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Abstract

This paper considers the three dimensional Muskat problem in the stable regime. We
obtain a conservation law which provides an L? maximum principle for the fluid interface.
We also show global in time existence for strong and weak solutions with initial data
controlled by explicit constants. Furthermore we refine the estimates from our paper [5]
to obtain global existence and uniqueness for strong solutions with larger initial data than
we previously had in 2D. Finally we provide global in time results in spaces with critical
regularity, giving solutions with bounded slope and time integrable bounded curvature.
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1 Introduction

We consider the dynamics of the interface in between two incompressible fluids in porous
media in three dimensional space. This is the Muskat problem (see [13]). We assume that both
fluids are immiscible and have the same constant viscosity but different constant densities.
We simplify matters by taking gravity g = 1, the permeability of the medium x = 1 and the
viscosity ¥ = 1. Then the motion of the fluids satisfy:

pt +V - (up) =0
V-u=0

where p = p(x1, 9, x3,t) is the density, P = P(x1,z2,x3,t) is the pressure,
u = (u1(w1, 22, 73,1), U2 (w1, T2, 73, 1), uz(21, T2, r3,1))

is the incompressible velocity field, x; € R, ¢ =1, 2, 3 and ¢ > 0. The first equation is the
conservation of mass and the second equation is Darcy’s law, where the velocity is proportional
to the driving forces, the pressure gradient and the buoyancy force. We denote the interface
that separates the space in two domains €1 and Q9 by x3 = f(x1,x2,t). We consider the
density p = p(z1,x2,x3,t) to be the following step function:

ot (z1,29,73) € QL(t) = {23 > f(1,20,1)}, ()

plar, 2,23, ) = { P, (w1, 32, x3) € (1) = {3 < f(z1,22,1)}.



Then the interface satisfies the equation
o) = Y e = 1(a— T )
f(@,0) = fo(z), == (x1,22) € R?,

in order to be a solution of the system (1) (see [9] for a detail derivation).
A first approach is to linearize equation (3) around the steady state fo(z) = 0, which
yields

_P1—p2
ft— 92 Af7 (4)

f(2,0) = folz),

where the operator Af is defined in Fourier variables by //\} &) =1¢ |f(§) The case p1 < p2
gives a stable regime, and for p; > ps the system is unstable. Stability versus instability is
determined by the normal component of the pressure gradient jump at the interface having
a distinguished sign. This is known as the Rayleigh-Taylor condition which implies local
existence in H® when the heavier fluid is below the lighter one, and ill-posedness in the
unstable regime (see [9] for a proof of both statements). Earlier works on the well-posedness
in Sobolev spaces for the 3D Muskat problem, where both fluids have also different viscosities,
include [1], [14], [11] and [§].

Our goal is to prove global in time existence results for the stable regime. Our main
concern is about the size of the initial data needed to reach this conclusion. Global existence
for large slopes turns out to be false. There exist initial data that turn to the unstable
regime; in finite time the interface becomes no longer a graph (see [3]). Moreover, there exist
smooth initial data in the stable regime that in finite time turn to the unstable regime and
at a later time they are no longer C* (see [4]). In our previous work [5], we studied the two
dimensional Muskat equation; we showed global existence of Lipschitz continuous solutions
for initial data that satisfy || fo||re < 0o and ||0z fol|L < 1. We also proved global existence
for unique strong solutions if the initial data is smaller than a constant co; || f||1 < co where

ng/%mﬁwhsza

We have checked numerically that cg is not small; it is greater than % Recently, in [12],
global results are obtained in a confined domain for initial data satisfying smallness conditions
relating the amplitude, the slope and the depth. We also point out a new work [2] where
instant analyticity is proved for small initial data represented on the Fourier side by positive

measures.

Summary of the main results:

In this paper, we generalize all the results of our previous work [5] from 2D to 3D. We further
prove new global existence results for initial data which are only contained in low regularity
critical spaces. Surprisingly, even in critical spaces we can still obtain global regularity with
a smallness condition with an explicit constant kg where kg > 1/5.



First, in Section 2, we prove the following identity for the evolution of the L? norm of the
contour

2 il [ 1 1 vduds — | f112
W02 (31 ~ e sy ) s = Wik, )

where p = (p? — p')/2. We point out that the 2D (or 1D interface) analog of this conservation
law contained a gain of the integral of a logarithm [5], while in this 3D (or 2D interface) case
the conservation law is different because the gain is only of the form | - |~}. We further
explain using formula (5) that there is no general parabolic behavior in the contour equation
at the level of f.

Then, in Section 3, we prove global existence of unique C([0,T]; H*(R?)) solutions for
k > 3 if initially fy is controlled by || folli < ko where kg > 1/5; see (8) and Remark 3.2 for
the exact size of kg. We highlight that the calculations in this section improve substantially
over our previous work [5]. In particular, we also use these calculations to increase the
allowable size of the initial data in our global existence and uniqueness theorem for smooth
1D interfaces from [5] (see Remark 3.3).

Afterwards, in Section 4 we show that if an initial 2D interface satisfies ||V fol| oo (r2) <
1/3, then this property will be preserved in time. Then, using this maximum principle, in
Section 5 we prove global in time existence of Lipschitz continuous solutions in the stable
case for initial data satisfying || fol|pec(m2) < 0o and ||V fol|peo(r2) < 1/3.

Finally, in Section 6, we prove new results in both 2D and 3D which were not present in [5].
We are able to use the parabolic behavior of the problem to prove the existence of global in
time unique solutions in critical spaces under only the assumption || fo||1 < ko where we recall
that kg > 1/5. These solutions then satisfy ||f||1(t) € L°([0,T]) and || f||2(t) € L'([0,T]) for
any T > 0. The use of the || - ||; norm and the parabolic character of Muskat equation for
initial data of size kg allow to start with one derivative and gain one more derivative with
L' time integrability. Using more usual spaces, as Sobolev for example, energy estimates
permit to gain just half derivative with L? time integrability. On the other hand, the use of
|| - ||s norms presents an obstacle due to the fact that uniform a priori bounds for sequences
in L' do not provide in general weak convergence. It is possible to overcome this issue
claiming initial data of size ky by means of Mazur’s lemma that allows to obtain suitable
strong convergence for a regularized version of the problem. This result gives in particular
the regularity || f||c1(t) € L®([0,T)) and || f||c2(t) € L*([0,T]).

2 [? maximum principle

This section is devoted to the proof of the identity (5).
In order to simplify the exposition we take (p? —p!)/(27) = 1 and we write f(x,t) = f(z)
for a fixed t. Then, the contour equation (3) is given by:

_ Ayf(x) Y
pie = v [ V(o) e
where
Ay (@) = (F(z) — F(z —u)/lyl (6)



Integration by parts allows us to observe that

A, f(2)
sl 0 =V [ dy/ﬂggd”f |yr2[ (A f@) 7

_ . —y Asyf(2)
= PV/R2dy/de VI@) T T b

Next we split this into two terms,

v f(@))?
S IR0 / /RQ,QC_y,1+ T

. N S
PV [y [ dr =V (A @) - )

=11+ Is.

With these computations, a further integration by parts provides

_ 1 2N21Y2 Z 1) da
=[] om0 ey f@)2 = 1dady,

and this equality gives

1 1
31 = - /R /R o T )

From above (5) follows easily.
Next we show the bound

def 1 1
T /R /R WU~ @, ) et < V20l

which controls the integral J with zero derivatives. This expresses the fact that identity (5)
does not give a gain of regularity at the level of f. Besides the linearization (4), the nonlinear
structure of the equation does not yield a parabolic dissipation for large initial data.

In order to deal with J we observe that

1
J</ / dxdy.
w Je WV T T (@ )\Hf(l‘—y)l)Qly!‘Q]l/z)
Using the function H(z) =1 — (1 + 22)~"/2 and the fact that

H(|z1| + |22]) < H(V2|z1]) + H(V2|2])

it is easy to get

1 1
J</ / +1-— dl’dy,
2 JR2 Iy! L2l f () Ply 2] [1+2\f(:r—y)!2ly!‘2]1/2)

and therefore 1
J < 2/ / dxdy = K
r2 JR? |y\ 1+ 2lf(x )\2]y|_2]1/2>

By an easy change of variable one finds

1 1
KZQ\/?/R2 f(l’)’dx/RQ(M - W)d27

so that K = 47v/2||f|| 1. This provides the desired bound.
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3 A global existence result for data less than %

In this section we give a global existence result for classical solutions of the Muskat contour
equation. We consider the norm

1% [ de 1L 521, (7

which allows us to use Fourier techniques for small initial data. We prove the following
theorem:

Theorem 3.1. Suppose that initially fo € H'(R?) for 1 > 3 and ||foll1 < ko, where ko is a
constant such that

T ;(271 + 1)1+5Wk8” <1, (8)

for some 0 < 6 < 1. Then there is a unique solution f of (3) with initial data fo that satisfies
f€C(o,T]; H(R?)) for any T > 0.

Remark 3.2. Computing the limit case § =0, so that

(2n + 1)!
Ty (2n+1) @2 kT
n>1

one finds 0 < ko < 0.24874641998890142626. In particular, this holds if ko < 1/5.

Remark 3.3. Analogous estimations allow us to obtain a better size for ||foll1 than in [5]
in order to have a global existence and uniqueness result in 2D (1D interface). In fact, if
initially fo € HY(R) for 1 > 2 and || foll1 < co, where co is a constant such that

23 (2n+ 1) <1, (9)
n>1

for some 0 < § < 1/2, then there exists a unique solution f of the two dimensional Muskat
contour equation with initial data fo that satisfies f € C([0,T]; H/(R)) for any T > 0. In the
limit case 6 =0 we find

0 < co < \/(4— v/13)/3 ~ 0.3626057200026914,
and the result is true if for example || foll1 < 1/3.

The remainder of this section is devoted to the proof of Theorem 3.1. We point out that
the argument used in [5] does not work directly here. It is valid in 2D only. To overcome
the difficulty for 3D we need to symmetrize the operators involved in the equation to find an
extra cancellation. We define A, f(z) as in (6) and we take (p*> — p')/2 = 1 for the sake of
simplicity. The contour equation for the Muskat problem (3) can be written as

ft(xﬂt) :_Af_N(f)7 (10)

where the operator A is the square root of the negative Laplacian and we have

N(f) = - / T A F () R(Dy f(2))dy,

2 R2 |y\2



with R(z) = 1 — 1/(1 + 2%)3/2. A change of variable allows us to obtain

1

N(f) = o

/R2 'R (V Ay f(z)R(Ayf(x)) — VxA_yf(x)R(A_yf(x)»dy. (11)

We consider the norm || f||; (7) as follows:

G0 = [ de 1l (T + Fefe/ @ i©N
<— [ delePif©l+ [ de IFEE).

We will show that the first term controls the evolution in such a way that || f||; is decreasing
if initially
I folli < ko, where ko A 0.24874641998890142626.

Since |Ay f(z)| < || fl[1 < 1 we can use the Taylor expansion

(2n+1)!

_ n 2n : _
R(z) = —Z(—l) anz“", with a, = I

n>1

2] < 1,

to obtain

N() =5 S0 [ 2

R2 ’Z/‘Q

n>1 (12)
X (ValByf) (A2 = Tl Ay f) (Ay ) ) dy.
Recall that
FAyf) =FOm&y),  F(Valyf) =i&f(Om(&, ),
where  m(&,y) = (1— e “Y)/|yl. (13)

Therefore R R R
F(Va(Ayf) (A f)?M) = (i fm) * (fm) * - - % (fm))(€, a),
with 2n convolutions, one with i€ fm and 2n — 1 with fm. Using (12)

FON)(©) = S (-V7an [ dy [ dr-o [ deanrt 60

n>1
2n—1
< J&=e0)( T F&=61)) F(&2n) (May) — Ma(-0).
7j=1

where Mn(y) = Mn(fa 517 B 752717 y) is given by

2n—1

Ma(y) = m&=& ) ( T m(&=&11.9))m(an. ).

J=1



We then use Fubini theorem to obtain

Zan/ déy - /2d§2n

n>1

2n— (14)
x (E-&)f(E—&) < H =& ) (&an) - In,
where the integral I,, = I,,(§, &1, ..., {an) Teads
Ind:Cf_i—ln/ L (M) — Mo (—y))dy.
(1 [ () = M)y
Polar coordinates, y = ru with u = (cos 6, sin §), provide
+<>o
I, / ud@/ yu) — My (r, —u)),
where we redefine ‘
m(&,r,u) = (1 — e_”"g'“)/r,
and
2n—1
Mn(ra u) = m(§_£17 T, u) ( H m(gj _§j+17 r, u)>m(§2n7 T, u)
j=1
Since we have m(§, —r,u) = —m(&,r,—u) and —m(&, —r, —u) = m(§,r,u), the change of
variable r = —s yields

I, = i;(q)" /_iude /_OOO ds(Mi (s, 1) — My (s, —u),

I, = 8_—;(—1)” /iudH/Rdr(Mn(r, u) — M, (r, —u)).

The identity m(&,r,u) = i€ - u fol ds e~ D& allows us to obtain

Malr /m /“%Cnl —g) )mw

and therefore

1—e—ir(E—&1)u 2n_l
X o (zr( Z (sj—l)(fj—§j+1)+(82n—1)§2n) 'U)7
j=1

which is simplified by writing

e = 1 [ [ ( g )g

x <e><p<m o)

T T




with

2n—1

A= Z €j+1) (3271 - 1)§2n7

and

2n—1

—(E=&)+ (5= D& = &) + (520 — Dan.
j=1

It follows that

2n— l
n = ;Z Udg/dsl /dSQn ( §]+1) ) §2n.u

" / dr(exp(er u) exp(irB-u) exp(—ird-u) n exp(—n‘B‘u))
R

r r r r

and the equality PV [ drexp(ira)/r = misgn a yields

1 2n 1
In—— ud@/d81 /d32n —&jv1) - )

><§2n u(sgn (A -u) —sgn (B - u)).

At this point it is easy to bound I,,:

2n—1

1) <7 [T 16 = &alléenl-

j=1
The above estimate and (14) allow us to get

L 1elF©1 < 7Y an [ de [ deree [ dale

n>1
2n—1

€ =&allf =&l TT 16 —&llF & —&)lléanllf (€an)l-

J=1

The inequality [§] < [§ — & |+ [§1 — ol + - + [§2n—1 — &anl + |€2n] yields
A ~ 2n
JRECEIGIE I V([ aseP1fN)( [ astelion)

and therefore

2| F 2n
[ ezl < ( [ a1 r Y 2n+ Dalf13

n>1

<(/, d&\f?lf(&)\)?f(% -1)
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For 0 < z < kg ~ 0.2487461998890142626 one finds (1+2z2)/(1—2)%%—1 < 1/x. Therefore
if || foll1 < ko this inequality will be maintained when we propagate forward in time because
of

d
S <0

and || f[1(t) < [[follx < ko
Considering a higher order norm, with s > 1 in (7), we aim to obtain

t
1/ ll46(2) +u/0 ds |[fllz4s(s) < [[foll1+s; (15)

for some 0 < §d < 1 and 0 < p < 1. Let us recall that || fo|l116 < C|follgs for 0 <6 < 1. We
use the inequality

€170 < (2n 4+ 1)°(1€ = &M+ |6 — L0+ - 4 a1 — EanMTO + [2n] ),

to obtain as before

LI iEn e < [ ©lds w3 e+ 1M a 13"

n>1

Due to
1>7) @2n+ D)'"an)lfolli" =1 p>7) 20+ 1) anl £7(1),

n>1 n>1

for some 0 < p < 1, we find

/ €18 F(N)(€)de < (1 - p) / £ (€) e
R2 R2

for § small enough. Since
d
I lh+s(®) < —nll Fll2+5(2),

integration in time provides (15).
From previous work [9], one could find the following a priori bound:

thH 2 fl72 < PUNV o) IV Ffllee |V fles + IV fllzee V2 flos) | £l

where P is a polynomial function and | - |os is the homogeneous Holder norm. The terms
that appear in the evolution can be handled as in [9] (see Section 4) except for a couple of
low order terms:

VaAyf(@) -y (Ayf(2))3(0:, A, f(2)))?
vor! = [ s [ TR 71(+)<)Aif<x>§21§/2))) Ay,

) VL A7)y (B (0)) (P Dy ()
LoT?= [ ohste) [ T S v

We bound

A
LOT!)+L.0.T2 §2/ y/ Va yf ’\6;,31Ayf( N 3dydz = J.

9



Splitting J for |y| > 1 and |y| < 1 it is easy to find

J:/daz/ dy~l—/dx/ dy
R2 ly|>1 R2 ly|<1

d
< C133, llz2 |V £l 21V Fll e |V s |92 ] oc / v 4,

ly|>1 ly|*
1)
+Cl02, flI VT a9 flesl 9o [ ay,
ly|<1 ‘y|

Interpolation inequality |[VZf[|2, < ||V f||Le[|V?f|| 12 allows us to obtain
J < CIV £l |V FleslIV2 Fllzes 112

as desired. Proceeding in a similar way for |82, f||z2 we find

d
1z < PAVFI=) IV flloe |V Fles + IV Flloe V2 fleo)l 1 7gs-

Fourier transform yields ||[V*f||r=~ < | fllx and |V*f|cs(t) < || f|lkts for & = 1,2 and by
interpolation it is easy to obtain

[ ll2llf s < WSl Fll24s-

We find J
11z < PASIDIS 24615 s

which together with the a priori bound provides

¢
£ 113 (&) < [ foll s GXP(CP(ko)/O [fll2+5(s)ds),
after integration in time. Using (15) we get finally

£ 13 (8) < |l foll s exp(C P(ko)ll foll1+s/1)-

We finish with the conclusion that the solution can be continued in H? for all time if || fo||1
is initially smaller than ko defined by (8). An analogous calculation gives

[ 11 (8) < [l foll e exp(CP (ko) foll1+5/ 1),

getting the result for any H* for k > 3.

4 Initial data smaller than 1/3

In this section our goal is to prove the following maximum principle for the evolution of
|V fll Lo (t) assuming that ||V fo| /L~ < 1/3.

Theorem 4.1. Let fo € H® with s > 4 and ||V follr~ < 1/3. Then the unique solution of
the system (3) satisfies
IV fllree(t) < 1/3, for t>D0.
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Proof: We consider (p? — p')/2 = 1 without loss of generality. We take one derivative in
x; in (3) to find A ‘ ‘
O, fr(@,t) = L (2, 1) + Iy(x, t) + I3(x, 1),

where TP = 1pv/ vamzf(xa t) Y dy
o Jee [y + () — fle =y, )22
) 1 Vc’)mf(z—y,t)-y
I, =——PV d
2 27 ~/RQ Hy‘Q + (f(ﬂj‘,t) - f(l' - yvt))Q]g/z Y
and i1 Op, [ (2, )= 0u, f(x—y, 1) Alw,)dy
3 27 R2 Hy|2+(f(x,t)—f(x—y,t))2]3/2 7 7
with

(e~ @ -y ) (V@ t) — Vi —y.0) -y
Ale.y) =3 WE+ (/@) flz—p)P |
Integration by parts yields
7 _7i (azzf(x t)_azif(w_%t))
L==5.1" /R [0E + (f(2.0) — fla —g.0)7p Y
_ i (axif(xvt)_azif(w_%t))
T /R 0P+ (@) — f(@ — 5. 0)2P

WP+ (flat) — fla—y, )V —y) -y
Blx.y) =3 WE T @) — [ — ) |

B(z,y)dy,

where

Adding I and I one finds

Y 0t @)= Ouf@—pt)
B B= 5PV [ G ey 0 (16)

where C = A+ B — 2.
Consider

M(t> = gé%é {<8x1f(x7t))2 + (amf((]},t))Q} = (azlf(wht))z + (3$2f($t,t))2.

Next we follow the time derivative of M (t) to find that M’(t) < 0 for almost every ¢ > 0 if
M(0) < 1/9. This will yield the desired result.
We obtain
M(t) = 2(0n, [ (@, )00, fi(w1,) + Ouy [ (@4, 8) Oy fi (1, 1))
for almost every ¢ (see [10} for more details). It gives
=2 Z ax-bf J:ta -[2 Tty )+I§('Tt)t)))
i=1,2

due to the fact that at the maximum we have

&Blf(azt, t)[ll (act, t) + &mf(xt, t)I%(xt, t) = 0.
Equation (16) shows that it remains to check that C(x¢,y) > 0. We write

Cla,t) =1+ 3Ayf(:”)(Zf((zlf(;)fyf(x))’

for u =y/|y|. It is easy to check that it is positive if |V f||re < 1/3.
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5 Global existence for initial data smaller than 1/3

Here we prove the existence of weak solutions for the Muskat contour equation. First we
provide the notion of weak solution. It is possible to rewrite (3) as follows:

_r . vy Ayf<$)
ft == 2ﬂ_vsc PV/]R? |y’2 [1 4 (Ayf(x))2]1/2dy’ (17)

where p and A, f(x) are defined as before. Then integrating by parts in the nonlinear term,
it is easy to find that for any n(z,t) € C>°([0,T) x R?), a weak solution f should satisfy

/OT/R2 ne(z,t) f(x, t)dedt + /}1@2 n(z,0) fo(z)dx

_ [ p y A
= Jy J Tt Y [ et 09

The main result we prove below is the following:

Theorem 5.1. Suppose that || follL~ < oo and ||V follLee < 1/3. Then there exists a weak
solution of (18) that satisfies

fla,t) € C([0,T] x R?) N L([0, T]; WH°(R?)),
for any T > 0. In particular f is a global in time Lipschitz continuous solution.

We split the proof of Theorem 5.1 in several sections. A regularized model is defined
below in (19) with solutions f¢(z,t); here the model will be defined for a sufficiently small
€ > 0. In Section 5.1 we prove some necessary a priori bounds for f¢(z,t). They are used
in Section 5.2 to give global in time existence of classical solutions to the regularized model.
Then, in Section 5.3 we explain how to obtain the weak solution as a limit as ¢ — 07; to this
end we will establish to a strong convergence result.

The regularized model is given by

fi(x,t) = —eCAYFf 4 eAfe

“a e Y |G A

where C' > 0 is an universal constant fixed below, the operator A'~¢ is a Fourier multiplier
given by Al=¢f(&) = €]} f(£) or equivalently using its integral from by

Alfef(x) =c. ($) B f(.ZE — y)d

R2 |y|3—¢

)

with € small enough. We define Af(z) = 92 f(z) + 82, f(x), and A, f(z) is given in (6).
In the next two subsections we write f = f¢ for the solution to (19) for the sake of
simplicity of notation.

12



5.1 A priori bounds

For solutions of the regularized system (19) we get the following two a priori bounds

[fllLee < N folleee, IV fllze < IV follze <1/3.

The first one is obtained by checking the evolution of
M(t) = max f(z,) = f(z1,1).
x

Here x; is thought of as the point where the maximum is attained.
For almost every ¢ we find

M() = filwn,t) = —eCA == f(a1) + 2 f (@) + 2=1(w2),

with
_ . Yy Ayf(x)
I(l‘) =V, PV - dy|y’2,5 [1+ (Ayf(x))2]1/2
Since o) =, v | dy r—y Apyf(x) (20)
z R2 ’33 — y[2_5 [1 + (Aa;—yf(x))2]1/27
it is easy to find
B fx) = fy) 1
I(z) =PV /RQ dy |z —y|3=¢ [1+ (Am—yf(x))2]1/2 (21)

V() (& —y) — ((x) — f(4)
Y e W — Pt (Bay f @)

The previous formula shows that for C' large enough
—eCA"F f(zy) + %I(xt) <0.

Then M'(t) < 0 for a.e. t € (0,7] because Af(x;) < 0 and therefore M(t) < M(0).
Analogously m(t) > m(0).
Next we consider the evolution of

L(t) = m?‘R}g(amf(x? t))2 + (8x2f(x7t))2 = (8x1f(x;7 t))2 + (8962]6(1:;775))2'

S

We can proceed as in the previous section, but in this case more terms will appear. In 0, f;
we have analogous terms that can be handled as before. Terms with the correct sign, that
appear due to —eA'=¢f and eAf in (19). And a new element J'(x) has terms which are

iven b
U [ CE N .
e PP [+ (A, f(2))2P2

That is

O, fr(x) = —eCAY20,, f(x) 4+ eAd,, f(x) + 2£J’(x) + “Analogous terms”.
T
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In checking the time derivative of L

() =2 O, f (), )00, filx}, 1),

i=1,2

all the terms are handled as before but for

LN Ou f(ah) T ().

i=1,2

But at this point it is easy to check that

—eC Y On SN O J (@) + = D Bu (@) T (a7) <0,

i=1,2 i=1,2

for C big enough. Therefore L'(t) < 0 if y/L(t) < 1/3 for almost every t. This yields the
desired maximum principle.
5.2 Global existence for the regularized model

We consider regular initial data fy € H* for the system (19). Local existence can easily
be proved using the energy method following the arguments for the non-regularized Muskat
problem (3), as in [9].

As we did for (3), it follows that

1+¢ _
Gl = =2 [ [ e 1 (A7) dady
R2 [ =y
— 2Ce|| A2 f|| 1 (8) — 22|V £l 2 ().
Therefore |[f|[12(t) < [lfollz2-
Remark 5.2. The global existence theorem for weak solutions can also be found with

lfollz2 < oo instead of || follpe < oc.

We chose the version above because it is more general. We see that if the solution satisfies
initially a L? bound then f(x,t) € L>([0, T); L*(R?)).

Next, we consider the evolution of

/ 03, frdw < —Cel|ACI203 [l 12 (t) — el VOE, fII7> + I + I,
where R ’
hi=o | 03 f(2)0%, (PV /R 2 s dy)dx,
(Vi) =Vi@—y) yl1-[1+(Ayf(2)) ]3/2
= g Ju B (PY |, Vi 1+ @ PP )

14



The term V f(x) cancels out in I; due to the PV and an integration by parts shows that
= —ﬁc / 2)AVE03 f(a)dw < 0.

For I5 one finds

p (VF(@) = Vi@ —y) -y [+ (A, f(2)*P2 -1
I, = % 84 f(a:)({)il <PV - ly|3—= [1—|—(Ayf(a?))2]3/2

and the splitting Is = J1 4+ Jo + J3 + Jy gives

p (VO3 f(x) =V flx —y) -y 1+ (A, f(2)?]P? -1
27T/R2 Bﬁlf(x) /]R2 P [+ (A, f(x))23/? dydzx

dy) dx,

J1 =

30 (vamf(x) — Vaanf(x — y)) Y A 6x1f(x)A f(x)
= 7r/ 3§1f(3?)/ Y3 [ly—i— (Ayf(x)%2]5/2dyd$a

_30 [ gty [ (V@) = V@ —y) -y A @A f()
J3— o /Rzaanf( )/R? |y|3_€ [ ( yf( )) ]5/2dyd )

Ja= gifr /]1@2 8§1f($) /RQ (Vf(x) _|yv’3f—(ex — y)) : y(Ayaﬂﬂf(x)) [ L ( (yf( 3?2])7/2 dydzx.

For J; we proceed as follows

=L (/ do [ dwe [y [ dx> < CEIfle= + VIVE2, 7l 2% 2
T \/yl>1 R?2 ly|<1 R2

The identity

1
OO, (1) — OO (2 — ) = / V03,00 (2 + (5 — 1)y) - yds,

yields

4 2 o T T —
1 < 2 / / = / 4|0 £ (2)[[ V20, £ (4 (5 — )| ([Oes £ ()] +10es £ (2 1))

+?f/od8/|>1 B o RS II 00 (a4 -1
X ([0 2) 100 S =) (£ (@) 41 =),

and therefore
| Jao| < CE)A+ 1 FllLoo) IV FllLoe 107, £ 1| 121 V?8ay £l 12
In J3 we use the splitting J3 = K1 + K5 where

_3/)/ dy/ dx, K2_3p/ dy/ dx,
T Jlyl>1 RR2 21 Jiy|<1 RR2

15



and then

3 d
Ko < 2Vl [ S [ dnlod £, 5] + 102, £ - )
T ly|>1 Yl R2
< CIVAlle=1192, 71121122, 7.
< CIVAl=102,F2(1 ll2 + 1122, 7112)
The equality
Orif (@) =0, flw —y) = | VO, flw+ (s = D)y) - yds,

allows us to obtain

3p ! dy 4 2 _
g6l < LIVl [ 05 | [, dalotF@)IVeE, f(o + (s = 1))

<1 |y*e
< C|IV fllellOg, fllz2 V02, £l e

In J4 we use the splitting J4 = K3 + K4 where

3 3
ngp/ dy/ dx, K4:p/ dy/ dx,
21 Jiy|>1 RR2 21 Jiy<1 RR2

dy
C 2 — [ dz|o? Dz, Op, f(z —
Kl S CIV Sl [ s [ ol S0 @)+ 100 @ 0))

< CIVFlIz< 110z, fll2 100 f 2
< CIVFIIZee |0z, Fllz2(f N2 + 1102, £llz2)-

and then

The equality
1
02, f(w) — 02, flw — ) = /0 V2, f(w+ (s — 1)y) - yds,

allows us to obtain

1 1
K| < OV 1]l / ds / dr / e 2dy / dz|ot, ()
0 0 ly|<1 R2

X |V, [+ (s = 1)Y)||VOz, f(z + (r = 1)y)])
< OV F L 102, 2]V a, fII7-

The following estimate

102,02, flI74 < BV F | oo 10, Oy F11 741102, 0%, £ 2,

yields
|Ka| < OV f113 1103, fll L2 IV 02, flI2-

Using Young’s inequality

d
2102, £z < CE Nz + IV Fllzee + 1V F Iz + DIFI1Es-

16



Proceeding in a similar manner, at this point it is easy to find

d
105, Fl72 < CEUF L + IV Flz= + IVl + DI fIlErs,

and therefore

d
£l < CEU N7 + 1V F T + 1V Fllzee + DIF -

The Gronwall inequality then yields

t
110) < ol exo ([ Cle)Gspas)

for
G(s) = ([IF 17 (s) + IV f 7o (5) + IV flI 7 (5) + 1).

We find f € C([0,T]; H3(R)) for any T > 0 by the a priori bounds.

For the argument in next sections we will need f € C([0,T]; H*(R)) for any T > 0.
Therefore we consider the evolution of four derivatives. Most of the terms can be controlled
as before. We will show how to deal with the rest using the estimate of the H? norm. Since

[ 94,104 fido < ~CE|AU/20%, F1a() - €| V0L, fI32 + L + Lo,
R

where
(V@) = Vi —y) -y
L= o / Pv /R 2 = dy) dz,
4 g (Vf(x) = Vix—y) yl—[1+ (A, f(z)) ]3/2

Ly = 27‘(‘ / 8:(:1 PV /R2 ‘y|3_5 [ ( yf( ))2] dy)dm
The term L; has the correct sign as I;. For Lo one finds

(V@) = Vi —y) gL+ A f @) P2 -1

e fu B ol L+ (e )

and the splitting Lo = M7 + My + M3 + My gives

o (VO f(z) = VO3 flx—y) -y [1+ (A, f(2)?3? —1
=g [0 [ i T+ (B, ()
My = 5 /R2 Oy, f( )/R2 lyPP—< 1+ (Ayf(x))2]5/2dyd ,

9p (VOr, f(2) =VOu, f(x —y)) -y o (AyOui [(2)Ay [ ()
Mz = or /R2 9, f(x) /R? = Oz, <[1 n (Ayf(x))2]5/2)dydx’

_ (V@) = V@ =)y (DO f(@)A,f ()
My = o /Rz agl (z) /R? ly[F= 821 <[1 n (Ayf(x))2]5/2)dydx'

17



For M; and Ms we obtain as before

M|+ M| < C(e)(+ || fllzee) IV fllpee + 11103, fll 2 lL.f Nl e

In M3 we use the splitting M3 = N1 + No where

_9 5 (VOr, f(2) = Ve, f(x = Y)Y \ o0 Ay f(z)
M=o /R 02, f(@) /]R . M A2 f(z) e (Azf(a;))2]5/2dydw’

9 (V0,, f(x) — Voo f(z— ) -y
N = o /R 02, (@) /R yP—

1—4(Ayf(2))?
[1+ (Ayf ()27

Nl—g’)/ dy/ daf+9p/ dy/ de,
21 Jiy)>1 R2 21 Jiyj<1 R2

X (8D, f(2)? )dyda,

We take

to find as before
|Ni| < C)107, fll 21V Oz, fll s (102, flls + 1V, £l La)-
By Sobolev embedding

N1 < CENOZ, el f s (1F s + 1Lfllara).

Similarly for Ny

N2:9p/ dy/ d:ﬁ+9—p dy/ dx,
21 Jiy1>1 R2 21 Jiyj<1 R2

therefore

[Na| < C)102, £l 22110z, fllzo (102, fll 2o [V 0z, f1l 2
+[1V20s, 1l 141V 0, £l 1),

which yields

[Na| < C)02, fle2 IV foll oo 1 f s (1Y foll oe + 1 f 1),

For M, we split further My, = N3 4+ N4 + N5

30 [y [ V@ =V @ =)y sy Ayf(a) )
N3 = o /Rz 9, f( )/R? y3—< A0y, f( )[1 n (Ayf(x))2]5/2dyd ,

N4:9p/Qaglf(x)/ﬂp(vf(x)_vf(x_y))'y

o =
- 2
X Ayailf(x)Ayamf(x) L 4(Ayf(x )

[+ (Ayf(x))?]7/2

18



N5:3”/Rza5 f(x)/RQ(Vf(tf)—Vf(éﬂ—y))'y

SR M
< (B0, fla)y? 2B @) 8D, (@) =T

[1+ (Ayf ()22

dydz,

For N3 one finds
IN3| < C@)N02, Fll2 IV fllee (103, fll 2 + V0, fl2)
< C@O2, Fll2 IV foll e (1 fllazs + 1£1 24,

and similarly for Ny

[Nl < CEN0Z, fle2 IV Fllze (107, £l 21100, Fllzoe + VO, fll el Vay £ 1)
< CEN, N2V foll oo 1 s (IV Foll oo + [1F | )

Finally, for N5 we conclude that

N5 < CN02, Fle2 IV Fllze (10, fll 221100, FllZoe + IV Oz, £II76)
< CENZ, fllz2 1V foll oo (1l s IV ol e + [1F 1 F7)

by Sobolev embedding.
If we gather all the estimates above and use Young’s inequality, it is not difficult to check
that

/R2 0y, £ ()0, fo(x)da <C(e)(1+[|follZoe) A+ IV foll Zoe ) L+ FI17)1L.f 74

+CE) A+ IV Hollzee) L + 11 3e)-

A repetition of the argument for 8:%2 gives

/R2 0, f ()05, fi(z)dz <C (&) (A4 foll 7o) (1+V foll 7o) (LH+IF 1 78) 1 £ s
+ C(e)(1+ [V fol Foo) X+ 1| £11%5)-
Therefore
d
ﬁ\\f\!fm <C (&) A+ follFo) A+IV foll 7o) L4 F1F3) 1F 1 s
+CE) 1+ [V foll 3 ) X+ £ %s)-

We use the Gronwall inequality and additionally the control of the H? norm to obtain the
desired global estimate for H*.

5.3 Taking ¢ — 0%

This section ends the proof of Theorem 5.1 by showing that solutions of the regularized
system converge to a weak solution.

First we approximate the initial data to have a global solution of the regularized system.
An approximation to the identity ¢ € C2°(R?) is defined as follows:

[drc@ =1, €20 @) =co). where Gla) =/l (22)
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Then, for any fo € WH°(R?) and ||V fo||z~ < 1/3, we define the initial data for the regular-
ized system as follows
(G * fo)(z)

75 = rep

Notice that f§ € H*(R) for any s > 0, and || f§||zec < || fo| L. More importantly, |V f§| L~ <
1/3 if € is sufficiently small (¢ depends upon the size of || fo||z). Therefore global existence
of the regularized system (19) holds with initial data f§ under the condition that ¢ > 0 is
small enough.

Now consider the solutions {f¢} to the regularized system (19) with initial data given by
the f§ as described above. Integration by parts provides

T
/ / ne fEdxdt +/ e(CAY™8 — A)n fodxdt + n(x,0)f; (z)dx
0 JR? R2 R (23)

T e
p y Ay fe(x)
- Ven(z, t -PV/ dydzdt,
/0 - @0 o 2 (Y1277 [1 4 (Ay fe(2))?] /2

M

for any n € C°([0,T) x R?).

Now we send ¢ — 0T to in order to obtain (18). The third integral above converges
as a result of the properties of the the approximation to the identity which was previ-
ously introduced. The second integral converges to 0 because of the bound || f¢| e (t) <
|| follee. Together with the other bound (||V f¢||r(t) < 1/3), we find the existence of
a subsequence (denoted again by f¢) that converges in the weak™® topology to a function
f € L*([0, T); Wh*°(R?)) by the Banach-Alaoglu theorem. This provides the solution f and
implies the convergence of the first integral in (29). It remains to check that as e — 07 we
have

r T y Ay ()
/0 dt /R2 dx Vn(x,t) QTFPV/RQ dy ly[2—< [1+(Ayf€(x))2]1/2

T N 'y Ayf(x)
—>/0 dt /}R dx Vn(z,t) 27TPV/R? dy ly[2 [1+(Ayf(x))2]1/2'

We let Bg denote the open ball of radius R and center (0,0), then we claim that there is
a subsequence (denoted again by f¢) such that

£ = fllzee(o,r)xBr) — 0, as & — 0. (24)

We will prove this at the end of the section by using a strong convergence theorem. Since
fe € C([0,T] x R) for any € > 0 and, up to a subsequence, f¢ converges to f on compact
sets, we obtain f € C([0,T] x R).

Choose M > 0 so that supp(n) € Bjs. For any small 6 > 0 and any large L > 1, with
L > M + 1 we split the integral as

/dy:/ dy+/ dy—i—/ dy. (25)
R2 Bs BL—Bs B

3
The first and last integrals separately are arbitrarily small independent of ¢ for L > 0 suffi-
ciently large and for § > 0 sufficiently small: The bound

‘ Ay fe(x)
[1+ (Ayfe(2))?]/?

20



yields

4 T y Ayf(x)
/0 dt/]R2 dx Vn(z,t) QWPV/B(; dy y|2—= 1+ (Ayfs(x))2]1/2

For the integral on B} we note that

< plIVall o, xr2)0-

z_/ldszds_z/llds
[+ 22112 Jo ds[1+(s2)2]2 7 " Jy [14(s2)23/2

and therefore

z 11 52)213/2 1
[+ 22172 Z<1 +/o : [1[—|1rJ(rsi)2])3/]2 ds) = (1 - 22/0 52h(32)d8> :

where h(sz) = (3 +3(s2)% + (s2))/([1 + (52)%]3/2(1 + [1 + (52)?]3/?)). This expression allows
us to split

Yi Ay fe(x) el g
PV/BE W Y2 [1+ (A fe ()22 R(f7)

, 1
—PV/B dy %(Ayfs(a;))?’/o $2h(sAy f€(x))ds,

¢ ly|*—=

for ¢ = 1,2. Here Rf’L has the form

€ _ .
RZE,L(‘][‘E) d:e‘c PV dy f (w Sig)yl
B¢ |yl

)

with the principal value at infinity. On the other hand in the second term in the left hand
side the principal value is not necessary and we obtain
dy _ C|foll3

1
dy/dsSC’fEsoo/ <
/i 0 170 Be |yl*e L

It remains to show a similar bound for

& d:ef/B dx Vn(z,t) - (R?L(fa)a R;’L(fs))-

.. . L 7 L
The principal value yields I~ = nlg]g@ I where

mz/cmwmw/‘ dy fo(x—y) L
B ‘y’

Bn\BL

Integration by parts provides

Ik = /BM d n(m,t)(/o% (f(a;ﬂ—_:m) _ f(i:_f/u))da

B [ —y)
+a E)/Bn\BL ly|3—¢ dy)’
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for |u| = 1, which allows us to bound the following term as

1 1
11 < oo (s + s )

Hence
175 < ClInll 1]l follpoe /L2

and we conclude that I” is arbitrarily small if L is arbitrarily large.
For the last integral we recall that we have uniform convergence on compact sets. Due to
y € B, — Bs and x € B); we have

v B v A
[ [, onen 27rPV/BL\35 W T By @)

T N v Ayf(x)
—)/0 dt /R dx Vn(x,t) 27TPV/BL\B(5 dy PE [1+(Ayf(117))2]1/2’

as e — 0T,

For L sufficiently large and § > 0 sufficiently small, we conclude by taking e — 0.

It remains to prove the strong convergence in L*([0,T]; L*°(Bg)) for any R > 0 which
was claimed in (24). The idea is to use the weak space Wi *°(Bg) to obtain bounds for
fi(x,t) which are uniform:

€ —2,00 < oo
tes[l(;,pT} 1 f; ||W* 2, (BR)(t) <C|follz (R2)> (26)

where C' does not depend on R or . For v € L*>(Bg) we consider the norm || - ||W_2,OQ(BR)
as follows:

ol 2oy = . s o(w)o(a)da|

W, (Br) : [¢ll21<1 1V Br

w21

where WOQ’l(BR) = CgO(BR)W . Now the Banach space W, >*°(Bg) is defined to be the

completion of L>°(Bg) with respect to this norm || - [|;;,~2,cc (By)- We have the following result
for convergence in this space (see [5] Lemma 4.3):

Lemma 5.3. Consider a sequence {u,,} in C([0,T] x Bg) that is uniformly bounded in the
space L ([0,T); WH°(Bg)). Assume further that the weak derivative Opu,, is in the space
L>([0,T]; L*°(Bg)) (not necessarily uniformly) and the weak derivative is uniformly bounded
in L>=([0, T); Wy >*°(Bg)). Finally suppose that 8y, u, € C([0,T] x Bg) fori =1, 2 and any
m (not necessarily uniform). Then there exists a subsequence of u,, that converges strongly
in L((0,T]; L(Br)).

By applying this lemma the strong convergence claimed in (24) is obtained. It only
remains to check the hypothesis of the lemma. For any regularized solution f¢ to (19) we
need ff in L>([0,7]; L°°(Bg)) (but not uniformly) and (26). Due to f¢ € C([0,T]; H*(R)),
in (19) it is easy to bound the linear terms. The nonlinear term can be written as

N(f) - _ CaAlfsfs

Y (V@) —Vfix—y)y -1+ (A, f(2)?]/?
otV L, g2 L+ (A,f(@)2p?

22



and therefore
[N ()] < Ce)|| /[ 1a(t),
by Sobolev embedding.
The norm of f£ € W, >°°(Bg) is given by

HftEHW—Q,oo B (t) = sup
* (Br)
EW  (BR):|¢ll 2.1 <1

)

/ dz £ (2, 8)6()
R

since ¢ vanishes on the boundary of Br. Then we have
= [ A p@ewn = [ A f@ods = [ f@a o),
BR R2 R2

and therefore
| < (1 fllzos () IAT ]l 1
We split
Mg =c [ AD=0ETY) [ vt [ dy=n)+ n).
R2 lyl ly>1 lyl<1

so that

d
fon@ies [ oGt [ aow)]+ 16t - ) < Cloluy

We rewrite Jy as follows

[ e =6 —y) - V() -y
o) = /|y<1 PG i

We also consider the following identities

1
o(x) — dlz —y) = /0 Vo + (s — 1)y) - yds,

1 1
() — pla—y)—Vo(z) -y = /0 (s—1)ds /0 dry - (V26(z +r(s—1)a) - ),

The expression for Js and these identities together yield

1 1
a@lde< [t [ s [ar [ de (W0l (s = Dy
R2 lyl<1 0 0 R2
< CIV*9ll i (mp)-
We obtain
HAliEfEHW*—ZOO(BL) + HAfEHV[/;?»OO(BL) <C HfEHLOO(R?) <C HfO”LOO(RQ) :

For the last term in (19) we integrate by parts

P Yy Ayf(x)
/Rdl‘ ng(g:) PVQ’]TPV/R2 dy|y|2,€ [1+(Ayf(l’))2]l/2

to realize that the splitting from (25) with L = 6 = 1 allows us to conclude that the integral
above is bounded by C||¢[lw 11 || foll foo ()
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6 Global existence for initial data in critical spaces

This section is devoted to show global existence results for strong solutions of the Muskat
contour equation in critical spaces.

Theorem 6.1. Suppose that fo € L? and || foll1 < ko (|| folli < co for the 2D case). Then
there is a unique solution f of Muskat with initial data fo that satisfies

t
1£llz2 (@) < [ follz2, ||f|!1(75)+u/0 dsl| fll2(s) < [l follx,

for p >0, a.e. t €[0,T] and any T > 0. The time derivative of f satisfies

T
1illo(t) < C, /0 ds| fill(s) < C,

where C' = C(]| foll1)-

Remark 6.2. The scale invariance for Muskat solutions f>(x,t) = % f(Ax, At) makes the
following norms critical:

T
ess sup seio.11 1111 (6), /0 s f]12(s)-

The control of these norms gives in particular solutions such that

T
esssup o1V fllco (6) + 1 /0 a5V fllco () < ol

where Cy is the space of continuous functions vanishing at infinity.

Proof: For fy such that || fo||1 < ko we proceed as before to obtain the following a priori
bound

%“f‘h@) <0, [Iflh(t) < ko.

Due to
1>7) @2n4 Danlfoli* =1—p=7>_ 20+ anll fI3"(t)

n>1 n>1

for 0 < p < 1, we find

d

— t) < — t

S () < —ul 7 a(0)
(see Section 3 for details) and time integration gives the desired a priori bound

t
140+ [ 1£llatedds < ol

We also find

/ dé|f(©)] < / deléll Fo)l+ / delFN (O] < I A+ S anll 13" < Clfoll)s (27)

n>1
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and similarly

T . T —~
| [aasteiiior< [ [ a1+ eFvino))

T
< / at Fla(0 (147 S @ntDanllF127) < C(1foll).

n>1

(28)

Next we would like to find a bona fide solution of Muskat satisfying those bounds. We
consider the following regularized model

fi =G+ (T(f7),  [7(x,0) = (¢ = fo)(x),

e _ 1 Yy Ay(Ce x f9)(x)
T(f )(a:)_%vx.Pv/ dy ’y|2 F (By(Cx ) @)

(we take p =1 for the sake of simplicity and (. given by (22)). Local existence can be shown
as in [9] for regular initial data, since fy € L? it is easy to find (. * fo € H* for any k > 0.
Then, as in Section 2, it is possible to obtain an L? maximum principle:

e 1 1
sl == [ w0 T ) e

Due to ||¢ * f&]|c2s < ||1Ce * fElga < C)|felre < C(e)| follr2 it is possible to get global
in time bounds and therefore global existence for f¢ € C([0,T); H) for any k > 3 and any
T > 0 (see Section 2). Proceeding as before we find

where

t
1511 (#) +u/0 dsl|¢e + f7ll2(s) < [ folls-

Next, we will take the limit as ¢ — 0. We will find strong and weak limits so most of the
time the argument will be up to various subsequences. All of them will be denoted by f&»
by abuse of notation.

In particular f¢ is uniformly bounded in L>°([0,T]; L?) so that there exists a subsequence
{fé"} which converges in the weak™ topology of L>([0,T]; L?) to f. The subsequence { f a"} is
also uniformly bounded in L*([0,T] x R?) so there exists a subsequence { feny that converges
weakly to f € L2([0, 1) x R2). Then it is easy to check that (., * fon Y&, t) = C(ené) Fon (€, 1)
converges weakly to f € L2([0,T] x R2).

We use Mazur’s lemma to conclude that a convex combination

N(n)

Gn(&,1) = (GH(&,1), GA(E,1)) ZAk (FF (6. 1), Clerd) FH (&, 1)),

~

of (fa" (&,1), (snﬁ)fgn (&,t)) with (-, -) denoting a vector and

N(n)

=0, > =1,
k=n

converges strongly to (f, f) in (L2([0, T x R?))?. We extract a subsequence (denoted by Gy,)
to get that G, (&,t) converges to (f(£,t), f(€,t)) pointwise for almost every (&,t) € R? x [0, 7.
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Therefore for t € [0, 7] \ 2 with |Q] = 0 we find that G} (£,t) converges to f(&“, t) pointwise
for almost every £ € R2. We use Fatou’s lemma to conclude that for ¢ € [0, 7] \ © and

M(t) = [[F11(t) + s /O s fl1(s),

the following holds
t
M(e) <timint ([ agiglGhe 0]+ [ ds [ aciePIGe o)

N(n) t
liminf S Ao [ dgl¢||Fe ds [ d¢|€]2|C(exé) Fo*
<ipint 3 o [aelel e+ [ as faseices = e.0)
N(n)

t
<timint 3 (154004 [ dsllG = £12()) < Lol
k=n

Therefore .
esssupte[o,T]llflh(t)+u/0 dsl| fll2(s) < [[foll1-

In order to find that the limit function f satisfies Muskat equation we claim that f is a
weak solution. Then the regularity of f allows to conclude that it is in fact a strong solution.
We will follow the arguments in Section 5 and Lemma 5.3 to get strong convergence in L*°.
We just need to bound f&* uniformly in L*([0, T); Wy >*°(Bg)). But

127 oo gy () < 177 e (&) < 1657 0(8) < C (1L o),

since the last inequality can be obtained as we did in the a priori bound (27). Since {f"}
satisfies

T
/ / e, )50 (x, t)dadt + / 0z, 0)(Co, * fo) (2)da
0 JR2

" ! Y A (G xS () dyderdt
/ 2(Ce, xm) (1) - Qﬂ-PV/Rzyy‘Q 1+ (Ay(CEH*fgnxx’t))gp/za (29)

we can pass to the limit as €, — 0 and the strong convergence gives f as a weak Muskat

solution.

Now we have f a strong Muskat solution due to its regularity and we can find bounds
(27) and (28). In order to end the result we just need to get uniqueness.

We consider two Muskat solutions f; and fo with the above properties and fi(z,0) =
fa(z,0) = fo(x). Then for the difference f = f; — fo we find

=I1+1I1+1II1
2dtlIfHLzO + 11+ 1,

where
/f Vi PV/ [ly|? + fl(w—y))z]?’”dydx’
_ e Vf(:r - y) Y N
=gy [10PV [l e e
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and

Y 1 1
111 = /f /VAny |— WAL (Any(x))2]3/2>dydx.

We integrate by parts in I to get

I=3 [If@PA@Ms, tor Alz) = 1PV [ L5 Emfé/fy(z)é;’)él]ggdy

Next, we bound as follows
A < [ deFE).

In order to deal with F(A)(£) we proceed as for N(f) in (10). Since z(1 + 22)7%/2 =
> o bz for |2 < 1 we can obtain

/dflf( (] *Illez ) ol (£ () < Cll foll)Ifll2(2).
n>0
This yields
< C(lfoll)ILAllOIF1Z2 ).

In the term IT we write V f(x —y) = V,(f(x) — f(z — y)) and integrate by parts in y to
find I = I1; + Il where

= (@) - flz ) )
=g [10PV [ @ e

and

=g [PV [(7) - £ - v)

(filz) — filz — ) (filz) — filz —y) — Vfilz —y) - y)
" [ly|2 + (fi(x) — fi(z —y))2]5/2 dydzx.

One could symmetrize I1; to get

a1 () — 1) )
m=f/ eyl + (h(@) - AP =0

For 1 we split further Il = II} + I12 where

II; :3/]f(x)|2B(x)dx, for B(x) = PV/ (x,y)dy,

1 Ay fi(e) ~ Vil —y) - )

Blew) =up 1+ By i ()22 ’

and

IIQ—/f PV/fa: B(z,y)dydz.
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Since .
fi(2) — filz—y) = /0 Vi@ + (s — 1)y)ds -y,

we denote .
Jo Vii(z+ (s —1)y)ds — V fi(x —y)
lyl

VAL fi(x) =

to rewrite B as follows

Ve Ay fi(x)Ay fi(2)
()= 5P /!y\3 1+ (Ayfi(z ))2]5/2dy

At this point it is easy to find that B and A are similar in such a way that an analogous
analysis allows us to obtain

|B(z)] < *Ilflllz ) D Bal (LAl ()2 < Sl foll) L fll2(2)-

n>0

It is possible to symmetrize 115 as follows

1= 32 [ 1PV [17e = 9)By) + Fla + ) Bl ~y)ldyda,

and to use Parseval’s identity in order to obtain

1= [aF@ Y tn [aafic-e) [de- [ dens

n>0
2n+1

x (§1—&2) ( H F&—¢&n )f1(§2n+2) “Jn

The integral J,, = Jp(&, &1, -+, Eant2) reads

where M’n(y) = Mn(éa §17 v 75271-&-27 y) is given by

is(1—€2)y _ 1
e
Tm(§2 _537 y)

X m(&3—E4,y) ... m(Eans1—E2nt2, ¥)m(Sont2, Y),

Mn(y) = e*i(fffl)'ye*i(fl —&2)-y

using the operator V, Ay in the B(z,y) formula. With the PV cancelation we get

2n+1

3T
[Jnl < —- H &5 — &i+1ll&2n+2l,

j=1
and therefore

115 < /d€|f I Bal[LF1%(] - 1P A1) * Ak [1A]) - (- 11LAD] )

n>0

2n+2 convolutlons

3
< §‘|f||%2”fl||2z Bal A" < CUSlDIA 2@ 172(2)-

n>0
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Above we use Schwarz’s and Young’s inequalities. It yields the desired estimate for I1:

I < C(| ol fllz®1F 1172 2.

We expand 111 to obtain

1= [ @ (-1, [ T VoA RA@ (A @) = (B ala) P

Since
II] = /f 1)”an/wy‘2-VxAyf2(x)Ayf(x)
2n
% S (A fi(@) (A fole) Y dyde,
j=1

we split further 111 = I11; 4+ 1115 to find

I = /|f D (-1 an, PV » |3 VA, foz)
n>1
2n

X D (A fir(@) > (Ay fo(x) Y~ dyda,

and

IIIQ—/f

~1)"a, PV / f@ =) s Vel fole)

n>1
X D (A f1(@)?" I (Ay folx)) dyde.

We can proceed as before to get

IT1 < || 122 (@)1 £2l2(2) Z2nan||fo\l2" L Clfoll) 212 NLf 172 (2)-

n>1

We deal with 11, as with IIQZ:

111 < || flIZ= (@)l fll2(t) ZQnaanoH?” P Ul fllONf172).

n>1

We obtain finally

thllfHLz( ) < CU Al ULAlI2(E) + [ f2ll2 @I (D),

and time integration provides

130 < Ll exo (CALl) [ (1Ailas) + 1 flla(o))s).
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to find f = 0. This completes the proof of uniqueness. O
Next we consider the following norms for s, p > 1 given by

112, = [ lermIF©Pae,
with the homogeneous space
FP ={T € 8'(R) : T is a function and |T|sp < 00}
We provide the following result:
Theorem 6.3. Suppose that fy € L?> N Fh N .7:27%’]9 with p > 1 and

[ follx = Il fo

11 < ko, (|lfolli <coin 2D).
Then there is a unique solution f of Muskat with initial data fy that satisfies
e L0, T); L2 0 FHL 0 7275 %) A LY([0, T); F21) 0 L7 ([0, T); F2P)
for any T > 0. The time derivative of f satisfies
fi € Lo(0,T); FOL 0 FY5 %) A LY([0, T); F21) 1P ([0, T); F1o).

Remark 6.4. We would like to point out that all the homogeneous norms

T 1/p
p
o -y and ( /0 1718, (t)dt)

are critical in 2D under the scale invariant for Muskat contour equation. In 3D these norms
are supercritical due to the fact that, for example,

sup | fll2,2(¢)
[0,7]
18 critical.
In particular, we give a new result in Sobolev spaces taking p = 2. In the case 1 <
p < 2 it is possible to use Hausdorff-Young inequality to find f € LOO([OjT],WZ_%’#) N
L# (0, T]; W*5°1)

Proof: For fy such that ||fo|l1 < ko we proceed as before to obtain a priori estimates.
Next we check the evolution of

~ —~

Sl s, = [P IROP ROTO + FORON IFOD
<- / deleIF ()P + / delEPP FE)PIFN()E)]
R R
= [ asiePrifior +1
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We bound as follows

2(p=1)| F(£)|p—1
1< [ dgPohfie) LIS J R

2n—1

x |€ = &llfE =) [T 16 =&+ llF (& —&a0)lEanll f(Ean)l-

j=1
The inequality || < [€ —&1] + €1 — &o] + .o + |San—1 — Eonl| + |E2n] glves
/d5|§!2p DIf(e)P- Ly @n Dan (|- PIA) (- 11D %+ - [1FD](©).
N— ———

> .
n21 2n convolutions

Holder and Young’s inequalities yield
-1 ~ ~ R
I< | fl5, w20+ Danll( - PLA) (- 1171) * - ox (- 11D s
—_——

>1 .
n= 2n convolutions

-1
<A1, 7Y 20+ Danl| fllapll £

n>1

Due to
1>7) @2n+Dan|folli* =1-p>7) 20+ Dan| fI7"(2)

n>1 n>1

for 0 < p < 1, we find
LIS 0 < —ul 15,0,
and time integration gives the following a priori bound
15,0+ o0 | sl 18, (5) < Il
We also find
/délft(f)! S/Rdf\fllf(f)l+/Rd£\f(N(f))(£)|
<A@ +7)anllfF") < 2.

n>1
For g € L7 7 and ||g||L%1 <1 we find

~

/R deg(€)[€) P i) < / delg(ON(EP7 T + €| F(N ()
< flyory +

Using that €)' 7 < (J€ — &' 77 + €1 — & 77 + . + €201 — Eanl 77 + |2n]'7) we get
/dsrg 123 @+ (- PR (- 11D * (- 1FD] )
n>1 —

2n convolutions

<> @n+ D el FI7 sy < COSOI I o

n>1
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Therefore duality provides
1felli—1 , < C[follD follo—z -
P p

An analogous approach provides

T
/ dt”ft”%[),p(t) < C(HfOHl)
0 pu

In order to find bona fide solutions of the system we regularize the initial data as in
the previous theorem. We then obtain the same a priori bounds for the regularized solution
as above. We pass to the limit to find a global-in-time solution. We find weak® and weak
convergence of the regularized system to the Muskat solution in the weak* and weak topology
of L>([0,T7; ]__2—%,;3) and LP([0,T]; F?P) respectively using that for p > 1 the spaces LP are
reflexive.

p
Hf0||27%7p
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