LOCAL FORMULAS FOR THE HYDRODYNAMIC
PRESSURE AND APPLICATIONS

PETER CONSTANTIN

ABSTRACT. We provide local formulas for the pressure of incom-
pressible fluids. The pressure can be expressed in terms of its
average and averages of squares of velocity increments in arbitrary
small neighborhoods. As application, we give a brief proof of the
fact that C velocities have C2* (or Lipschitz) pressures. We also
give some regularity criteria for 3D incompressible Navier-Stokes
equations.

Dedicated to the memory of Professor Mark 1. Vishik.

1. INTRODUCTION

We provide local formulas for the pressure of incompressible fluids.
By this we mean expressions that compute a solution of

where u is a divergence-free velocity, at z €  C R?, from the spherical
average of the pressure,

ey RO

and from integrals of increments (u;(y) — w;(z))(u;(y) — u;(z)), for
ly — x| < r, with arbitrary small r. No knowledge of the behavior
of u outside a small ball is needed. The main ingredient is a kind of
monotonicity equation for a modified object

br) = per) + s [ o = -u<y>)2ds<y>.
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This allows us to express the pressure as

p(z) = Bz, r) + w(z,r)

where (3 is just a local average of the pressure,

1 2r
B = [ plapdp

and 7(z,r) is given by a couple of integrals (39) of squares of incre-
ments of velocity over a ball and over an annulus of radii 2r. Thus, we
write the pressure as a sum of two local terms, one small, and the other
sufficiently well-behaved. Indeed, 3 € L>®(IR?) is bounded in space (for
any ), if u € L*(R*) (34), and ||V 12(rs) is bounded in terms of
|[u[|74(g2y (47). On the other hand,  is of the order r?|Vu/* for small
r. Well-known criteria for regularity for the 3D incompressible Navier-
Stokes equations in terms of the pressure ([1]), ([7]) do exist. If the
pressure would obey the bounds that  obeys, then regularity of solu-
tions of the 3D Navier-Stokes equations would easily follow. Because
m(x,r) — 0 as r — 0, the suggestion that p obey the same bounds as
[ is not unreasonable. On the other hand, bounds on 7 require some
smoothness of the velocity. Higher regularity in space for velocity for
weak solutions of the 3D Navier-Stokes equations was obtained in ([4])
(see also ([10])). These bounds imply that 7(x,r) is small for almost
all time. For instance, ||7|/ps@s) < C(t)r?, t —a.e. (52), (59). The
problem is that in general the time integrability of C(t) is too poor
to conclude regularity (C(¢)s is time integrable, whereas C(t) time
integrable would be sufficient for regularity.)

The organization of this paper is as follows: In the next section we
present the basic calculations which lead to the formulas for the pres-
sure. In section 3 we give ensuing bounds for § and 7. In section 4 we
give a quick proof of the bounds of higher derivatives of solutions of the
3D Navier-Stokes equations in the whole space. These follow from the
classical paper ([4]), and were well-known for decades, although, be-
cause ([4]) deals with spatially periodic solutions, a proof in the whole
space of one the results (due originally to Luc Tartar, see acknowledg-
ment in ([4])) was given only in 2001 ([2]). The 2012 preprint ([9])
contains also a proof of this result and more references. In section 5
we give two applications: the first is a simple proof of the fact that, if
u € C% then p € C?* (if 2a < 1; if 2a > 1 then p is Lipschitz). This
result was used recently in ([5]), with a proof based on the Littlewood-
Paley decomposition. A different proof (closer to ours) was obtained
before, but was not published ([8]). The 3D Navier-Stokes equations
are regular if u € L*([0,T], L*(R?)) ([3]), ([6]). We give as a second
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application, criteria of regularity for the 3D Navier-Stokes equations in
terms of w. These essentially say that if we can find r(¢) small such
that in some sense, 7 is small, and if some integral of r(¢)~! is finite,
then we have regularity.

Some elementary calculations needed for the formulas are presented in
the Appendix.

2. SPHERICAL AVERAGES

We denote

W T =g [ s0dsw = s er9as©

where { denotes normalized integral. We consider solutions of
(2) —Ap=V_(u-Vu)
in Q C R® We assume V - u = 0 and smoothness of u. We start by
computing
0:p(,7)

JC|5| 15 pr(x + T{)dS(é) 4W |§\:1§ : Vgp(l’ + Tf)dS(f)

= = Jiejer Dep(a +1€)dE = 1= [y Dap(a +rE)dé.
We use the equation (2). We note that, in view of the incompressibility
V -u =0, we have

Ap = =0:9;((ui — vi)(u; — v;))

for any constant vector v. (We use summation convention, unless ex-
plicitly stated otherwise) We have thus

8@(:6,7’) = |g|<1 9;0;((u; — vi) (u; — vj)) (x 4+ r&)dg
= f\§|<1 (( vi)(u; — vj)) (@ + r€)d§
= 1 I€|= 151( ((Uz )(uj (@ +r&)dS(E)

47rr f|g| 1 &0, ((us — v3) (u; — ) (@ + r&)dS(E).

So we have
(3 rople,r) =~ &0 ((us —vi)(u; —vj)(2 +1§)dS(€).

Lemma 1. Let Q2 be an open set in R3, let x € Q. Let r < dist(z,09),
and let u be a divergence-free vector field in C*(Q)3. Let v € R®. Let p
solve (2) in 2. Then

0, {P,7) + fioy € - (ule + 1) — v) PdS(6) }

w o 2 2
= 7 Jig=1 3§ - (u(x +7§) —v)| — |u(z + r&) — v[*] dS(E).
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Proof. We are going to use the identities
figor §i0%, f(x +7€)dS (€)
= 10, | oy €1 (@ +1€)AS()] + £, (38 = 1)f (z + 1€)aS(€)

valid for each j, (no summation of repeated indices in the formula
above), and

fmzl (fiaﬁj + gjafi) f(.ilj + Tf)dS(f)
The proofs of these identities are elementary; they are given with full

detail in the Appendix. In view of (3), the expression we need to
average is (the negative of)

§10g (w?) + £205, (w3) + §30¢, (w3) + (§10g, + £20¢,) (wrws)
+(610g, + €30¢, ) (wrws) + (§20¢, + £305, ) (waws)
where w = u — v and the expression is evaluated at x + r¢. Using (5),

(6), we group together the terms involving rd,, and separately the ones
which do not involve rd,, and sum. We obtain thus from (3)

(7) rop(z,r) = =10, JC|§|:1(€ ~w)2dS(€)
— fiejmr B(E - w)? = |w]?] dS (),

which is the same as (4).

(6)

Lemma 2. Let x € Q C R3, let 0 < r < dist(x,00Q), and let p solve
(2) with divergence-free u € C*(Q)3. Let v € R3. Then

(8)
p(x) + Hu(@) = o2 = Bla,r) + f_y € (ulz + 7€) — v)[* dS(E)
+fy e o [B1E (ula + p€) —v) — Julz + p€) — v[2] dS(€)

Proof. This follows immediately from (4) by integration for dp, not-
ing that

(9) p(z,0) = p(x)

and

(10)

iy f € (0o 40 =0 SO = gy . lulare) = aS(©

The formula (8) can be specialized by choosing v. Before doing this,
let us introduce

T = (yi — zi)(y; — ) _
(11) oij(ly—x) =3 = o 0

ij
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where
y—=
|y — x|
Note that /\
aa ( 1 ):Oi]'(y_?)‘
|z =yl ly — |
By choosing v = 0 in (8) we obtain
(12)

p(z) + glu(z)? =
Pt + £,y 6 u(®)PAS () + PV [, ) TR (i) (w)dy.
’ ly—x|=r m B(z,r) |o—y[3 V7Y
Remark 1. If Q = R3, if we integrate R™* f;R dr and let R — oo in
(12) we obtain (assuming that R~ f;Rﬁdr decays)

J

1 , 1 oij(T — y)
1) ple)+ g = 3PV [ T ) )y

a fact that follows also from
1 1
p(x) = ———0,0;(uiu;)(y)dy

A s |7 — Y
by integration by parts. So (12) is a local version of this, valid for any
r > 0.
By choosing v = u(x) in (8), we obtain
p<fv> = P(@,7) = fi, e |6 (uly) — u(@))PdS(y)
= & L B (ly) = i) (15() — wy()dy

In order to clarlfy the relationship between (12) and (14) let us observe
that

(15)
1 Uz"(l"/—\y) 1
& (€ uw)asty) + =PV [ T D)y = zula),
]i/ z| dm B(z,r) |I - y|3 ! 3
This follows from the obvious fact that

1 Yi — Xy
— V-u)(y)dy =0
4 B(z,r) |y - .1'|3( )( )

(14)

by integration by parts.

Remark 2. Letting r — oo we deduce from (15) in the whole space
case, if u decays, that

1 oii(x —y) 1
1 —PV | I ui(y)dy = —u;
(16) 4T /Rg |z — y|? uj(y)dy 3%@)
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a fact that follows also from the fact that Pu = uw where P is the pro-
jector on divergence-free functions, using the formula

2 1 oij (& —y)

Pv=-v+—PV | —1——2u(y)dy.
T3 e /R3 |z —y|3 vi(y)dy

We write now in the principal value integral in (12)

wi(y)ui(y) = (wi(y) — wi(z))(ui(y) — ui(z))
+ui(z)u;(y) + uj(x)ui(y) — wi()u;(z)

and take advantage of the fact that averages of Ull; (_y/m_E on spheres

centered at x vanish. Using (15) we obtain

p(z) + glu(z)? =
Pz, 1)+ f, .- € u(y)?dS(y)+

LPV [y H? (uily) — us(@)) (us(y) — (@) dy
—2f (@))€ - uly)dS(y) + Elulz)?

Rearranging, and noting that

f o€ u@Prase) = gl
ly—z|=r

we obtain

'BI’B

()
(2,

4 fo € (uly) — u(@)EAS () +
(17) aimc/—%

7 JBxr) Jr—yP (ui(y) — wi(2)) (u;(y) — u;(z))dy
We have thus:

|,_.

W~

Remark 3. The formula (14) follows directly from (12) by using the
formula (15), which is a consequence of the divergence-free condition.

Remark 4. The situation in R? is entirely similar. Instead of (5) and
(6), we have for fized j = 1,2,

=10, fo €1+ rE)AS(E) + £ (2] — 1) (a +rE)dS E),
and

(19) fsl (£10¢, + &20¢, ) f(x +1€)dS(€)
=10 f 266 (1 +1E)dS(€) + fo 266 f (2 + rE)dS(E),

and consequently, we have instead of (7)

rop(x,r) = —ro, f w)%dS(€)

(20) fo 206 w)r - |w|1 50)
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where w = u(x + r€) — v and v is a constant vector. This again leads
to a local representation formula
(21)
p(a) + 3lu(@) — o> =Bz, ) + fie 1!5 (u(x + 7€) — ) dS()
T 21 ula + p€) — ) = Julx + p) — vf?] dS(€)
We conclude this section by mentioning similar formulae for the av-

erage of the gradient of pressure. For instance, starting from the fact
that 0;p solves the equation

(22) — A@lp = &@ (81 (u,uj))
obtained by differentiating (2), we arrive at
8@ f 1515] 1 uu])(x+r§))d5(§)

—7 g 3665 55) (O (s ) &+ 1) 45 (6) =
—8 (; f|§\ 1 & (aél (uiuy)(z + 7€) dS(€)
— 7 fim (36&5 — 0i5) (O, (i) (w + 7€) dS(§).

We can integrate by parts in (23), using the relations

( Fops 6600 Sz + 1€)AS(€) = 10,  E26af(x + r€)AS(€)
o, (1€ = D) &f (@ +rE)dS(©).
Fromn €160, f @+ 1E)AS(€) = 10, f 36 f(w + rE)dS(E)
oy (465 1) aflo + rE)aS(e).
fio 1 €906 7o+ 1AS(0) =0 § (o400
+ fiemy (467 = 2) & f (2 +1€)dS (),
f o 300, 1 (x+ 1E)AS(E) = 10, § £ (2 + r€)dS()
i 468 (@ + rE)dS(E),
Fs €206 (2 +1€)dS(€) = 10, f 6 f(x +r€)dS(€)
Fh, A6 (@ + r€)dS (€),
Fos €66s0 f (@ + 1€)dS(E) = 10, f €&t f (& + r€)dS(©)
[ T+ f\&l L4688 f(x 4+ 1€)dS ()

which can be proved in a manner similar to the proofs of (5), (6). After
some calculations using the relations above we arrive at

0,0ip = — [02 + L0, + 5] fiey &1(€ - ula +7€))?dS(€)
(25) 20+ 2] fey wa(@ 7€) (€ - ulx +1€)) dS(€)
+1 [0, + 2] fop_, &alulz +re)[2dS(©).

This follows because

(26) figjf)gluiuj = [Tar + 4] fl(f . U)Q — 2U1 (f . U)

(23)

(24)
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(27) O, [u(x +r)|* = [rO, + 2] & |ul?

3. REPRESENTATION AND BOUNDS

We will take Q = R3 in this section. Let us consider

(28) b ) = Pl r) + 7{5 o ase)

The equation (4) with v =0 is

(29) Orb(w,r) =t [P =3¢ - u(y)P| (2, 7)

and, integrating from r to infinity, and recalling (11) we obtain

1 Ui‘(x/—\y)
30 b =—— : : (y)d
( ) (:Ca ’f‘) 47 oy|>r ‘.Z' _ y‘g u (y)u] (y) Y

Proposition 1. Let x € R3, let r > 0, let p solve (2) in Q = R? with
divergence-free u € (C?(R3) N L3(R3))3. Let b be defined by (28). Then

2
31 s b, )] < 5
If u € H'(R?), then

C
(32) sup (b, )| < 5 Vullie.

where C' is the constant of Hardy’s inequality in R3.

Remark 5. Obviously we do not need C? reqularity for u, but rather
enough reqularity for b to be defined via (28). Of course, the represen-
tation (30) requires only u € L.

Remark 6. The corresponding local result in an open set €2 is a bound
of b(-,7) in L*>°(dz) in terms of local L'(dx) bounds for b and L? (or
H') bounds for u. This is obtained in a straightforward manner, by
multiplying (29) by an appropriate compactly supported function of r
and integrating in r.

Proof. The proof follows directly from the inequality
|03 (©)uiuy| < 2[ul?

valid for any vector u € R? and £ € S?, and from Hardy’s inequality

/R LWl ., < C/Rs Vu(y)[*dy.

s |l —yl?
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Let us define now
1 2r
(33) 3(.r) = [ plap)dp

Proposition 2. Let x € R3, let r > 0, let p solve (2) in Q = R? with
divergence-free u € (C*(R*)NL2(R3))3. Let 3 be defined by (33). Then

(34) sup Bz, )| < 4W3||U||%2-
If u € H'(R?), then

3C
(35) ;ﬁwwwﬂﬁﬂjWWQ-

where C is the constant of Hardy’s inequality in R3.

Proof. We note that

8er) =1 [ 0o~ TE W )y

The inequalities follow in straightforward manner from

1/2’" 1 x—y 2 dy
= [ € 0 p)dp = — (—uy)—
) Cwreade=gn ] =) Top

Proposition 1 and Hardy’s inequality.

Remark 7. We introduced the average (3(x,r) of p(xz,r) in order to
pass from the pointwise information on b(x,r) (31), (32), to the point-
wise information on B(x,r) (34), (35), without requiring other bounds
than L* (or H') for u.

Let us consider now the weight function

1, if0<A<I,
(36) wh) =4 2—-X if 1< <2,
0 if A>2

Let us take now the representation formula (14) and average in r. We
obtain

Theorem 1. Let z € R?, let r > 0, let p solve (2) in Q = R3 with
divergence-free u € (C%*(R?) N L3(R3))2. Then

(37) p(x) = B, r) + 7 (z,7)
with B(x,r) given by

(38) Bar) =+ / Bz, p)dp
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and w(x,r) given by

R 1) = g2 [y o (25 (uly) — u@))) dy+

L e (B520) B (i) — ) (s (y) — s())y
Remark 8. Passing to the limit r — oo in (37) we obtain

(40)

() = Ju()|? L/ 73(%)

3 AT Jps |23

This can be obtained also from (13) using (16).

(39)

(wi(2 + 2) = wi(2))(u; (2 + 2) — uy(w))dz

Proof. We integrate - f dp the representation (14) written as
p(fr) =

(41)  plx p + £, m| plf (u(y) — w(@))[PdS(y)
+f T Fymapm BE - (wly) — u(2)))? = [uly) — u(@)*]dS(y)

and use the fact that

8 ([ rw)ao- | T (5) s

In addition to the bounds (34) and (35) we also have bounds that
follow from Morrey inequality

[wta<e|[ wura]

the representation
(42) p = RiR;(uiu;)

of the pressure where R; = @(—A)’% are Riesz transforms, and the
boundedness of Riesz transforms in LP spaces.

Proposition 3. Let p the solution of (2) given by (42). For any q,
1 < g < oo there exist constants Cy > 0, independent of v > 0 so that,
for anyr >0

(43) 1PC, )| zoesy < CollullFoa s
and
(44) 18C, )| aes) < Collull7zogms)-

For any a € [0,2) there ezists Cy, > 0 such that
(45) 18C, )| zaes) < Car™llull g sy | Vel 7o
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There exists a constant C' > 0 so that

(46) IVD(, 7))l < CT—1||U||%4(R3)
and
(47) IVBC,)llze < Cr7H[ullfages)

Proof. The bounds (44) for  follow from the bounds (43) for p by
averaging in 7. The bounds (43) follow from (42) and the boundedness
of Riesz transforms in LP spaces. The bounds (45) follow from (35),
interpolation

a 1—2
1811250k, < 18115y 181155y

the bound (44) for ¢ = 3 — a,
HB(? 7,)HLS_"'(]R:"’) S CG«HU’H%G*QG(REK)?

and interpolation combined with the Morrey inequality

[ullLo—2e@s) < Cllullp2gs) HVUHEzQ&s
The bound (47) follows from the bound (46) by averaging in r. The
bound (46) follows from
(48) IVBC, )l z2msy < CrmIBC 1) |2

and (43) at ¢ = 2. The bound (48) follows from Plancherel and the
observation that

(49) D7) =
Indeed,
Jas € 4p(, r)dr = fiomr AS(W) Jps €7 p(x + rw)da
56) £, S )

and the last integral is computed conveniently choosing coordinates so

that & points to the North pole:
1 2 ™ )
— de / dfe'IEl o0 gin 9de =
A J, 0

Regarding m we have
Proposition 4. Let w(x,r) be defined by (39). Then
u(z + 2) — u(@)]?

|z|<2r |Z|3

sin(r|¢])
rl¢]

pg).

sinr[¢)

rl¢]

(50) |7(z,7)| < C dz.

Consequently
(51) 17 (1) s < Cqr? || Vel Za
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holds for all1 < g < oo. In particular, at ¢ = 3 we have, with Morrey’s
inequality,

(52) (- 7)llzs < OF?|| Aulf7s.

We also have

(53) 17 (- ) aqs) < Collull7zams)-

Proof. The inequality (50) is immediate from definition. In order to
prove (51) we write

1
u(z + 2) — u(@)|? < \z|2/ V(e + A2)2dA
0

and changing order of integration we have
_ 2
T e B
R3 |z|<2r |Z‘

which proves (51). The bounds (53) follow from (37), the corresponding
bounds for p, and (44).

< Cr¥|oll Lo [Vl 220

4. FGT BOUNDS IN THE WHOLE SPACE

We take the Navier-Stokes equation

(54) Ou~+u-Vu—vAu+ Vp =0,
with
(55) Vou=0,

multiply by d;u — vAu and integrate, using incompressibility:
/ Oyu — vAu| do = —/ (u- Vu) (O — vAu)dz.
R3 R3
Schwartz inequality gives:

/ |Oyu — vAu|® dx §/ |u - Vul*dz
R3 R3

and so

. |0 — vAu de < |Ju]|2e|| V2.
The inequality

(56) lullZe < ClIVullze[|Aul 12

is easy to prove using Fourier transform. Thus

5 0pu — vAul* dz < C| Aul|p2]| V| 3.
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On the other hand,
[ 10 = vuf? do = 0wl + Al + v | Vul
R3

and therefore
Vull+ oAl + ol
s [Aul| 2| VullZ. < §lAulZ. + S IVulz,
Now we denote y(t) = ||[Vu(-,t)||3,, pick a constant A > 0, divide by
(A +y)? and obtain

AN A ol C
dt \A+y

dtl

(A+y?  v(A+y2 = 8"

Integrating in time we obtain

T vl|Aulf3, T Ol 2 c, o, 1
/0 —dt+/0 o oedt = lluollze +

(A+y)? v(A+y)
Therefore
g [Au||Za c 2 1 —4 3 4-1
50 [ i< Sl + = CvtD A
and
[[0pul|7- C 2 v -2 -3 4—1
59 [ A< Sl + 4 = cip Ay
where we put
o Nl

14

/TIIA 12,dt < /T laulz. 17 _/T(A+ )dt_
u Yy
0 Lz Jo (A+y)? 1 Lo |

/T|\8u“§dt< /T |9 det -/T(A+y)dt-
t 2
0 L Jo (A+y)?2 1 U |

and therefore

T
/ HAuH%zdt <Cvs D+ VP’A’l]% (D + AT
0

Now

._.
Wi

and

ol
Wi

win

and .
2 1
/ |l hadt < Cv3 [D 4+ 1747 D + AT
0
Now A is arbitrary, but a natural explicit choice is

A2 — 1/3T_1
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and then we have

g _a [luollze | 1 5]
(59) | 1wl < e L77—+Twz
and

’ _2 [ |uol| L2 1]
(60) / l0vull,dt < Cw [T+Tz :

Now using the inequality (56) it follows 1mmed1ately that

T o2 o277
(61) / ||u||pedt < Cv~ { L2 | T3y ] { ]
0

v

Let us consider now the other terms in (54). We start by computing

lu- Vu+ Vp|* de = |Ju- Vu|2: + || Vp|2: + 2/ (u-Vu) - (Vp)dz.
R3

R3
Now

2/ (u-Vu)-(Vp)dz = —2/pTr(W)2d:v = 2/ pApdz = =2||Vpl|7.
R3 R3

Consequently

lu- Vu+ Vp[ de = |lu- Vul2: — | Vp|2.

R3
On the other hand, obviously
[u - VulLz < fluflze[[Vull

and in view of the previous result we have

! o 3 Ak
(62) / | - Vu||L2dt <Cv’s { L2 | T2y } {—L}

0 v

and, because of the inequality ||Vpl/zz < ||u - Vu| 2, we also have

T 1 9 1
(63) /|wuyﬁ<c—pdl %ﬂQUWMﬂQ
0

v
We have thus

Theorem 2. Let u be a Leray weak solution of the Navier-Stokes equa-
2
tion on the interval [0,T]. Then the quantities ||ul|zoms), | Aul 72 gs),
2 2 2
[0l p2(geys w - Vullf2gsy, IVD f2@s) are almost everywhere finite on
the time interval [0, T|, and their time integrals are bounded uniformly,

with bounds (59, 60, 61, 62, 63) depending only on T, ||uol|z2ms) and
v.
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The proof for Leray weak solutions follows the same pattern as the
proof given above for smooth solutions, except that we mollify the ad-
vecting velocity, prove the mollification-uniform bounds and deduce the
result using essentially Fatou’s lemma. For the sake of completeness,
let us mention here other estimates. Interpolating

T
/|ww;ﬁ<m
0

and
T 2
/ |Vl }sdt < oo
0

which comes from Morrey’s inequality and (59) we get

1 1
IVullLs < ClIVull 76| Vull7,
which then is integrable by Holder

T
/|Wﬂpﬁ<ax
0

Finally, we mention that, interpolating between L°°(dt; L*(dx)) and
L3(dt; L5(dx)) it is easy to see that u € LP(dt, LY(dz)) for ¢ = 3:3—34
if p > 2. For p € [1,2] interpolating between L?(dt; L°(dz)) and

LY(dt, L*>(dx)) we get q = %.

5. APPLICATIONS

Theorem 3. Let u solve (54) and (55) in R® and assume that u
belongs to L°°(dt; L*(R3)) N L*(dt; C*(R3)) for some ¢ > 1. Then
p € Li(dt;C**(R?)) if o < 3. If o = § then p € LU(dt; LiplogLip)
where LiplogLip is the class of functions with modulus of continuity
|z — yllog(|lz — y|™"). If « > 3 then p € L(dt; Lip) where Lip is the
class of Lipschitz continuous functions.

Proof. We start with two points x, y at distance |x —y| and we choose
r = 8|z — y|. The representation (14) implies

(64) { Ip(z) — plx,7)| < CHUHjcw“ja,
p(y) — By, )| < CllulZar®,

S0, it remains to prove that

p(x,7) — Dy, )| < Or*®

if 2a < 1 and C ~ |Jul|2. (If 2a = 1 we obtain rlog(r~!), an

, and
if 2a > 1, r.) In order to do so, we use (4) with v = u (*}¥) and
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integrate from r to infinity. We obtain

p(@,1) == figoy (€ (u(z +78) —v)"dS(€)

65

(65) i fiomaime PR (ui(2) — v3) (uy(2) — v5)d2
and

(66) Pl1) = = figer (€ (uly + 7€) — )" dS()

i e P (i(2) — vi) (u(2) — vy)de

Now clearly

f (€t r =0 a0 < orpul

and

f (€ tatuere) —orasie)] < o,

so 1t remains to estimate

1 ij -z 1 i y-:
= oi((z j))wiwjdz _ _/ Mwiwjdz
4m |lz—z|>r |I - Z| 4 ly—z|2r |y - Zl

where w = u(y) —v. Now, if |x — z| > r but |y — z| < r, then
|x—z|§|y—z|+|x—y|§§r, and so

—

1 (1 —
_/ o ((@ Z))wiwjdz
AT Jja—sizrfy-s<r |2 =2

and similarly, if |y — z| > r, but |z — z| < r, then

< Cllullgar,

—

1 (g —
Ly ),
4m ly—z|>r,|z—z|<r |y - Z|

Finally, we are left with
1

4

< Cllulféar.

(Kij(z — 2) — Kyj(y — 2))ww;dz

|z—2|>r,|y—z[>r
where
Ki;(¢) = (3G¢1¢1™> = di5) 1¢17°
This is now a classical situation in singular integral theory where the
smoothness of the kernel is used. We observe that

Kz — =) — Ky(y — 2)| < Cle — ] / 2 — (y + Mz — )] ~*dA
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and that |z — (y + A(z — y))| > Zr. Thus

1
rr

(Kij(x — 2) — Kij(y — z))wiwjdz‘
< Clo =yl fy f_ayor |z =2l lulz) — u (542 PdzdA

where z) = y+ A(z — y). Now, choosing R > 0 fixed (we could choose
R =1, but we prefer to keep dimensionally correct quantities)

1 _ T
|z — 9| fo f\z—leZR |z — oy "Hu(z) —u (%) [2dzd\
< Clz —y|RH|ul|F -

The integral on % <lz—z\ <R,

1
|x—y|// |z — oz Hu(z) —u Tty |*dzd\
0 JI<lz—ay<R 2

is estimated using

u(z) —u (5’3 ‘; y) ' < Clluflu |z — 2 +12%)

The resulting bound obtained by integrating on %r <|lz—xz| < Ris

1
2 o 2a—1 2a—1
Cllul|galz — y| L —5a" +7r }
if 2a0 < 1,
S8R r
Cllul/2a]z —y| [log ( — ) +1— —=
M%Mzﬁw(ry% A
if 2a =1, and
) 200—1 S
C @ - @
rMMxme4+r]

if 2a > 1. This concludes the proof.

We state now some criteria for regularity. We will write m(z,t,r(t))
for 7 defined according to the formula (39) for a time dependent wu(z, t)
and with a time dependent r = r(¢). We recall that 7 is small if u is
regular and r is small.

Theorem 4. Let u be a smooth solution of the Navier-Stokes equation
on the interval [0,T).

First criterion: Assume that there exists U >0, R >0 and 0 < r(t) <
R such that

(67)

2
/ h@ﬁ%@mWWMS%/W@MMMﬁWw
{zeR3 |u(z,t)|>U} R3
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holds. Assume that there exists v > 4 such that

(68) /Tr(t)_“*dt < 00.
Then
(69) u € L>([0,T], L*(R?)).

Second criterion: Assume that there exists r(t) such that m = mw(x,r(t))
satisfies

T
(70) /O 772 gyt < 00

and that, as above, there exists v > 4 such that (68) holds. Then again
(69) holds.

Proof. We start with the first criterion. We consider the evolution of
the L? norm of velocity:

d
%HuHig(Rg) + y/' |Vul?|u|dz —i—/ lul(u - Vp)dz <0
R3 R3

We represent p using the formula (37) with » = r(¢). We split softly
the integral involving m:

Jes lul(u - V)da =[5 ¢ <M> lu|(u - V)dz
+fR3 (1 —¢ <‘u|>) |u|(u - V)dz

where ¢(q) is a smooth scalar function 0 < ¢(¢q) < 1, supported in
0 <qg<1. We use the bound

Vr(x |<c/ d)\/ W (Vu(z + 2)| + [Vu(@)|[Valz + A2),
|z|<2r
which follows from (39) by differentiation. It follows that

/RB é <%> lu|(u - Vr)da

We integrate by parts in the other piece:

/RS (1 — ¢ (%)) ful(u- V) da = _/RS -Vl (1 s (%))W

When the derivative falls on 1 — ¢ we are in the |u| < U regime and
we use (53) and the interpolation combined to Morrey’s inequality

S CUQT‘|VUH%2(R3)

ullZages) < Cllwllzeesy |Vl p2esy
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to deduce
’fRs wlulu - Viu)Ute' (W) dx’ < Ul gy | Vel 2 e
< CUNullss) VUl gs)

When the derivative falls on |u| we use the condition (67) and the
Schwartz inequality:

‘f{|uxt|>v} u- Vul[(1—¢ (‘“')ﬂdag)
< ¥ fos u]|[VulPde.

As to the integral involving 3, we integrate by parts, and use Holder’s
inequality followed by (45)

1
|ng Bu- Vluldw| < |8l oo/ foo [0l Vulde
< 3003 lll5car) + 5 fo fl| Vi
< Gyl g | Tl 52l ) + % fos Il VPl

By chosing a = ﬁ we have a < 2, and using Young’s inequality, we
see that

r IVl 2 gs) < CO 7+ [ VullZams))
is time-integrable. The upshot is that the quantity y(t) = [|ul|zsms)
obeys an ordinary differental inequality

Y= dt < Ci(t) + Calt)y + Cs(t)y

with Cy(t) = C’U2r||VuHL2(R3 Cy(t) = C*U||Vu||L2(Rg and Cs3(t) =
Cv=tr=20|| V| 132 ull % (s)- The positive functions C1(t), Co(t) and
C5(t) are known to be time-integrable. The interested reader can check

that the inequality above is dimensionally correct, each term has di-
mensions of [L]®[T]~*. Then it follows that

d
1':@ =< Cu(t) + Calt) + Ci(t),
(no longer dimensionally correct), and after an easy integration, it fol-
lows that y is bounded a priori in time. This proves the first criterion.
For the proof of the second criterion we again represent p = 7(xz,7)+
B(x,r) with r = r(t) and bound the integral involving 7 using straight-
forward integration by parts and Holder inequalities:

UR3 u - Vr)luldz| = U s (U - V|u|)dx|
< 5 Jeo [l VulPde + Sl pagea 7] 7 gs)-
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We bound the contribution coming from [ the same way as we did for
the first criterion. The upshot is that y(t) = ||u||13rs) obeys
dy

yga < Cy(t)y + Cs(t)y

with Cy(t) = %HﬂHig(Rg) which is time-integrable by assumption. It
follows again that y(t) is bounded apriori in time.

6. APPENDIX

We prove here the identities (5) and (6). We introduce polar coor-
dinates,
&1 = pcos@sinf = pcS,
& = psingsinf = psS,
&3 = pcost = pC
where for simplicity of notation we abbreviate s = sin¢, S = sin#,

¢ =cos¢, C'=cosf. For a function on the unit sphere p = 1. But in
general f(§) = f(pcS, psS, pC), and we have

fo=00f = p(cCf1 +sCfr — Sfs),
fo=0sf = p(=sSfi+cSf),
pfo=p0,f = p(cSfi+sSfo+ Cfs)

where p0,f = £-Vef and Ve f = (fi1, fa, f3). We note that pﬁp(%) =0,
for € # 0. We have

Cfo+ Spf, = plcfr + sf2)
Cpf,—Sfo=pf3

and thus

pfi=c(Cfo+ Spf,) — 515
(71) pfo=s(Cfo+Spf,) + 5fe
pfs=Cpf, —Sfo

We consider now p = 1 and denote for simplicity D, = pd,. We
compute first

G0 +ras()

using of course
dS(&) = Sdodb.
We have
§10¢, [ = cS(c(COp + SD,) — 50) f
=D (&) + ASChf — scdyf
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We used the fact that on the unit sphere { = % and D,(&) = 0. We

multiply by S and integrate, integrating by parts where possible. In
view of

d

~P 5 (S7C) = 5(5* - 20%) = 25 (357 - 2)
and
5L (se) =225 - 5,
d¢ SC) = 4C

the coefficients of f are obtained by adding
?S(35% —2) +2c%S — S = S(3¢ — 1),
and so
Feror €106 FdS(€) = fo,[Do(€1F) + 362 — 1S ()
=D, [ fign fs%de@)j + f0 (36 — 1) fdS(€)

which is the first relation in (5). The rest of the formulas in (5) are
proved similarly. Indeed,

528€2f =S5 [S(Cae + SDp) + %ag} f
= [SQSQDP + s25C0, + scOy) f

Upon multiplication by S and integration by parts in the dy and 9,
terms we obtain the coefficients of f

—s2 L (52C) — Sfb(sc) = s25(35% —2) + S — 2¢2S

=525(35? —2) — S+ 2525 = (362 - 1)S
and therefore
Foi) G206, fdS(E) =
Dy |figea EF4S(©)] + fi1 (368 — 1S (€)
like above. The third term is
£305f =C(CD, —S0)f.

Multiplying by S and integrating by parts the dy term, we compute
the coefficient of f

d
do

and therefore we obtain the last relation of (5)
:ﬁf‘zl 638€3fd5(§) =
Dy |Fgr EF4S(©)] + fy (38 — 1) £dS(©).

—5(C8%) = (3C" = 1)§ = (365 — 1),
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We prove now similarly the relations (6). We start with the term
corresponding to the indices (1, 3):

(§10¢; + &30¢, ) f =
cS(CD, — S0y) + C(c(COy + SD,) — 30,)] f =
2¢SCD, + (cC? — ¢S%) 0y — 04| f

Multiplying by S, integrating, and integrating by parts we obtain the
coefficient of f via

—cg5(S(1=25%)) + O (s)

= —¢(C = 6S%*C) + Cc = 6¢SCS = 6£&35

and so
ﬁﬂ:l(gla&a + 53851)fd5(€)
= Jie)=1 [26163D, f + 68163 f]dS(§)
= Dy [figr 2606514S()] + fio, 66160aS(€)
which is the (1, 3) relation in (6). At indices (1,2) we have to compute
(105 + &201) f
= [¢S(sSD, 4+ sCOp + £0y) + s5(cSD, + cCOy — £04)] f
=2¢SsSD,f + 2cs(SC)Iyf + (¢ — s*)Dsf.
Multiplying by S and integrating by parts, we obtain the coefficient of
f via
—2cs-+(S%C) — Sd%(c2 —§?) =
2cs(8% — 25C?) + 4Scs = 2¢s(S% — 25 + 253) + 4esS = 6¢s5?
= 661525.

We obtained thus
fie=1(§106, + &20¢,) fdS(€)
= e|=1 [2£1£2Dpf + 6§1§2f] ds(§>
= D, [fies 26064S()] + fio, 6616 £4S(€)

which is the (1, 2) relation of (6). Finally, at (2,3) we have to compute

(€205 + E30s) f = sS(CD,, — S9p) f + C(5SD,, + sCOy + £0,) f
— 25SCD,f + (s(C2 — S2)dp + CL0,) .

Multiplying by S and integrating by parts, the coefficient of f is com-
puted via

—sL(5(C? - 5?)) — Cd%c =

s(6S%C — C) + Cs = 6sSC'S = 66,635
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and we obtain thus
fiei=1 (€205, + &305,) fdS(€)
= feio1 268D, f + 66265 f1dS(€)

= D, [ s 266 4S()] + fio, 6665 £aS(€)

which is the (2, 3) relation of (6).
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