Decay for Schrödinger and related equations.

Intoduction to PDE

This is from my paper "Decay estimates for Schrödinger equations", Com. Math. Phys 127 (1990), 101-108.

The system we study (Schrödinger-Davey-Stewartson-Zakharov) is

$$
\begin{gather*}
i \partial_{t} u+L_{1} u=a|u|^{2} u+v u \\
L_{2} v=L_{3}\left(|u|^{2}\right) \tag{1}
\end{gather*}
$$

where $a \in \mathbb{R}$, and L_{i} are second order constant coefficient diferential operators

$$
\begin{equation*}
L_{i}=g_{i}^{j k} \frac{\partial^{2}}{\partial x^{j} \partial x^{k}}, \quad i=1,2,3 \tag{2}
\end{equation*}
$$

where the constant real matrices $g_{i}^{j k}$ are symmetric and invertible. We assume L_{2} to be elliptic, and we write then the system as a single equation

$$
\begin{equation*}
i \partial_{t} u+P(D) u=L\left(|u|^{2}\right) u \tag{3}
\end{equation*}
$$

where $P(D)=L_{1}$ and we drop the index:

$$
\begin{equation*}
P(D)=g^{j k} \frac{\partial^{2}}{\partial x^{j} \partial x^{l}} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
L=a \mathbb{I}+L_{2}^{-1} L_{3} \tag{5}
\end{equation*}
$$

The properties we will use for the linear operator L are: $L: L^{p}\left(\mathbb{R}^{n}\right) \rightarrow L^{p}\left(\mathbb{R}^{n}\right)$ is bounded for any $1<p<\infty, L$ commutes with translations (and hence with differentiation, L is real (i.e. it commutes with complex conjugation).

1 Sobolev lemma and the linear equation

We denote by $g_{j k}$ the inverse matrix $\left(g_{j k}\right)=\left(g^{j k}\right)^{-1}$. We do not assume that $P(D)$ is elliptic. When $P(D)=\Delta$ then

$$
i u_{t}+P(D) u=0
$$

is the free Schrödinger equation. We introduce the differential operators

$$
\begin{equation*}
Q_{j}((x, t), D)=Q_{j}=2 t \partial_{j}-i g_{j k} x^{k} \tag{6}
\end{equation*}
$$

They commute with the free equation:

$$
\begin{equation*}
\left[i \partial_{t}+P(D), Q_{j}\right]=0 \tag{7}
\end{equation*}
$$

This can be checked by hand. We can also easily check using the Fourier transform that

$$
\begin{equation*}
Q_{j}=e^{i t P(D)}\left(-i g_{j k} x^{k}\right) e^{-i t P(D)} \tag{8}
\end{equation*}
$$

Indeed,

$$
\begin{gathered}
\mathcal{F}\left(e^{i t P(D)}\left(-i g_{j k} x^{k}\right) e^{-i t P(D)} u\right)(\xi)= \\
e^{-i t g^{a b} \xi_{a} \xi_{b}}\left(g_{j k} \partial_{\xi_{k}}\left(e^{i t g^{c d} \xi_{c} \xi_{d}} \mathcal{F}(u)(\xi)\right)\right. \\
=g_{j k} \partial_{\xi_{k}} \mathcal{F}(u)(\xi)+g_{j k}\left(i t g^{c d}\left(\xi_{c} \delta_{d k}+\xi_{d} \delta_{c k}\right) \mathcal{F}(u)(\xi)\right. \\
=\mathcal{F}\left[\left(-i g_{j k} x^{k}+2 t \partial_{j}\right) u\right](\xi)
\end{gathered}
$$

where we used

$$
\mathcal{F}(u)(\xi)=\int_{\mathbb{R}^{n}} e^{-i x \cdot \xi} u(x) d x
$$

and $\delta_{j k}$ the Kronecker delta.
We have as well that

$$
\begin{equation*}
Q_{j}=2 t e^{i \psi} \partial_{j} e^{-i \psi} \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi(x, t)=\frac{g_{j k} x^{j} x^{k}}{4 t} \tag{10}
\end{equation*}
$$

and where the right hand side of (9) is considered as a product of operators (multiplication by $e^{-i \psi}$ followed by differentiation, followed by multiplication by $\left.2 t e^{i \psi}\right)$. The operators Q_{j} commute. They generate a Lie algebra denoted \mathcal{A}. The Lie algebra generated by the collection Q_{j}, ∂_{j} is denoted \mathcal{B}. For any

Lie algebra \mathcal{A} of differential operators with generators $A_{1}, \ldots A_{N}$ we use the notation

$$
\begin{equation*}
|u(x, t)|_{\mathcal{A}, m}=\sum_{j=0}^{m}\left(\sum_{|\alpha|=j}\left(A^{\alpha} u(x, t)\right)^{2}\right)^{\frac{1}{2}} \tag{11}
\end{equation*}
$$

where

$$
A^{\alpha}=A_{1}^{\alpha_{1}} \cdots A_{N}^{\alpha_{N}}, \quad \text { and } \quad|\alpha|=\alpha_{1}+\ldots \alpha_{N}
$$

We define generalized $W^{m, p}$ norms via

$$
\begin{equation*}
\|u(\cdot, t)\|_{\mathcal{A}, m, p}=\left(\int_{\mathbb{R}^{n}}|u(x, t)|_{\mathcal{A}, m}^{p} d x\right)^{\frac{1}{p}} \tag{12}
\end{equation*}
$$

Lemma 1. There exists a constant $C=C(n)$ such that

$$
\begin{equation*}
|u(x, t)| \leq C|t|^{-\frac{n}{2}}\|u(\cdot, t)\|_{\mathcal{A},\left[\frac{n}{2}\right]+1,2} \tag{13}
\end{equation*}
$$

holds for all (x, t) and all u.
Proof. Let us consider the function

$$
v(x, t)=e^{-i \psi} u(x, t)
$$

and apply the local Sobolev Lemma to it

$$
|v(x, t)| \leq C \sum_{j=0}^{1+\left[\frac{n}{2}\right]} R^{j-\frac{n}{2}}\left(\sum_{|\alpha|=j} \int_{|x-y| \leq R}\left|\partial_{y}^{\alpha} v(y, t)\right|^{2} d y\right)^{\frac{1}{2}}
$$

This holds for any R, and the constant C is independent of R. Now we observe that

$$
|v(x, t)|=|u(x, t)|
$$

and, in view of (9), by induction, it holds that

$$
\left|\partial_{y}^{\alpha} v(y, t)\right|=(2|t|)^{-|\alpha|}\left|Q^{\alpha} u(y, t)\right| .
$$

The inequality (13) follows by choosing $R=2 t$.
We remove the singularity at $t=0$ by augmenting to \mathcal{B} :

Lemma 2. There exists a constant $C=C(n)$ such that

$$
\begin{equation*}
|u(x, t)| \leq C(1+|t|)^{-\frac{n}{2}}\|u(\cdot, t)\|_{\mathcal{B},\left[\frac{n}{2}\right]+1,2} \tag{14}
\end{equation*}
$$

holds for all (x, t) and all u.
This is trivial because for $|t| \leq 1$ we use the usual Sobolev inequality. A direct application is:

Theorem 1. Let $u(x, t)$ be a solution of

$$
\begin{equation*}
i u_{t}+P(D) u=0 \tag{15}
\end{equation*}
$$

with initial datum $u(x, 0)=u_{0}(x)$. Then

$$
\begin{equation*}
|u(x, t)| \leq C|t|^{-\frac{n}{2}}\left\|u_{0}\right\|_{\mathcal{X}, 1+\left[\frac{n}{2}\right], 2} \tag{16}
\end{equation*}
$$

where \mathcal{X} is the Lie algebra generated by the operators of multiplication by x^{j}, $j=1, \ldots n$. More generally,

$$
\begin{equation*}
|u(x, t)|_{\mathcal{A}, k} \leq C|t|^{-\frac{n}{2}}\left\|u_{0}\right\|_{\mathcal{X}, k+1+\left[\frac{n}{2}\right], 2} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
|u(x, t)|_{\mathcal{B}, k} \leq C(1+|t|)^{-\frac{n}{2}}\left\|u_{0}\right\|_{\mathcal{B}_{0}, k+1+\left[\frac{n}{2}\right], 2} \tag{18}
\end{equation*}
$$

where \mathcal{B}_{0} is the Lie algebra generated by the operators of multiplication by $1, x^{j}$ and by $\partial_{j}, j=1, \ldots, n$.

2 The nonlinear equation

Lemma 3. Let $0<j<m$. There exists a constant C depending on j, m and n such that

$$
\begin{equation*}
\sum_{|\beta|=j}\left\|Q^{\beta} u(\cdot, t)\right\|_{L^{\frac{2 m}{j}}\left(\mathbb{R}^{n}\right)} \leq C\|u(\cdot, t)\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}^{1-\frac{j}{m}}\left(\sum_{|\alpha|=m}\left\|Q^{\alpha} u(\cdot, t)\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}\right)^{\frac{j}{m}} \tag{19}
\end{equation*}
$$

The inequality (19) in which the operators Q_{j} are replaced by ∂_{j} is a well known Gagliardo-Nirenberg inequality. Applying it to $v=e^{-i \psi} u$ and using (9) and the scale invariance of the inequality, we immediately obtain (19). Now we state a Leibniz rule:

Lemma 4. For any multi-index α it holds that

$$
\begin{equation*}
Q^{\alpha}\left(L\left(|u|^{2} v\right)=\sum_{\beta+\gamma+\delta=\alpha} \frac{\alpha!}{\beta!\gamma!\delta!} L\left(\left(Q^{\beta} u\right) \overline{Q^{\gamma} u}\right) Q^{\delta} v\right. \tag{20}
\end{equation*}
$$

Proof. We used the noatation $\alpha!=\alpha_{1}!\cdots \alpha_{n}$!. The proof is done by induction on $|\alpha|$ and it follows from the observations that

$$
Q_{j}(a b)=\left(2 t \partial_{j} a\right) b+a Q_{j}(b)
$$

and that

$$
2 t \partial_{j}(a \bar{b})=\left(Q_{j}(a)\right) \bar{b}+a \overline{\left(Q_{j}(b)\right)}
$$

The first equality is used to write

$$
Q_{j}\left(L\left(\left(Q^{\beta} u\right) \overline{Q^{\gamma} u}\right) Q^{\delta} v\right)=L\left(2 t \partial_{j}\left(\left(Q^{\beta} u\right) \overline{Q^{\gamma} u}\right)\right) Q^{\delta} v+L\left(\left(Q^{\beta} u\right) \overline{Q^{\gamma} u}\right) Q_{j} Q^{\delta} v
$$

and the second one to finish

$$
\begin{gathered}
Q_{j}\left(L\left(\left(Q^{\beta} u\right) \overline{Q^{\gamma} u}\right) Q^{\delta} v\right)=L\left(\left(Q_{j} Q^{\beta} u\right) \overline{Q^{\gamma} u}+\left(Q^{\beta} u\right) \overline{Q_{j} Q^{\gamma} u}\right) Q^{\delta} v \\
+L\left(\left(\left(Q^{\beta} u\right) \overline{Q^{\gamma} u}\right) Q_{j} Q^{\delta} v\right.
\end{gathered}
$$

So, Q_{j} distributes just like a derivative in the product. The fact that the complex conjugate is inside the operator L is used crucially. Let us start by denoting

$$
\begin{equation*}
I_{m}(w)(t)=I_{m}=\left(\sum_{|\alpha|=m} \int_{\mathbb{R}^{n}}\left|Q^{\alpha} w\right|^{2} d x\right)^{\frac{1}{2}} \tag{21}
\end{equation*}
$$

Let us assume that w solves the equation

$$
\begin{equation*}
i w_{t}+P(D) w=L\left(|u|^{2}\right) w \tag{22}
\end{equation*}
$$

for some given (smooth) function u. Note that this is a linear Schrödinger equation if $P(D)$ is elliptic. Then, in view of (7) and the fact that $P(D)$ is real, we have

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} I_{m}^{2}=\operatorname{Im} \sum_{|\alpha|=m} \int_{\mathbb{R}^{n}} Q^{\alpha}\left(L\left(|u|^{2}\right) w\right) \overline{Q^{\alpha} w} d x \tag{23}
\end{equation*}
$$

Now, in view of our Leibniz formula (20), the right-hand side of (23) is a sum for $|\alpha|=m$ and $\alpha=\beta+\gamma+\delta$ of terms

$$
\begin{equation*}
\frac{\alpha!}{\beta!\gamma!\delta!} \operatorname{Im} \int_{\mathbb{R}^{n}} L\left(\left(Q^{\beta} u\right) \overline{Q^{\gamma} u}\right)\left(Q^{\delta} w\right) \overline{Q^{\alpha} w} d x \tag{24}
\end{equation*}
$$

The term in (24) corresponding to $\beta=\gamma=0$ vanishes. This is very important, because L is not bounded in L^{∞}. If $\beta=\delta=0$ or $\gamma=\delta=0$, then we estimate (24) using

$$
\begin{gather*}
\mid \int_{\mathbb{R}^{n}} L\left(u \overline{\left.Q^{\alpha} u\right)} w \overline{Q^{\alpha} w} d x \mid \leq C\left\|u Q^{\alpha} u\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}\left\|w Q^{\alpha} w\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}\right. \tag{25}\\
\leq C\|u\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} I_{m}(u)\|w\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} I_{m}(w)
\end{gather*}
$$

The rest of the terms have $0<|\delta|<m$. In these terms we apply a Hölder inequality, raising the last term to the second power, the term involving $Q^{\delta} w$ to the power $\frac{2 m}{|\delta|}$ and the term involving L to the power $q=2\left(1-\frac{|\delta|}{m}\right)^{-1}$. Using the boundedness of L in L^{q} spaces and our Gagliardo-Nirenberg inequality (19) we majorize (24) by

$$
C\|w(\cdot, t)\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}^{1-\frac{|\delta|}{\infty}} I_{m}(w)^{1+\frac{|\delta|}{m}}\left(\int_{\mathbb{R}^{n}}\left|Q^{\beta} u\right|^{q}\left|Q^{\gamma} u\right|^{q} d x\right)^{\frac{1}{q}}
$$

In the last integral we use a Hölder inequality with powers $\frac{2 m}{q|\beta|}$ and $\frac{2 m}{q|\gamma|}$ (their inverses do add up to 1!) and again our Gagliardo-Nirenberg inequality (19). The result is that all these terms in the (24) can be bound by

$$
\begin{equation*}
C\|u\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}^{1+\frac{|\delta|}{m}} I_{m}(u)^{1-\frac{|\delta|}{m}}\|w\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}^{1-\frac{|\delta|}{m}} I_{m}(w)^{1+\frac{|\delta|}{m}} \tag{26}
\end{equation*}
$$

We note that (25) has the form of (26) with $|\delta|=0$. Dividing by $I_{m}(w)$ we obtained

$$
\begin{equation*}
\frac{d}{d t} I_{m}(w) \leq C \sum_{j=0}^{m-1}\|u\|_{L^{\infty}}^{1+\frac{j}{m}} I_{m}(u)^{1-\frac{j}{m}}\|w\|_{L^{\infty}}^{1-\frac{j}{m}} I_{m}(w)^{\frac{j}{m}} \tag{27}
\end{equation*}
$$

Now the exact same calculation applies to integrals

$$
\begin{equation*}
J_{m}(w)=\left(\sum_{|\alpha|=m} \int_{\mathbb{R}^{n}}\left|\partial^{\alpha} w\right|^{2} d x\right)^{\frac{1}{2}} \tag{28}
\end{equation*}
$$

using the usual Leibniz formula and Gagliardo-Nirenberg inequalities. Denoting

$$
\begin{equation*}
K_{m}(w)=I_{m}(w)+J_{m}(w) \tag{29}
\end{equation*}
$$

we obtain by adding the two similar inequalities and using $\max \{I, J\} \leq K$

$$
\begin{equation*}
\frac{d}{d t} K_{m}(w) \leq C \sum_{j=0}^{m-1}\|u\|_{L^{\infty}}^{1+\frac{j}{m}} K_{m}(u)^{1-\frac{j}{m}}\|w\|_{L^{\infty}}^{1-\frac{j}{m}} K_{m}(w)^{\frac{j}{m}} \tag{30}
\end{equation*}
$$

Let us introduce now

$$
\begin{equation*}
E_{N}(w)=\sum_{m=0}^{N} K_{m}(w) \tag{31}
\end{equation*}
$$

and take $N \geq 1+\left[\frac{n}{2}\right]$. Note that (14) implies

$$
\begin{equation*}
\|w\|_{L^{\infty}} \leq C(1+|t|)^{-\frac{n}{2}} E_{N}(w) \tag{32}
\end{equation*}
$$

Using the same inequality for u and majorizing each K_{m} by E_{N}, we obtain from (30)

$$
\begin{equation*}
\frac{d}{d t} K_{m}(w) \leq(1+|t|)^{-n} E_{N}(u) E_{N}(w) \tag{33}
\end{equation*}
$$

for $m=0,1, \ldots N$. (Note that K_{0} is conserved.) Adding in m we obtain
Theorem 2. Let w solve the linear equation (22). For $N \geq 1+\left[\frac{n}{2}\right]$ there exists a constant $C=C(n, N)$ such the norm $E_{N}(w)$ satisfies

$$
\begin{equation*}
\frac{d}{d t} E_{N}(w) \leq C(1+|t|)^{-n} E_{N}(u) E_{N}(w) \tag{34}
\end{equation*}
$$

Theorem 3. Let $N \geq 1+\left[\frac{n}{2}\right]$. Then there exists $\epsilon=\epsilon(N)$ and $C=C(n, N)$ such that, if u_{0} satisfies

$$
\sum_{|\alpha| \leq N} \int_{\mathbb{R}^{n}}\left[\left|Q^{\alpha}(x, 0, D) u_{0}(x)\right|^{2}+\left|\partial^{\alpha} u_{0}(x)\right|^{2}\right] d x \leq \epsilon
$$

then the solution of (3) exists for all time and satisfies

$$
\sum_{|\alpha| \leq N} \int_{\mathbb{R}^{n}}\left[\left|Q^{\alpha}(x, t, D) u(x, t)\right|^{2}+\left|\partial^{\alpha} u(x, t)\right|^{2}\right] d x \leq C \epsilon
$$

and

$$
|u(x, t)| \leq C \epsilon^{\frac{1}{2}}(1+|t|)^{-\frac{n}{2}}
$$

Proof. We prove first local existence (short time existence) and uniqueness in H^{N}. This is done by considering the map

$$
u(t) \mapsto e^{i t P(D)} u_{0}-i \int_{0}^{t} e^{i(t-s) P(D)} L\left(|u(s)|^{2}\right) u(s) d s
$$

for $u \in C\left(0, T ; H^{N}\right)$ with $u(0)=u_{0}$. We obtain unique solutions on time intervals depending on the norm of u_{0} in H^{N}. Then we use (34) with $u=w$ to deduce that

$$
E_{N}(t)\left(1-C_{N} E(0)\right) \leq E_{N}(0)
$$

