Decay for Schrodinger and related equations.

Intoduction to PDE

This is from my paper “Decay estimates for Schrodinger equations”, Com.
Math. Phys 127 (1990), 101-108.
The system we study (Schrodinger-Davey-Stewartson-Zakharov) is

10 + Liu = alul*u + vu (1)
LQU = L3<|U|2)

where a € R, and L; are second order constant coefficient diferential operators
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Li = gz] OriOxk’ 1= 1a 27 3. (2)

where the constant real matrices gf " are symmetric and invertible. We assume
L, to be elliptic, and we write then the system as a single equation

i0yu + P(D)u = L(ju*)u (3)

where P(D) = Ly and we drop the index:

- O?
_
P(D) =g (1
and
L=al+ L;"Ls (5)

The properties we will use for the linear operator L are: L : LP(R™) — LP(R™)
is bounded for any 1 < p < oo, L commutes with translations (and hence
with differentiation, L is real (i.e. it commutes with complex conjugation).



1 Sobolev lemma and the linear equation

We denote by g, the inverse matrix (g;) = (¢°%)~'. We do not assume that
P(D) is elliptic. When P(D) = A then

iug + P(D)u=0
is the free Schrodinger equation. We introduce the differential operators
Q;((z,t), D) = Q; = 2t0; — igjrax” (6)
They commute with the free equation:
(0 + P(D),Q;] =0 (7)

This can be checked by hand. We can also easily check using the Fourier
transform that

Qj _ 6itP(D)(_2"(]%3314:)e—iltP(D) (8)

Indeed,
]:(ez‘tP(D) (_Z-gjkxk)e—itP(D)u) (5) —
e 7198 (0,10, (M9 F (u) (€))
= g0, F(w)(€) + gsk(itg* (Eclar + Eader) F (u)(§)
= F(—igjna® + 2t0;)u)(€)

where we used

Flu)(e) = / e (2)da

n

and 9, the Kronecker delta.
We have as well that

Q; = 2te™9,e” 9)
where -
girx’x

P(z,t) = jT (10)

and where the right hand side of (9) is considered as a product of operators
(multiplication by e~ followed by differentiation, followed by multiplication
by 2te™). The operators @); commute. They generate a Lie algebra denoted
A. The Lie algebra generated by the collection ), 9; is denoted B. For any



Lie algebra A of differential operators with generators Ay, ... Ay we use the

notation

(NI

m

|u(x’t)|«4,m = Z Z(Aau(xvt»Q

i=0 \lal=j

where
A = AT - AYY, and |al = o + .. a.

We define generalized WP norms via

1
s )y = ( [ Juter i,mdx) .

Lemma 1. There exists a constant C' = C(n) such that
u(e, ) < CII™ 2 [ul-, )| agze
holds for all (z,t) and all u.
Proof. Let us consider the function
v(x,t) = e Pl t)

and apply the local Sobolev Lemma to it

1+[5]
pan <Y RE (YD / %0 (y, t)Pdy
i=0 o= * P I=R

(11)

This holds for any R, and the constant C' is independent of R. Now we

observe that
lv(z, )| = [u(z,t)|

and, in view of (9), by induction, it holds that
5 0(y, )] = 2[L)7Q u(y, 1)].

The inequality (13) follows by choosing R = 2t.
We remove the singularity at ¢t = 0 by augmenting to B:



Lemma 2. There exists a constant C' = C(n) such that
u(z, )] < O+ )2 ul )5 2141, (14)
holds for all (x,t) and all u.

This is trivial because for |[t| < 1 we use the usual Sobolev inequality. A
direct application is:

Theorem 1. Let u(x,t) be a solution of
iug + P(D)u=0 (15)

with initial datum u(zx,0) = uy(z). Then
u(z, t)] < |2 [Juol|x 141212 (16)

where X is the Lie algebra generated by the operators of multiplication by 27,
7 =1,...n. More generally,

|u(z, t)|ap < C|ﬂ_%||U0||X,k+1+[%L2 (17)

and
[u(z, t)|gr < C(L+ ()72 [|uollop+1+4(21,2 (18)

where By is the Lie algebra generated by the operators of multiplication by
Lal and by 0;, 7 =1,...,n.

2 The nonlinear equation

Lemma 3. Let 0 < 7 < m. There exists a constant C' depending on j,m
and n such that

2
m

1-L a
2 NQ%uC Oz ) < ClluC Dy | D2 1@l )2y | (19)

|8l=3 laf=m

The inequality (19) in which the operators @; are replaced by 0; is a well
known Gagliardo-Nirenberg inequality. Applying it to v = e~*u and using
(9) and the scale invariance of the inequality, we immediately obtain (19).

Now we state a Leibniz rule:



Lemma 4. For any multi-index « it holds that

(07
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Q*(LiluPr) = ), Friml(@u)@u)Q (20)
BH+vy+i=a
Proof. We used the noatation a! = a4!---a,!. The proof is done by

induction on |a| and it follows from the observations that

Qj(ab) = (2t0;a) b+ aQ;(b)
and that ~ B
2t9;(ab) = (Q;(a))b+ a(Q;(b))
The first equality is used to write

Qi (LI(Q°u)@u)Qv) = L(2t0;((Q°u)Q u)Q’v + L((Q u)Q u)Q;Q°v
and the second one to finish

Q;(L((Q°u)Qu)Q%) = L((Q;Q7w)Qu + (Q°u)Q;Q u)Qv
+L((Q"u)Qu)Q;Q%v

So, (); distributes just like a derivative in the product. The fact that the
complex conjugate is inside the operator L is used crucially. Let us start by
denoting

L (w)(t) = I, = Z/ 0% w|dz (21)
ja=m 7R

Let us assume that w solves the equation
iw; + P(D)w = L(Ju*)w (22)

for some given (smooth) function u. Note that this is a linear Schrédinger
equation if P(D) is elliptic. Then, in view of (7) and the fact that P(D) is
real, we have

1d Ao
st =n X [ QW (23)

|a|=m



Now, in view of our Leibniz formula (20), the right-hand side of (23) is a sum
for |a] =m and oo = B 4 v + 6 of terms

a!
il

The term in (24) corresponding to = v = 0 vanishes. This is very impor-
tant, because L is not bounded in L*°. If 5 =6 =0 or v = = 0, then we
estimate (24) using

L((Q"w)Q"u)(Q"w)Q wdx (24)

| [en L(u@Qu)wQwdz| < C|luQ®ul|r2@n)||wQw|| z2gn) (25)
< Cllul| oo @) Iin (u )||w||L°°(Rn)f (w)

The rest of the terms have 0 < |§] < m. In these terms we apply a Holder
inequality, raising the last term to the second power, the term involving Q°w
to the power \6I 2 and the term involving L to the power ¢ = 2(1— ‘7%')_1. Using
the boundedness of L in L9 spaces and our Gagliardo-Nirenberg inequality
(19) we majorize (24) by

9]
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In the last integral we use a Holder inequality with powers | ﬁ\ and 2 (thelr

inverses do add up to 1!) and again our Gagliardo-Nirenberg 1nequahty (19).
The result is that all these terms in the (24) can be bound by

+|\ 1_u 1_ 191 1+m
CHU”Loo(Rn)[ (u) ™ lwll o (rny Im (w) " (26)

We note that (25) has the form of (26) with |§| = 0. Dividing by I,,(w) we
obtained

m—1 . )
1+-L _d 1-L 3
w) < O3 a7 Lo () ] L (a0) (27)
§=0

Now the exact same calculation applies to integrals

1
2

I (w) = Z / |0%w|*dx (28)

laj=m



using the usual Leibniz formula and Gagliardo-Nirenberg inequalities. De-
noting

Kp(w) = In(w) + Jy(w) (29)

we obtain by adding the two similar inequalities and using max{/, J} < K
d — i 1-L Fi
2 ) < 5l Ko H ol F K (30
§=0

Let us introduce now

=Y K, (w) (31)

and take NV > 1+ [3]. Note that (14) implies

[wllzee < C(1 4+ [t])7% En(w) (32)
Using the same inequality for u and majorizing each K,, by Ey, we obtain
from (30)

%Km(w) < (1 + [t)) " En(u) Ex (w) (33)

for m =0,1,... N. (Note that Kj is conserved.) Adding in m we obtain

Theorem 2. Let w solve the linear equation (22). For N > 1+ [3] there
exists a constant C' = C(n, N) such the norm Ey(w) satisfies

% En(w) < C(1 + [t]) " Ex(u) Ex(w) (34)

Theorem 3. Let N > 1+[3]. Then there exists ¢ = ¢(N) and C = C(n, N)
such that, if ug satisfies

> [ 100 Dyn(a)? + |5 un(a) ] do <
la|<N
then the solution of (3) exists for all time and satisfies
> / [Q%(,t, D)u(x,t)|* + [0u(z, t)[*] dv < Ce
la|<N
and

u(z, 1) < Cez(1 4 |t])~%

7



Proof. We prove first local existence (short time existence) and unique-
ness in V. This is done by considering the map

t
u(t) — e Py, — z/ e E=IPDNL (u(s) P u(s)ds
0

for u € C(0,T; HY) with w(0) = ug. We obtain unique solutions on time
intervals depending on the norm of uy in H™. Then we use (34) with u = w
to deduce that

En(t)(1 = CnE(0)) < En(0).



