
Schauder Estimates

Introduction to PDE

1 Schauder Estimates: the Laplacian

The fundamental solution of the Laplacian is given by the Newtonian poten-
tial

N(x) =

{ 1
2π

log |x|, if n = 2,
1

(2−n)ωn
|x|2−n, if n ≥ 3.

(1)

Here ωn is the area of the unit sphere in Rn. Note that N is radial and it is
singular at x = 0.

Proposition 1 Let f ∈ C2
0(Rn), and let

u(x) =

∫
Rn
N(x− y)f(y)dy. (2)

Then u ∈ C2(Rn) and
∆u = f

Lemma 1 Let N ∈ L1
loc(Rn) and let φ ∈ C1

0(Rn). Then u = N ∗ φ is in
C1(Rn) and

∇u(x) =

∫
N(x− y)∇φ(y)dy

Idea of proof of the lemma. First of all, the notation: Lploc is the space
of functions that are locally in Lp and that means that their restrictions to
compacts are in Lp. The space C1

0 is the space of functions with continu-
ous derivatives of first order, and having compact support. Because φ has
compact support

u(x) =

∫
N(x− y)φ(y)dy =

∫
N(y)φ(x− y)dy

is well defined. Fix x ∈ Rn and take h ∈ Rn with |h| ≤ 1. Note that

1
|h|

(
u(x+ h)− u(x)− h ·

∫
N(x− y)∇φ(y)dy

)
=∫

N(y) 1
|h| (φ(x+ h− y)− φ(x− y)− h · ∇φ(x− y)) dy
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The functions y 7→ 1
|h| (φ(x+ h− y)− φ(x− y)− h · ∇φ(x− y)) for fixed x

and |h| ≤ 1 are supported all in the same compact, are uniformly bounded,
and converge to zero as h → 0. Because of Lebesgue dominated, it follows
that u is differentiable at x and that the derivative is given by the desired
expression. Because

∇u(x) =

∫
N(y)∇φ(x− y)dy

and ∇φ is continuous, it follows that ∇u is continuous. This finishes the
proof of the lemma.
Idea of proof of the Proposition 1. By the Lemma, u is C2 and

∆u(x) =

∫
N(x− y)∆f(y)dy

Fix x. The function y 7→ N(x − y)∆f(y) is in L1(Rn) and compactly sup-
ported in |x− y| < R for a large enough R that we’ll keep fixed. Therefore

∆u(x) = lim
ε→0

∫
{y;ε<|x−y|<R}

N(x− y)∆f(y)dy

We will use Green’s identities for the domains ΩR
ε = {y; ε < |x − y| < R}.

This is legitimate because the function y 7→ N(x−y) is C2 in a neighborhood
of ΩR

ε . Note that, because of our choice of R, f(y) vanishes identically near
the outer boundary |x− y| = R. Note also that ∆yN(x− y) = 0 for y ∈ ΩR

ε .
From the Green formula we have∫

{y;ε<|x−y|<R}N(x− y)∆ f(y)dy =∫
|x−y|=εN(x− y)∂νf(y)dS −

∫
|x−y|=ε f(y)∂νN(x− y)dS

The external unit normal at the boundary is ν = −(x− y)/|x− y|. The first
integral vanishes in the limit because |∇f | is bounded, N(x−y) diverges like
ε2−n (or log ε) and the area of boundary vanishes like εn−1:∣∣∣∣∫

|x−y|=ε
N(x− y)∂νf(y)dS

∣∣∣∣ ≤ Cε‖∇f‖∞

in n > 2, and the same thing replacing ε by ε log ε−1 in n = 2. The second
integral is more amusing, and it is here that it will become clear why the
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constants are chosen as they are in (1). We start by noting carefully that
two minuses make a plus, and

−∂νN(x− y) =
1

ωn
|x− y|1−n.

Therefore, in view of the fact that |x− y| = ε on the boundary we have

−
∫
|x−y|=ε

f(y)∂νN(x− y)dS =
1

εn−1ωn

∫
|x−y|=ε

f(y)dS

Passing to polar coordinates centered at x we see that

−
∫
|x−y|=ε

f(y)∂νN(x− y)dS =
1

ωn

∫
|z|=1

f(x+ εz)dS

and we do have

lim
ε→0

1

ωn

∫
| z|=1

f(x+ εz)dS = f(x)

because f is continuous. We have thus:

Proposition 2 N is the fundamental solution of the Laplacian:

∆N = δ.

Indeed, by Proposition 1

∆(N ∗ φ) = φ, ∀ φ ∈ D

and thus ∆N ∗ φ = φ which implies ∆N = δ in D′.
We compute now second derivatives of Newtonian potentials and derive

Schauder estimates for the Poisson equation. We take a bounded open set
Ω and a function f ∈ Cα(Ω), 0 ≤ α ≤ 1. We extend the function f by zero
outside Ω. Let

w(x) =

∫
Rn
N(x− y)f(y)dy =

∫
Ω

N(x− y)f(y)

be the Newtonian potential of f .
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Lemma 2 Let f be bounded and (locally) Cα in Ω. Then w ∈ C2(Ω), ∆w =
f , and, for any x ∈ Ω

∂i∂jw(x) =∫
Ω1
∂i∂jN(x− y)(f(y)− f(x))dy − f(x)

∫
∂Ω1

∂i(N(x− y))νj(y)dS(y)
(3)

where Ω1 is a bounded domain containing Ω and in which the divergence
theorem holds.

Proof. We let

u(x) =

∫
Ω1

∂i∂jN(x− y)(f(y)− f(x))dy − f(x)

∫
∂Ω1

∂i(N(x− y))νj(y)dS(y)

Clearly, in view of the fact that the second derivatives of the Newtonian
kernel obey

|∂i∂jN(x− y)| ≤ C|x− y|−n

and the local Hölder continuity of f , the function u(x) is well defined. We
also know (by calculations above) that w ∈ C1. Let v = ∂iw and let us set

vε(x) =

∫
Ω

(∂iN(x− y))η

(
|x− y|
ε

)
f(y)dy

where ε > 0 is small and η(r) is a positive smooth function which vanishes
for 0 ≤ r ≤ 1 and is identically equal to η(r) = 1 for r ≥ 2. So we are cutting
off smoothly the singular region. Now vε is clearly C1 , and differentiating
we have

∂jvε =
∫

Ω
∂j

[
(∂iN(x− y)η

(
|x−y|
ε

)]
f(y)dy

=
∫

Ω1
∂j

[
(∂iN(x− y)η

(
|x−y|
ε

)]
f(y)dy

=
∫

Ω1
∂j

[
(∂iN(x− y)η

(
|x−y|
ε

)]
(f(y)− f(x)dy

+f(x)
∫

Ω1
∂j

[
(∂iN(x− y)η

(
|x−y|
ε

)]
dy

=
∫

Ω1
∂j

[
(∂iN(x− y)η

(
|x−y|
ε

)]
(f(y)− f(x)dy

−f(x)
∫
∂Ω1

(∂iN(x− y))νj(y)dS(y)

Therefore

|u(x)− ∂jvε(x)| =∣∣∣∫Ω1
∂j

[(
1− η

(
|x−y|
ε

))
∂iN(x− y)

]
(f(y)− f(x))dy

∣∣∣
≤ C[f ]α

∫
|z|≤2ε

(|z|−n + 1
ε
|z|−n+1)|z|αdz

≤ C[f ]αε
α
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So ∂jvε converges uniformly (on compacts) and because vε converegs to v =
∂iw, we obtain w ∈ C2 and u = ∂j∂iw.

Now we are going to state and prove the basic lemma for interior Schauder
estimates (for the Laplacian).

Lemma 3 Let B1 = BR(x0), B2 = B2R(x0) be concentric balls in Rn. Sup-
pose f ∈ Cα(B2) and let w be the Newtonian potential of f in B2. Then
w ∈ C2,α(B1) and

supx∈B1,|β|≤2 |∂βw(x)|+Rα supx 6=y
|∂i∂jw(x)−∂i∂jw(y)|

|x−y|α

≤ C‖f‖C0,α

(4)

Proof. Because of (3) it is easy to see that the second derivatives of w are
bounded by the RHS of (4). Let us consider now two points, x and x in B1.
Let us write δ = |x− x|, ξ = 1

2
(x + x) and subtract the two representations

(3). We obtain

∂i∂jw(x)− ∂i∂jw(x) = f(x)I1 + (f(x)− f(x))I2

+I3 + I4 + (f(x)− f(x))I5 + I6

where

I1 =

∫
∂B2

(∂iN(x− y)− ∂i(N(x− y)))νj(y)dS(y),

I2 =

∫
∂B2

∂iN(x− y)νj(y)dS(y),

I3 =

∫
Bδ(ξ)

∂i∂jN(x− y)(f(x)− f(y))dy,

I4 = −
∫
Bδ(ξ)

∂i∂jN(x− y)(f(x)− f(y))dy,

I5 =

∫
B2\Bδ(ξ)

∂i∂jN(x− y)dy,

and

I6 =

∫
B2\Bδ(ξ)

(∂i∂jN(x− y)− ∂i∂jN(x− y))(f((x)− f(y))dy
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For I1 we use

|I1| ≤ |x− x|
∫
∂B2

|∇∂iN(p− y)|dS(y)

for some p ∈ [x, x]. For the term involving I5 we integrate by parts and note
that the contributions at both ends are bounded. In the term involving I6

we use

|I6| ≤ δ

∫
B2\Bδ(ξ)

|f(x)− f(y)|
|p− y|n+1

dy

with p ∈ [x− x]. Now because |x− y| ≤ 3
2
|ξ − y| ≤ 3|p− y| for |y − ξ| ≥ δ,

we can compare to the integral∫
|y−ξ|≥δ

|ξ − y|−n−1+αdy

and that does diverge like δα−1. We deduce

Theorem 1 Let Ω be a domain in Rn and let u ∈ C2(Ω), f ∈ Cα(Ω) satisfy
Poisson’s equation ∆u = f . Then u ∈ C2,α(Ω) and, for any two concentric
balls B1 = BR(x0) and B2 = B2R(x0) we have

‖u‖C2,α(B1) ≤ C
[
‖u‖C0(B2) + ‖f‖Cα(B2)

]
2 Schauder estimates: general case

We consider now a uniformly elliptic equation

Lu = −aij(x)∂i∂ju+ bi(x)∂iu+ c(x)u = f(x) (5)

where aij = aji are bounded, Hölder continuous and uniformly elliptic

λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2. (6)

Theorem 2 (Constant coefficients) Let Aij = Aji be constant and satisfy
(6). Denote

L0u = −Aij∂i∂ju. (7)

If u ∈ C2(Ω), f ∈ Cα(Ω) satisfy L0u = f , then there exists a constant C
depending only on λ,Λ, n and α so that

|u|∗2,α;Ω ≤ C
(
|u|0,Ω + |f |(2)

0,α;Ω

)
(8)
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Here we use the non-dimensional norms from Gilbarg and Trudinger:

|u|∗k,α;Ω = |u|∗k,Ω + [u]∗k,α;Ω

with

|u|∗k;Ω =
k∑
j=0

[u]∗j;Ω

[u]∗j;Ω =
∑
|β|=j

sup
x∈Ω

djx|∂ju(x)|

and

[u]∗k,α;Ω = sup
x 6=y, |β=k

dk+α
x,y

|∂βu(x)− ∂βu(y)|
|x− y|α

where dx = dist(x, ∂Ω) and dx,y = min(dx, dy). In addition

|f |(2)
0;α;Ω = sup

x∈Ω
d2
x|f(x)|+ sup

x 6=y
d2+α
x

|f(x)− f(y)|
|x− y|α

The constant coefficients case is a direct consequence of the Schauder esti-
mates for the Laplacian, used after an appropriate change of variables. The
general interior Schauder estimates are

Theorem 3 Let Ω be an open subset of Rn and let u ∈ C2,α(Ω) be a bounded
solution of

Lu = f

in Ω, where Lu is given by (5) and the coefficients aij, bi, c are bounded in
Cα. Then there exists a constant C depending on λ,Λ, α, n the bound of the
coeffiicents in Cα such that

|u|∗2,α;Ω ≤ C
(
|u|0;Ω + |f |(2)

0,α;Ω

)
(9)

The idea of the proof is to localize and use the constant-coefficients result.
Near a point x0 we write the equation

Lu = f

as
L0u = F
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where L0u = aij(x0)∂i∂ju and F is what needs to be. We are in a small ball
around x0 and wish to obtain estimates there. Ignoring all lower order terms,
the highest order term in F is

H(x) = −(aij(x)− aij(x0))∂i∂ju(x)

In order to use the constant coefficients estimate, we need to take the Hölder
norm of F , and that involves H as well. It is clear that when we take the
difference H(x)−H(y) we have a small coefficient

1

2
(aij(x) + aij(y)− 2aij(x0)))

multiplying the difference quotient

∂i∂ju(x)− ∂i∂ju(y)

|x− y|α

This will give rise to a term of the form ε|u|∗2,α;Ω with small ε. There is
however also the a term that is of the form

∂i∂ju(x) + ∂i∂ju(y)

2

[
aij(x)− aij(y)

|x− y|α

]
This is bounded by a constant (depending on the Cα norm of aij) times the
C0 norm of second derivatives of u. Nothing is small here, but there is an
interpolation inequality that says that, for any ε > 0 there exists a constant
C = C(ε) so that

|u|∗j,β;Ω ≤ C|u|0;Ω + ε[u]∗2,α;Ω

if j = 0, 1, 2, 0 ≤ α, β ≤ 1 and j + β < 2 + α. Thus intermediate terms
like the one above are bounded by a small multiple of the top term plus a
large multiple of the desired right-hand side. Using this strategy we derive
an estimate

[u]∗2,α,B ≤ ε[u]∗2,αB + C(ε)
[
|u|∗0,Ω + |f |(2)

0,Ω

]
on a small ball. The main idea of the interpolation estimate is the following.
For instance, suppose we want to prove that

[u]∗1 ≤ ε[u]∗2 + C|u|0
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Take a point x ∈ Ω and let dx be its distance to the boundary. We take a
length d = δdx, with δ > 0 small enough. Then we take the segment [x1, x2]
of length 2d parallel to the i-th axis so that x is its middle. Clearly

|∂iu(x)| = |u(x1)− u(x2)|
2d

≤ 1

d
|u|0

for some point x in the segment. Then we write

|∂iu(x)| = |∂iu(x) +
∫ x
x
∂i∂iu(y)dy|

≤ 1
d
|u|0 + d sup |∂i∂iu|

and therefore
dx|∂iu(x)| ≤ δ−1|u|0 + 4δ[u]∗2

Further details are in Gilbarg and Trudinger, Ch. 6.
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