
Decay for Schrödinger and related equations.

Intoduction to PDE

This is from my paper “Decay estimates for Schrödinger equations”, Com.
Math. Phys 127 (1990), 101-108.

The system we study (Schrödinger-Davey-Stewartson-Zakharov) is

i∂tu+ L1u = a|u|2u+ vu
L2v = L3(|u|2)

(1)

where a ∈ R, and Li are second order constant coefficient diferential operators

Li = gjki
∂2

∂xj∂xk
, i = 1, 2, 3. (2)

where the constant real matrices gjki are symmetric and invertible. We assume
L2 to be elliptic, and we write then the system as a single equation

i∂tu+ P (D)u = L(|u|2)u (3)

where P (D) = L1 and we drop the index:

P (D) = gjk
∂2

∂xj∂xl
(4)

and
L = aI + L−12 L3 (5)

The properties we will use for the linear operator L are: L : Lp(Rn)→ Lp(Rn)
is bounded for any 1 < p < ∞, L commutes with translations (and hence
with differentiation, L is real (i.e. it commutes with complex conjugation).
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1 Sobolev lemma and the linear equation

We denote by gjk the inverse matrix (gjk) = (gjk)−1. We do not assume that
P (D) is elliptic. When P (D) = ∆ then

iut + P (D)u = 0

is the free Schrödinger equation. We introduce the differential operators

Qj((x, t), D) = Qj = 2t∂j − igjkxk (6)

They commute with the free equation:

[i∂t + P (D), Qj] = 0 (7)

This can be checked by hand. We can also easily check using the Fourier
transform that

Qj = eitP (D)(−igjkxk)e−itP (D) (8)

Indeed,
F(eitP (D)(−igjkxk)e−itP (D)u)(ξ) =

e−itg
abξaξb(gjk∂ξk(e

itgcdξcξdF(u)(ξ))
= gjk∂ξkF(u)(ξ) + gjk(itg

cd(ξcδdk + ξdδck)F(u)(ξ)
= F [(−igjkxk + 2t∂j)u](ξ)

where we used

F(u)(ξ) =

ˆ
Rn
e−ix·ξu(x)dx

and δjk the Kronecker delta.
We have as well that

Qj = 2teiψ∂je
−iψ (9)

where

ψ(x, t) =
gjkx

jxk

4t
(10)

and where the right hand side of (9) is considered as a product of operators
(multiplication by e−iψ followed by differentiation, followed by multiplication
by 2teiψ). The operators Qj commute. They generate a Lie algebra denoted
A. The Lie algebra generated by the collection Qj, ∂j is denoted B. For any
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Lie algebra A of differential operators with generators A1, . . . AN we use the
notation

|u(x, t)|A,m =
m∑
j=0

∑
|α|=j

(Aαu(x, t))2

 1
2

(11)

where
Aα = Aα1

1 · · ·A
αN
N , and |α| = α1 + . . . αN .

We define generalized Wm,p norms via

‖u(·, t)‖A,m,p =

(ˆ
Rn
|u(x, t)|pA,mdx

) 1
p

. (12)

Lemma 1. There exists a constant C = C(n) such that

|u(x, t)| ≤ C|t|−
n
2 ‖u(·, t)‖A,[n

2
]+1,2 (13)

holds for all (x, t) and all u.

Proof. Let us consider the function

v(x, t) = e−iψu(x, t)

and apply the local Sobolev Lemma to it

|v(x, t)| ≤ C

1+[n
2
]∑

j=0

Rj−n
2

∑
|α|=j

ˆ
|x−y|≤R

|∂αy v(y, t)|2dy

 1
2

This holds for any R, and the constant C is independent of R. Now we
observe that

|v(x, t)| = |u(x, t)|

and, in view of (9), by induction, it holds that

|∂αy v(y, t)| = (2|t|)−|α||Qαu(y, t)|.

The inequality (13) follows by choosing R = 2t.
We remove the singularity at t = 0 by augmenting to B:
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Lemma 2. There exists a constant C = C(n) such that

|u(x, t)| ≤ C(1 + |t|)−
n
2 ‖u(·, t)‖B,[n

2
]+1,2 (14)

holds for all (x, t) and all u.

This is trivial because for |t| ≤ 1 we use the usual Sobolev inequality. A
direct application is:

Theorem 1. Let u(x, t) be a solution of

iut + P (D)u = 0 (15)

with initial datum u(x, 0) = u0(x). Then

|u(x, t)| ≤ C|t|−
n
2 ‖u0‖X ,1+[n

2
],2 (16)

where X is the Lie algebra generated by the operators of multiplication by xj,
j = 1, . . . n. More generally,

|u(x, t)|A,k ≤ C|t|−
n
2 ‖u0‖X ,k+1+[n

2
],2 (17)

and
|u(x, t)|B,k ≤ C(1 + |t|)−

n
2 ‖u0‖B0,k+1+[n

2
],2 (18)

where B0 is the Lie algebra generated by the operators of multiplication by
1, xj and by ∂j, j = 1, . . . , n.

2 The nonlinear equation

Lemma 3. Let 0 < j < m. There exists a constant C depending on j,m
and n such that

∑
|β|=j

‖Qβu(·, t)‖
L

2m
j (Rn)

≤ C‖u(·, t)‖1−
j
m

L∞(Rn)

∑
|α|=m

‖Qαu(·, t)‖L2(Rn)


j
m

(19)

The inequality (19) in which the operators Qj are replaced by ∂j is a well
known Gagliardo-Nirenberg inequality. Applying it to v = e−iψu and using
(9) and the scale invariance of the inequality, we immediately obtain (19).

Now we state a Leibniz rule:
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Lemma 4. For any multi-index α it holds that

Qα(L(|u|2v) =
∑

β+γ+δ=α

α!

β!γ!δ!
L((Qβu)Qγu)Qδv (20)

Proof. We used the noatation α! = α1! · · ·αn!. The proof is done by
induction on |α| and it follows from the observations that

Qj(ab) = (2t∂ja) b+ aQj(b)

and that
2t∂j(ab) = (Qj(a))b+ a(Qj(b))

The first equality is used to write

Qj(L((Qβu)Qγu)Qδv) = L(2t∂j((Q
βu)Qγu))Qδv + L((Qβu)Qγu)QjQ

δv

and the second one to finish

Qj(L((Qβu)Qγu)Qδv) = L((QjQ
βu)Qγu+ (Qβu)QjQγu)Qδv

+L((Qβu)Qγu)QjQ
δv

So, Qj distributes just like a derivative in the product. The fact that the
complex conjugate is inside the operator L is used crucially. Let us start by
denoting

Im(w)(t) = Im =

∑
|α|=m

ˆ
Rn
|Qαw|2dx

 1
2

(21)

Let us assume that w solves the equation

iwt + P (D)w = L(|u|2)w (22)

for some given (smooth) function u. Note that this is a linear Schrödinger
equation if P (D) is elliptic. Then, in view of (7) and the fact that P (D) is
real, we have

1

2

d

dt
I2m = Im

∑
|α|=m

ˆ
Rn
Qα(L(|u|2)w)Qαwdx (23)
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Now, in view of our Leibniz formula (20), the right-hand side of (23) is a sum
for |α| = m and α = β + γ + δ of terms

α!

β!γ!δ!
Im

ˆ
Rn
L((Qβu)Qγu)(Qδw)Qαwdx (24)

The term in (24) corresponding to β = γ = 0 vanishes. This is very impor-
tant, because L is not bounded in L∞. If β = δ = 0 or γ = δ = 0, then we
estimate (24) using∣∣´

Rn L(uQαu)wQαwdx
∣∣ ≤ C‖uQαu‖L2(Rn)‖wQαw‖L2(Rn)

≤ C‖u‖L∞(Rn)Im(u)‖w‖L∞(Rn)Im(w)
(25)

The rest of the terms have 0 < |δ| < m. In these terms we apply a Hölder
inequality, raising the last term to the second power, the term involving Qδw
to the power 2m

|δ| and the term involving L to the power q = 2(1− |δ|
m

)−1. Using
the boundedness of L in Lq spaces and our Gagliardo-Nirenberg inequality
(19) we majorize (24) by

C‖w(·, t)‖1−
|δ|
m

L∞(Rn)Im(w)1+
|δ|
m

(ˆ
Rn
|Qβu|q|Qγu|qdx

) 1
q

In the last integral we use a Hölder inequality with powers 2m
q|β| and 2m

q|γ| (their

inverses do add up to 1!) and again our Gagliardo-Nirenberg inequality (19).
The result is that all these terms in the (24) can be bound by

C‖u‖1+
|δ|
m

L∞(Rn)Im(u)1−
|δ|
m ‖w‖1−

|δ|
m

L∞(Rn)Im(w)1+
|δ|
m (26)

We note that (25) has the form of (26) with |δ| = 0. Dividing by Im(w) we
obtained

d

dt
Im(w) ≤ C

m−1∑
j=0

‖u‖1+
j
m

L∞ Im(u)1−
j
m‖w‖1−

j
m

L∞ Im(w)
j
m (27)

Now the exact same calculation applies to integrals

Jm(w) =

∑
|α|=m

ˆ
Rn
|∂αw|2dx

 1
2

(28)
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using the usual Leibniz formula and Gagliardo-Nirenberg inequalities. De-
noting

Km(w) = Im(w) + Jm(w) (29)

we obtain by adding the two similar inequalities and using max {I, J} ≤ K

d

dt
Km(w) ≤ C

m−1∑
j=0

‖u‖1+
j
m

L∞ Km(u)1−
j
m‖w‖1−

j
m

L∞ Km(w)
j
m (30)

Let us introduce now

EN(w) =
N∑
m=0

Km(w) (31)

and take N ≥ 1 + [n
2
]. Note that (14) implies

‖w‖L∞ ≤ C(1 + |t|)−
n
2EN(w) (32)

Using the same inequality for u and majorizing each Km by EN , we obtain
from (30)

d

dt
Km(w) ≤ (1 + |t|)−nEN(u)EN(w) (33)

for m = 0, 1, . . . N . (Note that K0 is conserved.) Adding in m we obtain

Theorem 2. Let w solve the linear equation (22). For N ≥ 1 + [n
2
] there

exists a constant C = C(n,N) such the norm EN(w) satisfies

d

dt
EN(w) ≤ C(1 + |t|)−nEN(u)EN(w) (34)

Theorem 3. Let N ≥ 1 + [n
2
]. Then there exists ε = ε(N) and C = C(n,N)

such that, if u0 satisfies∑
|α|≤N

ˆ
Rn

[
|Qα(x, 0, D)u0(x)|2 + |∂αu0(x)|2

]
dx ≤ ε

then the solution of (3) exists for all time and satisfies∑
|α|≤N

ˆ
Rn

[
|Qα(x, t,D)u(x, t)|2 + |∂αu(x, t)|2

]
dx ≤ Cε

and
|u(x, t)| ≤ Cε

1
2 (1 + |t|)−

n
2
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Proof. We prove first local existence (short time existence) and unique-
ness in HN . This is done by considering the map

u(t) 7→ eitP (D)u0 − i
ˆ t

0

ei(t−s)P (D)L(|u(s)|2)u(s)ds

for u ∈ C(0, T ;HN) with u(0) = u0. We obtain unique solutions on time
intervals depending on the norm of u0 in HN . Then we use (34) with u = w
to deduce that

EN(t)(1− CNE(0)) ≤ EN(0).
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