Maximal functions, non-tangential limit

Analysis 111

1 Maximal functions

Definition 1 Let f € LP(R"), 1 < p < co. The (Hardy-Littlewood) mazimal
function my(z) is defined as

1
mya) =sup o [ |fwldy
P o 1B )] e
Here B(z,r) C R" is the Euclidean ball centered at x with radius r, and |B|
denotes Lebesgue measure. We introduce a variant of the maximal function
for convenience. We define

ns(@) =sup— [ |f(w)ldy

Qz ‘Qxl Qx
and call it the cubic maximal function. Here ), = x 4+ () are non-degenerate
open cubes centered at x and with sides parallel to the axis, @ = (—r,r)"
where r > 0 is a real number. We use the notation x +Q = {y| g € Q, y =
x + ¢}, Tt is clear that there exist two constants depending on dimension of
space only so that

eng(x) < my(x) < Cng(x)

holds for all f. It is also clear that if f € L>(R") then ||m(f)||ze < ||f]lLz
holds.

Lemma 1 Let Q1 C Q2 C --- C Q be a finite family of nonempty open
cubes with sides parallel to the axis, centered at the origin. Assume that
a bounded set S C R"™ is given, and we have associated to each x € S a
number i(x) € {1,...k} and with it the cube Qy = x + Qi(x), translate of the
corresponding Q). Then there exist a finite collection of points xy,...,x
such that

S - Uilexi
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and for any y € R"™ there exist at most 2" cubes )., to which y may belong.

Proof. We pick z; so that i(x) is largest available. Then we choose 5 €
S\ Q, so that i(xq) is largest available from i(x) with z € S\ @,,, then
x9 € S\(Qy, UQ,,) with maximal available i(z), and we continue inductively.
We obtain a sequence of open cubes centered at x; € S such that z; ¢ Q.
for any ¢ # 7. This implies that the distance between the centers is bounded
below by the smallest of the half-lengths of sides of ();, i.e. by half the side
length of @, which is positive. Because z; € S, and S is bounded, the
sequence must be finite and the union of cubes covers S. Now assume that
y € R" is arbitrary. We consider hyperplanes passing through y with sides
parallel to the axis. These form 2" octants. If z; and x; belong to the same
octant, and y € Q,, N Q, then, if, say, Q,, has the bigger side of the two,
then z; € Q,;, contradicting the construction. So at most one ()., per octant
can contain .

Theorem 1 There exists a constant ¢ depending only on dimension such
that, whenever f € L'(R™) and

Fy={z e R"|my(z) >s >0}

then .
|Fy| < ngHLl(dx)-

Proof. We are going to use ny, prove the inequality for it, and deduce it
therefore for my. Let
S CA{x|ng(x) > s}

be a compact set. For any = € S there exists (by definition) a non-empty
open cube (), centered at x such that

1
Q:| Jo,

Because of the continuity of the integral, there exists a neighborhood U of
x, so that for every p € U we have

[f(y)ldy > s

1

10, o |f(y)|dy > s



where @), = p — 2 + Q). We cover S with finitely many such neighborhoods,
and select the cubes @y, ... Qy, associated to them (we may order them by
size). Thus, for any p € S there exists an index i(p) such that

1

_ d
@l Jo, |f(y)|dy > s

where @, = p + Q). By the Lemma, we have a finite collection of points
T1,...x; so that
S cU_,Q,,

and every point y € R" belongs to at most 2" sets (),,. This means that

l
> xo., (¥) < 2"xue, ()
=1

where xo denotes the characteristic function of the set (). Now

<32 o, Wy = 5 [ (3 xa., () [f(¥)ldy
< 2" Juo, FWldy < 21 fll 1 (an) -
This concludes the proof. The map f +— my is sublinear, in the sense that

Mg < myp—+mg and mey = |c|my. If h € LP we take the two functions g(z)
and f(z) = h(z) — g(x) where

hz), i ()| < 1
9(1’):{ 0, if h(z) > 1.

Clearly g € L*™ and f € L', and by sublinearity
mp < my +my.

Therefore my, is almost everywhere finite. The maximal operator is not
bounded in L!, but is of weak type 1 — 1. (That means precisely the in-
equality in the theorem).

Definition 2 Let T be a sublinear operator mapping LP(R"), 1 < p < o0
into a space of measurable functions. We say that T is of weak-type (p,q), if
there exists a constant C' such that

{z [T (F)(@)] > s} < (Cs7H [ fllzrgan)”
holds for all f € LP(R™).



The maximal operator is bounded all L”, 1 < p. In order to see this, we refer
to the distribution function

Ag(s) = | [f(z)] > s}

and recall that

T —— / Pdr(s) = p / U0 (s)ds

Theorem 2 There exist constants C,, depending on dimension n and on
p > 1 such that

Il e () < Cpnll £ Lr(az)
holds for every f € LP(dx).

Proof. Let 1 < p < o0, let s > 0. We let

BEORIAGED
fs(f”)‘{ 0 if |f{z)] < s

and

sy [ fla) if [f(@)] <,
f@)_{ 0 if |f(z)] > s,

Then clearly f = f, + f%, fs € L'(dz), f* € L°°(dz). We denote by A, A, \*®
the distribution functions of my, my,, mys. By subadditivity,
myp < my, 4 mys

and hence A\(2s) < A (s) + X°(s). But myps < || f*||poo(an) < 8, 50 A%(s) = 0.
So, A(2s) < As(s) holds. We obtain therefore
||mf||7£p(dx) p2pf0 sP=IN(2s)ds <p2pf PN (s)ds
< prCf ||fs||L1 dz) = Cp2? fo If(2)|>s |f(z)|dx
= Cp2 o |1 (@ \f‘f“” s7-2ds = CF2 [oo | f (o) de

This proves the theorem. Now note that if ¢ = ﬁx B, is the normalized

characteristic function of the unit ball (normalized so as to have integral
equal to one) then the maximal function can be written

my(x) = sup (¢c * [ f])

e>0
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where

Pelw) = (%)

and (f * g)(x) = [ f(x — y)g(y)dy is convolution. Similarly, if ¢ is the

characteristic function of the unit cube (—3, 3)", then

ny = sup (Ve * | f])

Many operators in analysis are bounded by the maximal operator. Let us
consider real positive numbers ci, and balls centered at the origin B, =

B(0,r). Let
¢ =) kX
k=1
where Yy is the characteristic function of By. Then

(9256 * |f|)($) = ZZO:I cre " f|y|§€rk |f(I - y)ldy
= S nt il Bel (€"[Be) ™ [ 1f (w — yldy
<myg(w) D202 ekl Brl = mp ()]0l 21 (ax)

By approximating from below by step functions we have

Proposition 1 Let ¢(x) = a(|x|) be a radial function with a(r) > 0, a(r)
decreasing. Then

sup(lf| * 60) (@) < [|llcramym s ()

holds for every f € LP(dz).

Cn

—=_— r = |z| we obtain,
(]_+r2)T

In particular, by choosing a(r) =

(¢e * f)(l’) = o f(y)pe(fﬂ - y)dy - Pe(f)<x)

the Poisson integral of f where p;(z) = CHW is the Poisson kernel for
te+|z|¢) 2

the half-space.

Proposition 2 Let f € LP(R™), 1 < p < 0o and let P(f)(x) be its Poisson
integral, t > 0. Then

| P(f) ()] < my(x)



Exercise 1 Prove that there exists a positive constant C, so that

my(x) < Csup Py(f)(x)

t>0

holds for any f > 0 function in LP.

We define now, for o € R™ and aperture «, the cone in R’}fl
Lo(z0) = {(z,t) € R" | |2 — x| < at}

Definition 3 We say that u(x,t) has the nontangential limit | at xq if, for
any o > 0
lim u(z,t) =1
(z,t)—(20,0), (z,t)eTa(z0)

where (x,t) tends to (xo,0) within the cone Ty (xg).

Theorem 3 If f € LP(R"), 1 < p < oo then the Poisson integral

P(f)(z) = . f)pi(z —y)dy

has the nontangential limit f(xo) at any point xy belonging to the set of
Lebesgue points of f.

Proof. We use the fact that, for (z,t) € I'y(x0)

pe(z —y) < dopi(zo — )

with d, a positive constant depending on o and n. Then we write

1P(f)(@) = f(zo)| = | fan pe(@ — u) [f () — f(x0)] dy]
< Jan 1F W) = fxo)lpe(z — y)dy < do [ |f(y) — f(20)|pe(z0 — y)dy

The theorem is proven on the basis of the following exercise:

Exercise 2 Let f € LP(R"), 1 < p < oo and let ¢p(x) = a(|z|) be a function
with a(r) positive and decreasing, and with [, ¢(x)dx = 1. Let ¢ (x) =
e "g(%). Then

lim || f(z0 —y) — f(z0)|de(y)dy = 0

e—0 R™

holds for any point xqy in the Lebesgue set of f.



