Schauder Estimates

Introduction to PDE

1 Schauder Estimates: the Laplacian

The fundamental solution of the Laplacian is given by the Newtonian poten-
tial .

log x|, if n=2,

|z, if n > 3. (1)

N(z) = {

Here w, is the area of the unit sphere in R™. Note that /N is radial and it is
singular at z = 0.

(2— n)wn

Proposition 1 Let f € CZ(R"), and let
wz) = | N(z—y)f(y)dy. (2)
R”
Then u € C*(R™) and
Au=f

Lemma 1 Let N € L}
CYR") and

(R™) and let ¢ € C;(R™). Then u = N x ¢ is in

loc

- / Nz — y)Vo(y)dy

Idea of proof of the lemma. First of all, the notation: L  is the space

of functions that are locally in LP and that means that their restrictions to
compacts are in LP. The space C} is the space of functions with continu-
ous derivatives of first order, and having compact support. Because ¢ has

compact support
= /N(a: —y)o(y)dy = /N(y)gb(x -

is well defined. Fix x € R™ and take h € R™ with |h| < 1. Note that

(u ($+h)—U(fc)—h'fN(x—y)V¢(y)dy) =
W) (P(x+h—y) =z —y) —h-Vo(x —y))dy

Fve
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The functions y ‘—}1” (p(x+h—y)—dx —y) —h-Vo(x —y)) for fixed =
and |h| < 1 are supported all in the same compact, are uniformly bounded,
and converge to zero as h — 0. Because of Lebesgue dominated, it follows
that u is differentiable at x and that the derivative is given by the desired

expression. Because

Vu(x) = / N(y)Vo(x — y)dy

and V¢ is continuous, it follows that Vu is continuous. This finishes the
proof of the lemma.
Idea of proof of the Proposition 1. By the Lemma, u is C? and

Au(x) = / N — y)Af(y)dy

Fix z. The function y — N(z — y)Af(y) is in L'(R") and compactly sup-
ported in |z — y| < R for a large enough R that we’ll keep fixed. Therefore

Au(z) = lim N = y)Af (y)dy

=0 J{yse<|o—yl<R}

We will use Green’s identities for the domains Qf = {y;e < |z — y| < R}.
This is legitimate because the function y — N(z—y) is C? in a neighborhood
of QF. Note that, because of our choice of R, f(y) vanishes identically near
the outer boundary |z —y| = R. Note also that A,N(z —y) = 0 for y € QF.
From the Green formula we have

f{y;e<|$—y|<R} N(z —y)A f(y)dy =
Jiogjee N@ =)0, f()dS — [, _ f@)9,N(x — y)dS

The external unit normal at the boundary is v = —(z — y)/|x — y|. The first
integral vanishes in the limit because |V f| is bounded, N(z —y) diverges like

€>~™ (or loge) and the area of boundary vanishes like ¢"~1:

[ Ve uaswis| < caviis

in n > 2, and the same thing replacing ¢ by eloge™! in n = 2. The second
integral is more amusing, and it is here that it will become clear why the
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constants are chosen as they are in (1). We start by noting carefully that
two minuses make a plus, and

1 -n
—0,N(x—y) = —|v - yl' "

n

Therefore, in view of the fact that |z — y| = € on the boundary we have

- / F)AN( — y)dS = — / f(y)dS
jo—yl=e jo—yl=e

En—lwn

Passing to polar coordinates centered at x we see that

_ /| NG s = L

Wn J|z|=1

and we do have )

lim—/|z|:1f(x+ez)d5’ = f(x)

e—0 Wn,

because f is continuous. We have thus:
Proposition 2 N is the fundamental solution of the Laplacian:
AN =.
Indeed, by Proposition 1
A(Nx¢)=¢,¥VpeD

and thus AN % ¢ = ¢ which implies AN = ¢ in D'.

We compute now second derivatives of Newtonian potentials and derive
Schauder estimates for the Poisson equation. We take a bounded open set
2 and a function f € C%(2), 0 < o < 1. We extend the function f by zero
outside (). Let

w(z) = N(x—y)f(y)dyz/QN(:r—y)f(y)

R"

be the Newtonian potential of f.



Lemma 2 Let f be bounded and (locally) C* in Q. Then w € C?*(Q), Aw =
f, and, for any x € Q2

Jo, 00iN(x = y)(f(y) — f(@))dy — f(2) [50, O:(N(z —y))v;(y)dS(y)

where Q1 is a bounded domain containing €2 and in which the divergence
theorem holds.

Proof. We let
u(z) = [ 0:0;N(x —y)(f(y) — f(x))dy — f(x) Oi(N(x —y))v;(y)dS(y)

971 o
Clearly, in view of the fact that the second derivatives of the Newtonian
kernel obey
|0:0;N (z = y)| < Clo —y[™
and the local Holder continuity of f, the function u(z) is well defined. We
also know (by calculations above) that w € C'. Let v = d;w and let us set

r—Yy
ule) = [ @ = () sty
Q
where € > 0 is small and 7(r) is a positive smooth function which vanishes
for 0 <r <1 and is identically equal to n(r) = 1 for r > 2. So we are cutting
off smoothly the singular region. Now v, is clearly C' | and differentiating

we have
Oy = [0 |ON (@ = yn (=2 | Flw)dy
= Jo, 0 | (0N (z = y)n ey | Fw)dy
= [, 0 [0V (@ — yyn (222)) (F () - f(2)dy
x)fﬂa[ﬁNx— (;y|> dy
=ﬁh @:N( =y (E2)| () - f(@)dy
) Joq, (O:N(z = y))v;(y)dS(y)
Therefore
lu(z) — Ojve()| =
o 05 [ (1= (22 ))8N@—-ﬂtﬂw—f@D@
< Clfla foyea (217 + L=l 2]9d
< C[flae



So 0jv. converges uniformly (on compacts) and because v, converegs to v =
diw, we obtain w € C? and u = 9;0;w.

Now we are going to state and prove the basic lemma for interior Schauder
estimates (for the Laplacian).

Lemma 3 Let By = Bgr(xg), By = Bag(xo) be concentric balls in R™. Sup-
pose [ € C%(Bs) and let w be the Newtonian potential of f in Ba. Then
w e C**(B;) and

|8iajw(x)—8i8jw(y)|
|z—yl (4)

SUPzeB,,|8<2 |85w(x)| + R* SUP 2y
< Clfllcoe

Proof. Because of (3) it is easy to see that the second derivatives of w are
bounded by the RHS of (4). Let us consider now two points, x and T in B;.
Let us write § = |z — Z|, £ = 3(z + T) and subtract the two representations
(3). We obtain

00w (x) — 0;0;w(T) = f(x)1 + (f(x) — f(T)) L2
+Is+ I+ (f(z) — f(@) 5 + I

where
. / (N (z — y) — B(N(T — 1)), (5)dS(y),
0B>
I = /8 ON(E = )as(y).
L={ 00;N@—y)(fx)— fy)dy,
Bs(ey
L= / QN (T — y)(f(@) — F(y)dy,
Bse)
]5 = 81(9]]\7 Tr — d 5
/B e (x —y)dy
and

Iy = / (@0;N(x — ) — BN (T — ) (F(@) — F())dy
Ba\Bj(g)



For I; we use

Ll <le—z| [ [VON(p—y)ldS(y)

0By

for some p € [z, 7]. For the term involving I5 we integrate by parts and note
that the contributions at both ends are bounded. In the term involving I

we use _
Ba\Bse) D —y|"

with p € [T — z]. Now because [T — y| < 3|¢ —y| < 3|p—y| for [y — | > 0,
we can compare to the integral

/ €~y ey
ly—&|>6

and that does diverge like 6*~1. We deduce

Theorem 1 Let Q be a domain in R"™ and let u € C*(Q), f € CY(Q) satisfy
Poisson’s equation Au = f. Then u € C**(Q) and, for any two concentric
balls By = Bgr(zo) and By = Bag(xy) we have

lullcza(sy) < C [llullcosy) + 1 fllcoss)]

2 Schauder estimates: general case
We consider now a uniformly elliptic equation
Lu = —a" (x)9;0;u + b'(x)0u + c(z)u = f(z) (5)
where a” = a’* are bounded, Hélder continuous and uniformly elliptic
AE* < a¥(@)8:8; < AJEP. (6)

Theorem 2 (Constant coefficients) Let AY = A7 be constant and satisfy
(6). Denote B
L()U = —A”é?iaju. (7)

If u € C*(Q), f € C¥Q) satisfy Lou = f, then there erists a constant C
depending only on X\, A, n and « so that

* 2
[0 00 < C (luloso + 115k (®)
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Here we use the non-dimensional norms from Gilbarg and Trudinger:

|U|Z,a;§2 = |U|Z,Q + [u]};a;ﬁ

with .
=0
[W)fg = ) supdl|u(x)]
181=5 *<7
and 99 90
[u]z g = sup dglz—ga | U(l‘) - U(y)|
O ey =k |z —yl*
where d, = dist(xz,0Q) and d,, = min(d,, d,). In addition
o f r)— f Yy
1120 = sup | ()] + sup a2+ L) = W]
z€Q T#y ‘LE’ - y‘

The constant coefficients case is a direct consequence of the Schauder esti-
mates for the Laplacian, used after an appropriate change of variables. The
general interior Schauder estimates are

Theorem 3 Let Q) be an open subset of R™ and let u € C**(Q) be a bounded
solution of

Lu=f

in 0, where Lu is given by (5) and the coefficients a*, b', ¢ are bounded in
C“. Then there exists a constant C' depending on A\, A, a, n the bound of the
coeffiicents in C* such that

* 2
[t a0 < C (lulos + 115k (9)

The idea of the proof is to localize and use the constant-coefficients result.
Near a point xy we write the equation

Lu=f

as
L()U =F



where Lou = a”(x()d;0;u and F is what needs to be. We are in a small ball
around zy and wish to obtain estimates there. Ignoring all lower order terms,
the highest order term in F'is

H(x) = —(a"(x) — a” (x0))0i0;u(x)

In order to use the constant coefficients estimate, we need to take the Holder
norm of F', and that involves H as well. It is clear that when we take the
difference H(x) — H(y) we have a small coefficient

1 .. - .

5@ (@) +a”(y) - 2a"(x0)))
multiplying the difference quotient

@aju(x) - daju(y)

|z —y|*

This will give rise to a term of the form e|ul; ..o with small e. There is
however also the a term that is of the form

0;0;u(x) + 9;0;u(y) {a”’ (z) — a”’(y)}
2 |z —yl|*

This is bounded by a constant (depending on the C* norm of a*) times the
C? norm of second derivatives of u. Nothing is small here, but there is an
interpolation inequality that says that, for any € > 0 there exists a constant
C' = C(e) so that

‘U’Bf,/o’;ﬂ < C’u‘o;ﬂ + e[u];,a;ﬂ
itj =012 0<ap<1and j+ 5 < 2+ «a. Thus intermediate terms
like the one above are bounded by a small multiple of the top term plus a

large multiple of the desired right-hand side. Using this strategy we derive
an estimate

* * * 2
W06 < €l an + C(O) [[ulia + /15

on a small ball. The main idea of the interpolation estimate is the following.
For instance, suppose we want to prove that

[ult < efulz + Clulo



Take a point x € (2 and let d, be its distance to the boundary. We take a
length d = dd,, with § > 0 small enough. Then we take the segment [z, 5]
of length 2d parallel to the i-th axis so that x is its middle. Clearly

[u(z1) = u(zs)]

)| =

<1||
—|Uu
l 0

for some point 7 in the segment. Then we write

|0u()| = [0u(T) + [ 0:du(y)dy]
< §|u|0 + dsup |0;0;ul

and therefore
d.|0u(x)| < (5_1|u]0 + 46[ul;

Further details are in Gilbarg and Trudinger, Ch. 6.



