(Rn) ≤ C‖g‖W 1,p(B(0,1))
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