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We study the high concentration asymptotics of steady states of a Smolu-
chowski equation arising in the modeling of nematic liquid crystalline polymers.

1 Introduction

There are many levels of models describing the rheology of non-Newtonian com-
plex fluids containing liquid crystalline polymers. Some descriptions combine
macroscopic partial differential equations with microscopic stochastic differen-
tial equations ([10], [12], [14], [19], [16]).

A simple kinetic model of nematic liquid crystalline polymers - the rigid rod
model - using the Maier-Saupe potential, gives rise to a Smoluchowski equation
for the single particle distribution function on the unit sphere ([4]). In spite
of its simplicity, this equation exhibits nontrivial nonlinear dynamical features,
in contrast with classical Fokker-Planck equations for noninteracting particles
([11]). At high concentrations, the shape of the particles in suspension becomes
important. The complex dynamical properties are then amplified considerably
in the presence of symmetry breaking shear ( [5], [6], [7], [8], [13], [18]).

Our work addresses the transition to order first described by Onsager in
his seminal paper ([15]) in which he developed a thermodynamic formalism for
dilute colloidal solutions. Onsager calculated the free energy using cluster ex-
pansions and approximations of the forces between rod-like particles. He arrived
at an expression for the free energy in terms of a configuration integral involving
the distribution function ψ of particle orientations and an interparticle poten-
tial interaction kernel β. Onsager wrote the Euler-Lagrange equation for the
variation of the configuration integral retaining the first nontrivial term in the
cluster expansion. This nonlinear integral equation (see (2) below) is the same
as the equation (10, 11) solving the time independent Smoluchowski equation
(4). Different expressions used for the function β defining the interaction po-
tential give rise to different models. The steady states of the Smoluchowski
equation are obtained in the form

ψ = Z−1e−V
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where Z is a constant used to enforce the normalization∫
S2
ψ(φ)dσ = 1.

(dσ is the area element and φ are coordinates on the unit sphere S2 in R3).
The potential

V (φ) = −b
∫
S2
β(φ, φ′)ψ(φ′)dσ(φ′) (1)

is given in terms of ψ. The function β embodies the interaction between the
particles in suspension. The constant intensity b > 0 is expressed as the product
b = cυ where c = N/V is the concentration (number of particles per volume)
and υ is an excluded volume depending on the shape of the particles in the
suspension. Onsager’s paper was concerned with the derivation of the function
β and the study of the limit of high concentration. Taking the logarithm of the
representation of the steady solutions of the Smoluchowski equation one arrives
at

log(ψ(φ)) = log(Z−1) + b

∫
S2
β(φ, φ′)ψ(φ′)dσ(φ′). (2)

Equation (2) is precisely the equation studied by Onsager in his seminal paper
[15] (equation (69), page 643). Onsager derived complicated empirical expres-
sions for β but in the end resorted to a simple expression (equation (81) on page
647) which is proportional to − sin γ where γ ∈ [0, π] is the angle between the
unit vectors x(φ), x(φ′). For the Maier-Saupe potential, which will be used in
this work, the function β is

β(φ, φ′) = (x(φ) · x(φ′))2 − 1
3

= (cos γ)2 − 1
3
. (3)

The important property shared by both the Maier-Saupe potential, the explicit
example studied by Onsager and also by his empirically derived expressions is
that −β is an increasing function of sin γ which has a minimum when the di-
rections are parallel and a maximum when they are perpendicular ([15], pp.
644 and 646). The results in Onsager’s paper are based on an explicit ansatz
for ψ (formula (80) on page 647) which “decreases rather too rapidly for large
angles” but which “was, nevertheless, adopted as the best tractable function”
([15], p. 647). Using this ansatz Onsager was able to argue that in the limit
of b → ∞ one has a transition from the isotropic uniform distribution to an
ordered prolate distribution. His approach was variational, and, because he had
to content himself with the ansatz in formula (80) of ([15]), the results were
explicit, but not rigorously mathematically proved. In this paper we study the
Smoluchowski equation on the unit sphere with the Maier-Saupe potential. This
choice of the potential allows us to investigate rigorously the asymptotics of the
steady state solutions for large values of the potential intensity, corresponding
to large concentrations. We reduce the problem of finding steady state solutions
of the Smoluchowski PDE with Maier-Saupe potential to the finite dimensional
problem of finding the eigenvalues of a symmetric, traceless matrix. Linear
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combinations of these eigenvalues are critical points of a function associated to
them. This description is key to the asymptotic analysis. We find multiple
steady solutions which are clustered in three distinct groups. As the concentra-
tion is increased, these steady solutions converge to uniform, prolate and oblate
states, confirming rigorously the transition discovered by Onsager. (On physical
grounds one might suspect that the uniform state becomes unstable and that
the oblate states are saddles, but we do not address this issue in this paper).
Furthermore, the methods of study allow us to devise asymptotic expansions
for the steady states, expansions that are valid a high but finite concentrations.
These expansions are a first step towards a more comprehensive understanding
of the long time dynamics of the Smoluchowski equation, and a preparation for
the study of symmetry breaking perturbations.

2 Smoluchowski Equations

Consider a smooth compact connected Riemannian manifold without boundary
(Mn, g) ([9]) and a real, symmetric smooth function

β : M ×M → R,

β(m, p) = β(p,m). One can associate to β a linear operator

ψ 7→ V

given by

V (m) = −b
∫
M

β(m, p)ψ(p)dσ(p)

where dσ is the Riemannian volume element. The Smoluchowski equation is, in
local coordinates,

∂tψ =
1
√
g
∂i
(
e−V
√
ggij∂j(eV ψ)

)
. (4)

We use the summation convention. The equation is a nonlinear Fokker-Planck
equation (that is: it is a nonlinear equation, and it looks like a linear Fokker-
Planck equation),

∂tψ = ∆gψ + divg(ψ∇V )

where
∆g =

1
√
g
∂i
(√
ggij∂j

)
is the Laplace-Beltrami operator and the last term is

divg(ψ∇V ) =
1
√
g
∂i
(√
ggijψ∂jV

)
.

The Smoluchowski equation preserves mass,∫
M

ψtdσ = 0.
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Smoluchowski equations have an energy functional

E =
∫
M

(logψ)ψdσ +
1
2

∫
M

V ψdσ

that is a non-increasing function of time when evaluated on solutions. Indeed,
taking the derivative of E(ψ) when the time dependence comes from a smooth
positive solution ψ = ψ(p, t) of the Smoluchowski equation, one obtains

d

dt
E = −

∫
M

|∇g(V + logψ)|2ψdσ (5)

In the expression above
|∇gf |2 = gij∂if∂jf.

One can also observe that logψ + V is the formal density of the first variation
δE
δψ .

δE
δψ
χ =

∫
M

(logψ + V )χdσ

This follows if one assumes that the variations χ have vanishing integral (because
the integral of ψ can be held constant). The fact that the map ψ → V is linear
and symmetric is also needed for the above calculations. Therefore one may
write, formally

d

dt
E = −

∫
M

∣∣∣∣∇g δEδψ
∣∣∣∣2 ψdσ.

Many nonlinear equations share this dissipative structure, for instance lubri-
cation approximations of Hele-Shaw problems ([2]), porous medium equations
([17]), and the Keller-Segel chemotaxis equation, ([1]). In fact, the latter is a
Smoluchowski equation with non-smooth β.

It follows from the maximum principle that, if the initial datum f0 is a
nonnegative (positive) function, then the solution of the Smoluchowski equation
remains nonnegative (positive). The assumption of smoothness of β implies
easily that:

Theorem 2.1 Let f0 be a nonnegative, continuous function on M . The solu-
tions of (4) with initial data ψ(·, 0) = f0 exist for all positive time, are smooth
(C∞), nonnegative and normalized∫

M

ψ(m, t)dσ(m) =
∫
M

f0(m)dσ(m) (6)

The proof can be done by successive approximations, and will be omitted. The
smoothness of β is crucial: there are simple proofs of finite time blow up for
Keller-Segel chemotaxis equations ([1]).
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3 Steady States

We consider steady states of (4). From the decay of the energy functional (5)
one deduces that any positive time independent solution of (4) must satisfy

ψ = Z−1e−V (7)

for an appropriate positive constant Z.
From now on we are going to specialize to the problem of interest to us , in

which M = S2 be the unit sphere in R3. We will use without loss of generality
the normalization ∫

S2
ψdσ = 1. (8)

We consider local coordinates (φ = (θ, ϕ)). The Maier-Saupe potential is
given by

V (x, t) = −bxixjSij (9)

where xi are Cartesian coordinates in R3, i, j = 1, 2, 3, and b is a positive
constant. The matrix S is determined by

Sij(t) =
∫
S2
xi(φ)xj(φ)ψ(φ, t)σ(dφ)− 1

3
δij (10)

with σ(dφ) =
√
gdφ the surface area. Thus, V (x, t) is a homogeneous polynomial

of second degree, restricted to the sphere. The coordinates on the two dimen-
sional unit sphere are φ = (θ, ϕ), x1(θ, ϕ) = sin θ cosϕ, x2(θ, ϕ) = sin θ sinϕ,
x3(θ, ϕ) = cos θ. Recall also that

g11 = 1, g22 = (sin θ)−2, gij = 0, i 6= j

with ∂θ = ∂1 and ∂ϕ = ∂2 and that
√
g = sin θ.

In view of (7), (9) it follows that the steady states can be represented by

ψ(φ) = Z−1e−V = Z−1ebS
ijxi(φ)xj(φ). (11)

The matrix S is real, symmetric and traceless. This follows from the definition

S =
∫
S2

(x⊗ x)ψdσ − 1
3
I.

The eigenvalues of S must lie between −1/3 and 2/3. Indeed, for any unit vector
ξ one has from (10) that

Sξ · ξ =
∫
S2

(ξ · x(φ))2
ψ(φ)dσ(φ)− 1

3
(12)

and because 0 ≤ (ξ · x(φ))2 ≤ 1 and the normalization (8) we deduce that the
integral in the expression above has a value between 0 and 1.
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The uniform distribution is the special solution for which the matrix S van-
ishes, Z is the area of S2 and ψ = Z−1:

ψ0 =
1

4π
, S0 = 0.

In order to parametrize all steady solutions we consider ([3]) the real valued
map

(S, b) 7→ Z(S, b) (13)

defined for any real, symmetric, traceless matrix S and any positive b by the
formula

Z(S, b) =
∫
S2
ebS

ijxi(φ)xj(φ)dσ(φ). (14)

We also consider the function

ψS,b(φ) = (Z(S, b))−1eb(S
ijxi(φ)xj(φ)) (15)

associated to any real, traceless, symmetric S and b > 0. Finally, for any real,
traceless symmetric S and b > 0, denote(

Ŝ(S, b)
)ij

=
∫
S2
xi(φ)xj(φ)ψS,b(φ)dσ(φ). (16)

Obviously Ŝ is a function of S and b. Actually, one can check that Z(S, b)
depends only on the conjugacy class OSO−1, O ∈ O(3). More specifically, if
S1 = OSO−1 then the rotation invariance of the measure on the unit sphere
implies that Z(S, b) = Z(S1, b) and therefore ψS,b(φ) = ψS1,b(Tφ) where Tφ
is the angle translation associated to the rotation O, Ox(φ) = x(Tφ). The
rotation invariance implies then that Ŝ(S1, b) = O

(
Ŝ(S, b)

)
O−1. Clearly, by

construction ∫
S2
ψS,b(φ)dσ(φ) = 1. (17)

In view of the considerations above we have:

Theorem 3.1 The positive, normalized steady solutions of (4) are in one-to-
one correspondence with the solutions of the implicit trancendental matrix equa-
tion

Ŝ(S, b) = S +
1
3
I (18)

where Ŝ(S, b) is associated to S and b by the formalism (14), (15), (16) above.

Because of rotation invariance, without loss of generality, we may restrict
our attention to diagonal matrices

Sij = λiδij (19)
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with λ1, λ2, λ3 real eigenvalues that obey

λ1 + λ2 + λ3 = 0 (20)

and belong to the interval [− 1
3 ,

2
3 ]. The search for steady solutions then reduces

to a search for the eigenvalues λ1, λ2, λ3. It turns out that the eigenvalues solve
a coupled system of equations that describe the critical points of a functional.
In order to present the calculations it is convenient to change variables, from
(λ1, λ2) to (v1, v2) defined by:

v1 =
1
2

(λ1 + λ2), v2 =
1
2

(λ1 − λ2). (21)

We will also use the vector notation v = (v1, v2), and for convenience some
calculations will be performed in the scaled variables u = (u1, u2) = bv

u1 =
b

2
(λ1 + λ2), u2 =

b

2
(λ1 − λ2). (22)

We consider the convex compact

K = [−1, 1]× [0, 2π] = {(p, t); −1 ≤ p ≤ 1, 0 ≤ t ≤ 2π} (23)

and we consider the pair of functions

y1(p) = 1− 3p2 (24)

and
y2(p, t) = (1− p2) cos t (25)

defined for (p, t) ∈ K. We write

y = y(p, t) = (y1(p), y2(p, t)).

These functions and this compact are used to describe the transcendental equa-
tions obeyed by the eigenvalues of the matrices S corresponding to solutions of
(18), steady states of (4) with Maier-Saupe potential.

Theorem 3.2 Consider, for any u = (u1, u2) the function

Z2(u) =
∫
K

eu·y(p,t)dpdt (26)

and associate to it the function

F(u) = log(Z2(u))− 1
b

(
3u2

1 + u2
2

)
. (27)

Then the solutions of (18) coincide (via (19), (20), (22)) with the critical points
u = (u1, u2) ∈ [− b

3 ,
2b
3 ]× [0, b2 ] of F .
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The critical point equations

∇uF = 0 (28)

can be written as
[y1](u) =

6u1

b
, [y2](u) =

2u2

b
. (29)

where
[F ] (u) = (Z2(u))−1

∫
K

F (p, t)eu·y(p,t)dpdt (30)

(i). If 0 < b < 1/2 the function F is strictly concave and has a unique
critical point at u = 0. The corresponding unique steady state of (4) is the
uniform state ψ0.

(ii). If b ≥ 8 then u = 0 is an isolated critical point. Consequently, no
bifurcations from the uniform state ψ0 can occur in (4) for b ≥ 8.

(iii). If 0 ≤ b < 4 then on any line u1 = const there is at most one critical
point. If b ≥ 4 then the number of critical points on each line u1 = const does
not exceed 2

[
b
4

]
.

Proof. A simple computation using the definition (16) for diagonal matrices
(19) shows that

Ŝij(S, b) = 0 for i 6= j.

The equations (18) reduce then to∫
S2
x2
i (φ)ψS,b(φ)dσ(φ) = λi +

1
3

for i = 1, 2, 3. Because of the normalization (17), there are only two independent
equations. The equations are

λ1 +
1
3

= Z−1

∫ 2π

0

∫ π

0

cos2 ϕ sin3 θebλ·X(θ,ϕ)dθdϕ (31)

and

λ2 +
1
3

= Z−1

∫ 2π

0

∫ π

0

sin2 ϕ sin3 θebλ·X(θ,ϕ)dθdϕ (32)

together with

Z(bλ) =
∫ 2π

0

∫ π

0

ebλ·X(θ,ϕ) sin θdθdϕ (33)

where
λ = (λ1, λ2), X(θ, ϕ) = (X1(θ, ϕ), X2(θ, ϕ)) ,

λ ·X(θ, ϕ) = λ1X1(θ, ϕ) + λ2X2(θ, ϕ)

and
X1(θ, ϕ) = cos2 ϕ sin2 θ − cos2 θ (34)
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and
X2(θ, ϕ) = sin2 ϕ sin2 θ − cos2 θ. (35)

Notice that
X1 +X2 = 1− 3 cos2 θ

can be used to express

cos2 ϕ sin2 θ = X1 +
1
3

(1−X1 −X2)

and
sin2 ϕ sin2 θ = X2 +

1
3

(1−X1 −X2) .

We use the notation

[F ] (bλ) = Z−1

∫ 2π

0

∫ π

0

F (X(θ, ϕ))ebλ·X(θ,ϕ) sin θdθdϕ (36)

Then, the system (31, 32) can be written as

λ1 =
2
3

[X1]− 1
3

[X2] (37)

and
λ2 =

2
3

[X2]− 1
3

[X1]. (38)

Inverting this linear system, we have

[X1] = 2λ1 + λ2 (39)

and
[X2] = λ1 + 2λ2 (40)

Then we consider

Z2(u) =
∫ 2π

0

∫ π

0

eu·Y (θ,ϕ) sin θdθdϕ (41)

with Y (θ, ϕ) = (Y1(θ, ϕ), Y2(θ, ϕ)) defined by

Y1(θ, ϕ) = sin2 θ − 2 cos2 θ (42)

and
Y2(θ, ϕ) = sin2 θ cos(2ϕ) (43)

and with u = (u1, u2) ∈ [− b
3 ,

2b
3 ] × [0, b2 ]. The variables Y are related to X of

(34, 35) via Y1 = X1 +X2, Y2 = X1−X2 The system (39), (40) which represents
the steady solutions of (4), can be seen to be in one-to-one correspondence with
the critical points of the function F(u) defined in (27) via (41, 42, 43). Indeed,
the critical points satisfy the implicit equations

[Y1] =
6
b
u1 (44)
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and
[Y2] =

2
b
u2 (45)

where

[F ](u) = (Z2(u))−1

∫ 2π

0

∫ π

0

F (θ, ϕ)eu·Y (θ,ϕ) sin θdθdϕ. (46)

The equations (44), (45) are equivalent to (39), (40). Changing variables p =
cos θ and t = 2φ, he functions Y1 and Y2 become, in variables p, t, the functions
y1, y2 of (24), (25), the expected value (46) is the same as (30), and the equations
(44) and (45) are the same as (29). When the parameters (u1, u2) are chosen to
satisfy the implicit equations (29), then

[F ](u) =
∫
S2
F (φ)ψS,b(φ)dσ(φ) (47)

does represent the expected value of the function F at the corresponding steady
state ψS,b.

In order to prove (i) we compute the Hessian of F . H(u) =
(

∂2F
∂ui∂uj

)
is

given by

H(u) =
(

[ξ2]− 6
b [ξη]

[ξη] [η2]− 2
b

)
(48)

where
ξ = Y1 − [Y1], (49)

and
η = Y2 − [Y2]. (50)

Using the same notation, but changing variables to p, t, the Hessian of F(u)
defined in (27), H(u) =

(
∂2F

∂ui∂uj

)
is given by

H(u) =
(

[ξ2
1 ]− 6

b [ξ1ξ2]
[ξ1ξ2] [ξ2

2 ]− 2
b

)
(51)

where
ξ1 = y1 − [y1], (52)

and
ξ2 = y2 − [y2]. (53)

The concavity for small b follows from

H(u) :: a⊗ a = − 2
b (3a2

1 + a2
2)− (a · [y])2

+a2
1[y2

1 ] + a2
2[y2

2 ] + 2a1a2[y1y2]
(54)

Using the fact that the functions y1, y2 have ranges included in the interval
[−2, 1], and respectively, [−1, 1] and neglecting the non-positive (but unknown)
contribution −(a · [y])2, we arrive at an explicit sufficient condition b < 1

2 for
the concavity. This concludes the proof of (i).
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The proof of (ii) also uses the Hessian, but it requires a more careful analysis.
Let us write

F(u) = F2(u)− 1
b

(3u2
1 + u2

2), with F2(u) = log(Z2(u)) (55)

and

H2(u) =
∂2F2(u)
∂ui∂uj

. (56)

Then we have, for arbitrary a = (a1, a2)

H2(u) :: a⊗ a =
[
(a · ξ)2

]
. (57)

This shows that F2 is convex. In order to find explicit bounds we start by
writing

(a · ξ)2 = (a · y)2 + (a · [y])2 − 2(a · y)(a · [y]). (58)

We take a probability measure dπ on K = [−1, 1]× [0, 2π] and denote

〈F 〉 =
∫ 1

−1

∫ 2π

0

F (p, t)dπ. (59)

Integrating (58) with respect to dπ we obtain

〈(a · ξ)2〉 = (a · ([y]− 〈y〉))2 + 〈(a · (y − 〈y〉))2〉. (60)

If we use normalized Lebesgue measure dπ = 1
4πdtdp we note that

< yi >=
1

4π

∫ 1

−1

(∫ 2π

0

yi(p, t)dt
)
dp = 0

for i = 1, 2. Because of this and (60) we deduce

1
4π

∫ 1

−1

(∫ 2π

0

(a · ξ)2dt

)
dp =

1
4π

∫ 1

−1

(∫ 2π

0

(a · y)2dt

)
dp+ (a · [y])2

=
4
5
a2

1 +
1
3
a2

2 + (a · [y])2. (61)

Now it is easy to see, using the facts −2 ≤ y1 ≤ 1 and −1 ≤ y2 ≤ 1 that

e−4|u1|−2|u2| 1
4π

∫ 1

−1

(∫ 2π

0

F (p, t)dt
)
dp ≤ [F ](u) (62)

holds for any nonnegative function F , and in particular for F = (a · ξ)2. We
deduce the strict convexity inequality

H2(u) :: a⊗ a ≥ e−(4|u1|+2|u2|)
(

4
5
a2

1 +
1
3
a2

2

)
. (63)
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Consequently
H(u) :: a⊗ a ≥ c|a|2 (64)

with c > 0 if
b ≥ 8e4|u1|+2|u2|. (65)

In particular, for b ≥ 8 the state u = 0 is an isolated critical point. This
concludes the proof of (ii).

The proof of (iii) requires computing more explicitly Z2(u).

Z2(u) =
∫ 1

−1

eu1(1−3p2)

(∫ 2π

0

eu2(1−p2) cos tdt

)
dp. (66)

The object in the inner paranthesis (encountered in the two dimensional study
([3]) is

Z1(r) =
∫ 2π

0

er cos tdt. (67)

This has an explicit expression

Z1(r) = 2π
∞∑
k=0

r2k2−2k 1
(k!)2

.

Substituting in the expression above we deduce

Z2(u) = 2π
∞∑
k=0

C2k(u1)u2k
2 2−2k 1

(k!)2
(68)

where

C2k(u1) =
∫ 1

−1

(1− p2)2keu1(1−3p2)dp. (69)

Now we observe that (45) is equivalent to

∂Z2

∂u2
− 2u2

b
Z2 = 0.

The expression for this is

∂Z2
∂u2
− 2u2

b Z2 =

− 8π
b

∑∞
k=1 k

[
kC2(k−1)(u1)− b

4C2k(u1)
] (

u2
2

)2k−1 1
(k!)2 .

(70)

(This situation is very similar to the two dimensional situation, except that in
that case the coefficients C2k(u1) were identically equal to 1). We observe that

0 ≤ C2k(u1) ≤ C2(k−1)(u1)

holds. If b ≥ 4 we write

∂Z2

∂u2
− 2u2

b
Z2 = P (u)−Q(u) (71)
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where

P (u) = −8π
b

[ b4 ]∑
k=1

k

[
kC2(k−1)(u1)− b

4
C2k(u1)

](u2

2

)2k−1 1
(k!)2

(72)

and

Q(u) =
8π
b

∞∑
k=1+[ b4 ]

k

[
kC2(k−1)(u1)− b

4
C2k(u1)

](u2

2

)2k−1 1
(k!)2

. (73)

We observe therefore that(
∂

∂u2

)m(
∂Z2

∂u2
− 2u2

b
Z2

)
< 0 (74)

holds for m ≥ 2
[
b
4

]
, which implies by Rolle’s theorem that there are at most

2
[
b
4

]
distinct critical points on each line u1 = const. This concludes the proof

of (iii) and of the theorem.
We will study now the asymptotics at large b, for fixed λ1, λ2, λ3. We recall

that
u1 = bv1, u2 = bv2. (75)

We study thus the asymptotics as b→∞, for fixed v = (v1, v2) ∈ [− 1
3 ,

2
3 ]×[0, 1

2 ].
The system (29) determining the steady solutions of (4) with eigenvalues (21)
is

[y1](bv) = 6v1, [y2](bv) = 2v2 (76)

Theorem 3.3 The steady solutions of (4), given by (11) can be parametrized
by the intensity b > 0 and by the numbers v1 ∈ [− 1

3 ,
2
3 ],and v2 ∈ [0, 1] associated

to the eigenvalues λ1, λ2, λ3 of the real, traceless, symmetric matrix S by the
formulae

v1 =
1
2

(λ1 + λ2) , v2 =
1
2

(λ1 − λ2) .

If v = (v1, v2) is fixed and b is sufficiently large then the following cases are
present. If v belongs to a compact subset of the region R1 = {v = (v1, v2); − 1

3 ≤
v1 ≤ 2

3 , 0 < v2 ≤ 1
2 , 3v1 + v2 > 0} then, for large enough b, all steady solutions

in this region approach v = (1
6 ,

1
2 ) as b→∞ and consequently their eigenvalues

converge to

λ1 =
2
3
, λ2 = −1

3
, λ3 = −1

3
.

The expected value of a function f(x),

[f ] =
∫
S2
f(x(φ))ψS,b(φ)dσ(φ)

in the asymptotic steady state in this region is given by (77):

lim
b→∞

[f ] = f(e1).
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where e1 = (1, 0, 0) ∈ S2. If (v1, v2) belongs to a compact subset of the region
R2∪R3∪R4 where R2 = {v = (v1, v2); − 1

3 ≤ v1 ≤ 2
3 , 0 < v2 ≤ 1

2 , 3v1+v2 < 0},
R3 = {v = (v1, v2); − 1

3 ≤ v1 ≤ 2
3 , 0 < v2 ≤ 1

2 , 3v1 + v2 = 0} and R4 = {v =
(v1, 0); − 1

3 ≤ v1 < 0}, then, for sufficiently large b, all steady solutions in
this region approach v = (− 1

3 , 0) as b→∞, and consequently their eigenvalues
converge to

λ1 = −1
3
, λ2 = −1

3
, λ3 =

2
3
.

The expected value of a function f in the asymptotic steady state in this region
is given by (85):

lim
b→∞

[f ] = f(e3)

where e3 = (0, 0, 1) ∈ S2.
If v belongs to a compact subset of R5 = {v = (v1, 0); 0 < v1 ≤ 2

3} then,
for sufficiently large b, all steady solutions in this region approach v = ( 1

6 , 0) as
b→∞, and consequently their eigenvalues converge to

λ1 =
1
6
, λ2 =

1
6
, λ3 = −1

3
.

The expected value of a function f in the asymptotic steady state in this region
is given by (83)

lim
b→∞

[f ] =
1

2π

∫ 2π

0

f(cosϕ, sinϕ, 0)dϕ

Proof. In order to study the asymptotics for large b and fixed v we have to
divide the v plane in five different regions.

Case I. If 3v1 + v2 > 0, v2 > 0 then, for any F ∈ C1, 2π periodic function
of t, we have

lim
b→∞

[F ](bv) = F (0, 0). (77)

Indeed, if 3v1 + v2 > 0, v2 > 0 we multiply by e−b(v1+v2) both the numerator
and the denominator of the ratio

[F ](bv) =

∫ 1

−1

∫ 2π

0
F (p, t)ebv·ydtdp∫ 1

−1

∫ 2π

0
ebv·ydtdp

.

Thus,

[F ](bv) =

∫ 1

−1

∫ 2π

0
F (p, t)ebv·(y−(1,1))dtdp∫ 1

−1

∫ 2π

0
ebv·(y−(1,1))dtdp

.

But
v · (y − (1, 1)) = −3p2v1 − v2(1− (1− p2) cos t) =

−((3v1 + v2)p2 + v2(1− p2)(1− cos t))

14



which is strictly negative, except when p = 0 and cos t = 1. For ε > 0, the
contributions coming from regions |p| ≥ ε or |1− cos t| ≥ ε are uniformly expo-
nentially small. Choosing δ so that t ∈ [δ, 2π− δ] implies |1− cos t| ≥ ε we have
thus

[F ](bv) =

∫ ε
−ε
∫ δ
−δ F (p, t)e−b((3v1+v2)p2+v2(1−p2)(1−cos t))dtdp+O(e−cεb)∫ ε
−ε
∫ δ
−δ e

−b((3v1+v2)p2+v2(1−p2)(1−cos t))dtdp+O(e−cεb)
.

Now we change variables in both integrals, x =
√
b(3v1 + v2)p, s =

√
bv2t and

obtain∫ ε

−ε

∫ δ

−δ
F (p, t)e−b((3v1+v2)p2+v2(1−p2)(1−cos t))dtdp =

A

b
F (0, 0) +O(

1
b

3
2

)

with A the same constant in both the numerator and the denominator ( A does
depend on v2 and 3v1 + v2). We pass to the limit b→∞ and obtain (77). This
calculation implies the asymptotic solution of (76):

v1 =
1
6
, v2 =

1
2

(78)

if 3v1 + v2 > 0, v2 > 0. The asymptotic solution belongs to the region.
Case II. If v2 > 0 but 3v1 + v2 < 0 then we multiply both numerator and

denominator by e2bv1 . We have to study thus the limit of the ratio of the integral∫ 1

−1

(∫ 2π

0

F (p, t)eb(1−p
2)(3v1+2v2 cos t)dt

)
dp

and the same integral with F replaced by 1. Now fix ε > 0. The contributions∫ 1−ε

−1+ε

(∫ 2π

0

F (p, t)eb(1−p
2)(3v1+2v2 cos t)dt

)
dp

in both numerator and denominator are exponentially small, 0(e−cεb) with c
uniform for (v1, v2) ∈ [− 1

3 ,
2
3 ] × [0, 1

2 ]. In the region where 1 − p ∈ [0, ε] we
change variables x = Ab(1−p) with A > 0, A = −2(3v1 +2v2). The expressions
there become

1
Ab

∫ 2π

0

∫ Abε

0

F (1− x

Ab
, t)e−(1+

4v2(1−cos t)
A )x(1− x

2Ab )dxdt.

Using a similar change of variables for p near −1 we obtain

[F ] (bv1, bv2) =

∫ 2π

0
(F (1,t)+F (−1,t))dt

1+
4v2
A (1−cos t)

+O( 1
b )∫ 2π

0
2dt

1+
4v2
A (1−cos t)

+O( 1
b )

and therefore, if 3v1 + v2 < 0 and v2 > 0 we get the nontrivial limit

lim
b→∞

[F ](bv1, bv2) =

∫ 2π

0
(F (1,t)+F (−1,t))dt

1+
4v2
A (1−cos t)∫ 2π

0
2dt

1+
4v2
A (1−cos t)

(79)
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with A = 2 |3v1 + 2v2|. Substituting F = y1 = 1− 3p2 we obtain −2; substitut-
ing F = y2 = (1− p2) cos t we obtain zero. So, the asymptotic solution of (76)
is

v1 = −1
3
, v2 = 0 (80)

if 3v1 + v2 < 0 and v2 > 0. In this case the asymptotic solution does not belong
to the region, but to its boundary.

Case III. If 3v1 +v2 = 0 but v2 > 0 then, after multiplying both numerator
and denominator by e2bv1 we arrive at the ratio of integrals of the form∫ 1

−1

∫ 2π

0

F (p, t)e−b(1−p
2)(1−cos t)dtdp.

The integrals are dominated by the behavior at (p, cos t) = (±1, 1), and we
deduce the asymptotics

lim
b→∞

[F ](bv) =
1
2

(F (−1, 0) + F (1, 0)). (81)

Substituting F = y1 and F = y2 we deduce that

v1 = −1
3
, v2 = 0 (82)

is the asymptotic solution of (76) if the parameters v obey 3v1 + v2 = 0, v2 > 0.
We note that the asymptotic solution does not belong to the region, and not
even to its boundary.

Case IV. If v2 = 0 and v1 > 0, then the exponent is bv1(1 − 3p2), which,
after amplification by e−bv1 leads to ratios of integrals∫ 1

−1

∫ 2π

0

F (p, t)e−3bv1p
2
dpdt.

The limit in this case is

lim
b→∞

[F ](bv) =
1

2π

∫ 2π

0

F (0, t)dt (83)

and substituting we obtain the asymptotic solution of (76)

v1 =
1
6
, v2 = 0 (84)

in the case v1 > 0, v2 = 0. The asymptotic solution belongs to the region.
Case V. Finally, if v2 = 0 and v1 < 0 we amplify by e2bv1 and deduce

lim
b→∞

[F ](bv) =
1

4π

∫ 2π

0

(F (1, t) + F (−1, t)) dt. (85)

Substituting F = y1 and F = y2 we obtain the asymptotic solution of (76)

v1 = −1
3
, v2 = 0 (86)
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if v1 < 0 and v2 = 0. The asymptotic solution belongs to the region. This
concludes the proof of the theorem.

Remarks. In each of the regions R1, R2, R3, R4, R5 above, the limit

lim
b→∞

[F ](bv) =
∫
F (p, t)dµ

exists and is given by a probability measure dµ. It is easily seen that these
limits are attained uniformly on compacts L, (v ∈ L) in each region. The
probability measures dµ depend on the region but are the same for all v in the
region, are concentrated on the boundary of the parameter setK and

∫
F (p, t)dµ

are given by the right hand sides of (77, 79, 81, 83, 85). Correspondingly, in
each compact 1

6 [y1](bv) and 1
2 [y2](bv) converge to the stated constant values

when b → ∞. For instance, if v ∈ L a compact subset of R1 then 1
6 [y1](bv)

converges to 1
6 and 1

2 [y2](bv) converges to 1
2 when b → ∞. If the compact L

does not contain the point ( 1
6 ,

1
2 ) then there are no solutions of the simultaneous

equations (76) for b sufficiently large (how large depends on L). Note that there
are only three qualitatively different behaviors: all eigenvalues equal to zero,
two eigenvalues equal to − 1

3 with the third eigenvalue equaling 2
3 in this case,

and two eigenvalues equal to 1
6 with the third eigenvalue equaling − 1

3 . For the
case of eigenvalues (− 1

3 ,−
1
3 ,

2
3 ) the corresponding asymptotic steady state is a

delta function concentrated at a fixed direction on the unit sphere, the prolate
nematic state. For the case of eigenvalues ( 1

6 ,
1
6 ,−

1
3 ), the asymptotic steady

state is uniform measure concentrated on the equator, the oblate nematic state.
The fact that the uniform state is the unique steady state for low concentrations
can be strengthened to a dynamical stability statement. At large concentrations
this uniform state is isolated, and other states are present: this suggests that
the uniform state is nonlinearly dynamically unstable. We have not proved this
fact in this paper.

One can get a more precise description by expanding the asymptotic analysis.
For instance, if v ∈ L ⊂ R1 with L compact, then one can verify that

1
6

[y1] =
1
6
− 3C1

6(3v1 + v2)b
+O2,1(v, b) (87)

where the constant C1 is independent of v, b and is given by C1 =

∫∞
−∞

x2e−x
2
dx∫∞

−∞
e−x2 .

The error term O2,1(v, b) is small: there exists an absolute constant Γ2 > 0 so
that

|O2,1(v, b)| ≤ Γ2b
−2 (88)

holds for all v ∈ L. For [y2] we obtain

1
2

[y2] =
1
2
− C1

2(3v1 + v2)b
− C2

2v2b
+O2,2(v, b) (89)
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with the same constant C1 and with C2 independent of v and b. The remainder
obeys:

|O2,2(v, b)| ≤ Γ2b
−2 (90)

for all v ∈ L. These relations are obtained using the Taylor expansions of the
functions y1 = 1− 3p2 and y2 = 1− p2 − (1− cos t) + p2(1− cos t) near p = 0,
t = 0. Consequently, the asymptotic equations in R1 are

v1 =
1
6
− 3C1

6(3v1 + v2)b

and
v2 =

1
2
− C1

2(3v1 + v2)b
− C2

2v2b
.

One can expand to higher order in these equations, resulting in higher order
algebraic equations and smaller remainders, uniformly on compacts in R1. The
same can be done in any of the other regions, with similar kinds of asymptotic
developments.

4 Conclusions

We have obtained asymptotic developments for the steady solutions ψ of the
Smoluchowski equation (4). The steady solutions are parametrized by the in-
tensity b of the interaction potential and by two real parameters describing the
eigenvalues of a real, traceless symmetric 3 × 3 matrix S (14, 15). When the
intensity b is small enough then the uniform solution ψ = 1

4π , (S = 0) is the
unique steady solution. At high intensities several steady solutions coexist. For
very large b the eigenvalues of the matrices S are close to one of the three
possibilities (0, 0, 0) (corresponding to the uniform state), (− 1

3 ,−
1
3 ,

2
3 ) (corre-

sponding to a state ψ concentrated on a single direction e ∈ S2) and ( 1
6 ,

1
6 ,−

1
3 )

(corresponding to a state concentrated uniformly on a geodesic (big circle)).
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