Maximal functions, non-tangential limit

Analysis III

1 Maximal functions

Definition 1 Let $f \in L^p(\mathbb{R}^n)$, $1 \le p \le \infty$. The (Hardy-Littlewood) maximal function $m_f(x)$ is defined as

$$m_f(x) = \sup_{r>0} \frac{1}{|B(x,r)|} \int_{B(x,r)} |f(y)| dy$$

Here $B(x,r) \subset \mathbb{R}^n$ is the Euclidean ball centered at x with radius r, and |B| denotes Lebesgue measure. We introduce a variant of the maximal function for convenience. We define

$$n_f(x) = \sup_{Q_x} \frac{1}{|Q_x|} \int_{Q_x} |f(y)| dy$$

and call it the cubic maximal function. Here $Q_x = x + Q$ are non-degenerate open cubes centered at x and with sides parallel to the axis, $Q = (-r, r)^n$ where r > 0 is a real number. We use the notation $x + Q = \{y | \exists q \in Q, y = x + q\}$, It is clear that there exist two constants depending on dimension of space only so that

$$cn_f(x) \le m_f(x) \le Cn_f(x)$$

holds for all f. It is also clear that if $f \in L^{\infty}(\mathbb{R}^n)$ then $||m(f)||_{L^{\infty}} \leq ||f||_{L^{\infty}}$ holds.

Lemma 1 Let $Q_1 \subset Q_2 \subset \cdots \subset Q_k$ be a finite family of nonempty open cubes with sides parallel to the axis, centered at the origin. Assume that a bounded set $S \subset \mathbb{R}^n$ is given, and we have associated to each $x \in S$ a number $i(x) \in \{1, \ldots k\}$ and with it the cube $Q_x = x + Q_{i(x)}$, translate of the corresponding $Q_{i(x)}$. Then there exist a finite collection of points x_1, \ldots, x_l such that

$$S \subset \cup_{i=1}^{l} Q_{x_i}$$

and for any $y \in \mathbb{R}^n$ there exist at most 2^n cubes Q_{x_i} to which y may belong.

Proof. We pick x_1 so that $i(x_1)$ is largest available. Then we choose $x_2 \in S \setminus Q_{x_1}$ so that $i(x_2)$ is largest available from i(x) with $x \in S \setminus Q_{x_1}$, then $x_2 \in S \setminus (Q_{x_1} \cup Q_{x_2})$ with maximal available i(x), and we continue inductively. We obtain a sequence of open cubes centered at $x_i \in S$ such that $x_i \notin Q_{x_j}$ for any $i \neq j$. This implies that the distance between the centers is bounded below by the smallest of the half-lengths of sides of Q_i , i.e. by half the side length of Q_1 , which is positive. Because $x_i \in S$, and S is bounded, the sequence must be finite and the union of cubes covers S. Now assume that $y \in \mathbb{R}^n$ is arbitrary. We consider hyperplanes passing through y with sides parallel to the axis. These form 2^n octants. If x_i and x_j belong to the same octant, and $y \in Q_{x_i} \cap Q_{x_j}$ then, if, say, Q_{x_j} has the bigger side of the two, then $x_i \in Q_{x_j}$, contradicting the construction. So at most one Q_{x_i} per octant can contain y.

Theorem 1 There exists a constant c depending only on dimension such that, whenever $f \in L^1(\mathbb{R}^n)$ and

$$F_s = \{ x \in \mathbb{R}^n \mid m_f(x) > s > 0 \}$$

then

$$|F_s| \le \frac{c}{s} ||f||_{L^1(dx)}.$$

Proof. We are going to use n_f , prove the inequality for it, and deduce it therefore for m_f . Let

$$S \subset \{x \mid n_f(x) > s\}$$

be a compact set. For any $x \in S$ there exists (by definition) a non-empty open cube Q_x centered at x such that

$$\frac{1}{|Q_x|} \int_{Q_x} |f(y)| dy > s$$

Because of the continuity of the integral, there exists a neighborhood U of x, so that for every $p \in U$ we have

$$\frac{1}{|Q_p|} \int_{Q_p} |f(y)| dy > s$$

where $Q_p = p - x + Q_x$. We cover S with finitely many such neighborhoods, and select the cubes Q_1, \ldots, Q_k , associated to them (we may order them by size). Thus, for any $p \in S$ there exists an index i(p) such that

$$\frac{1}{|Q_p|}\int_{Q_p}|f(y)|dy>s$$

where $Q_p = p + Q_{i(p)}$. By the Lemma, we have a finite collection of points $x_1, \ldots x_l$ so that

$$S \subset \cup_{i=1}^{l} Q_{x_i}$$

and every point $y \in \mathbb{R}^n$ belongs to at most 2^n sets Q_{x_i} . This means that

$$\sum_{i=1}^{l} \chi_{Q_{x_i}}(y) \le 2^n \chi_{\cup Q_i}(y)$$

where χ_Q denotes the characteristic function of the set Q. Now

$$|S| \le |\cup Q_{x_i}| \le \sum_i |Q_{x_i}| \le \frac{1}{s} \sum_i \int_{Q_{x_i}} |f(y)| dy = \frac{1}{s} \int \left(\sum_i \chi_{Q_{x_i}}(y) \right) |f(y)| dy \le 2^n \frac{1}{s} \int_{\cup Q_i} |f(y)| dy \le \frac{2^n}{s} ||f||_{L^1(dx)}.$$

This concludes the proof. The map $f \mapsto m_f$ is sublinear, in the sense that $m_{f+g} \leq m_f + m_g$ and $m_{cf} = |c|m_f$. If $h \in L^p$ we take the two functions g(x) and f(x) = h(x) - g(x) where

$$g(x) = \begin{cases} h(x), & \text{if } |h(x)| \le 1\\ 0, & \text{if } |h(x) > 1. \end{cases}$$

Clearly $g \in L^{\infty}$ and $f \in L^1$, and by sublinearity

$$m_h \le m_f + m_g$$

Therefore m_h is almost everywhere finite. The maximal operator is not bounded in L^1 , but is of weak type 1 - 1. (That means precisely the inequality in the theorem).

Definition 2 Let T be a sublinear operator mapping $L^p(\mathbb{R}^n)$, $1 \le p \le \infty$ into a space of measurable functions. We say that T is of weak-type (p,q), if there exists a constant C such that

$$|\{x \mid |T(f)(x)| > s\}| \le \left(Cs^{-1} ||f||_{L^p(dx)}\right)^q$$

holds for all $f \in L^p(\mathbb{R}^n)$.

The maximal operator is bounded all L^p , 1 < p. In order to see this, we refer to the distribution function

$$\lambda_g(s) = |\{x \mid |f(x)| > s\}|$$

and recall that

$$\|g\|_{L^p(dx)}^p = -\int_0^\infty s^p d\lambda_g(s) = p \int_0^\infty s^{p-1}\lambda_g(s) ds$$

Theorem 2 There exist constants C_{pn} depending on dimension n and on p > 1 such that

$$||m_f||_{L^p(dx)} \le C_{pn} ||f||_{L^p(dx)}$$

holds for every $f \in L^p(dx)$.

Proof. Let 1 , let <math>s > 0. We let

$$f_s(x) = \begin{cases} f(x) & \text{if } |f(x)| > s, \\ 0 & \text{if } |f(x)| \le s, \end{cases}$$

and

$$f^{s}(x) = \begin{cases} f(x) & \text{if } |f(x)| \leq s, \\ 0 & \text{if } |f(x)| > s, \end{cases}$$

Then clearly $f = f_s + f^s$, $f_s \in L^1(dx)$, $f^s \in L^{\infty}(dx)$. We denote by $\lambda, \lambda_s, \lambda^s$ the distribution functions of m_f, m_{f_s}, m_{f^s} . By subadditivity,

$$m_f \le m_{f_s} + m_{f^s}$$

and hence $\lambda(2s) \leq \lambda_s(s) + \lambda^s(s)$. But $m_{f^s} \leq ||f^s||_{L^{\infty}(dx)} \leq s$, so $\lambda^s(s) = 0$. So, $\lambda(2s) \leq \lambda_s(s)$ holds. We obtain therefore

$$\begin{aligned} \|m_f\|_{L^p(dx)}^p &= p2^p \int_0^\infty s^{p-1} \lambda(2s) ds \le p2^p \int_0^\infty s^{p-1} \lambda_s(s) ds \\ &\le p2^p C \int_0^\infty s^{p-2} \|f_s\|_{L^1(dx)} = Cp2^p \int_0^\infty s^{p-2} \int_{|f(x)| > s} |f(x)| dx \\ &= Cp2^p \int_{\mathbb{R}^n} |f(x)| \int_0^{|f(x)|} s^{p-2} ds = C \frac{p2^p}{p-1} \int_{\mathbb{R}^n} |f(x)|^p dx \end{aligned}$$

This proves the theorem. Now note that if $\phi = \frac{1}{|B_1|}\chi_{B_1}$ is the normalized characteristic function of the unit ball (normalized so as to have integral equal to one) then the maximal function can be written

$$m_f(x) = \sup_{\epsilon > 0} \left(\phi_\epsilon * |f| \right)$$

where

$$\phi_{\epsilon}(x) = \epsilon^{-n} \phi(\frac{x}{\epsilon})$$

and $(f * g)(x) = \int f(x - y)g(y)dy$ is convolution. Similarly, if ψ is the characteristic function of the unit cube $(-\frac{1}{2}, \frac{1}{2})^n$, then

$$n_f = \sup_{\epsilon > 0} \left(\psi_\epsilon * |f| \right)$$

Many operators in analysis are bounded by the maximal operator. Let us consider real positive numbers c_k , and balls centered at the origin $B_k = B(0, r_k)$. Let

$$\phi = \sum_{k=1}^{\infty} c_k \chi_k$$

where χ_k is the characteristic function of B_k . Then

$$\begin{aligned} (\phi_{\epsilon} * |f|)(x) &= \sum_{k=1}^{\infty} c_{k} \epsilon^{-n} \int_{|y| \le \epsilon r_{k}} |f(x-y)| dy \\ &= \sum_{k=1}^{\infty} c_{k} |B_{k}| \left(\epsilon^{n} |B_{k}|\right)^{-1} \int_{\epsilon B_{k}} |f(x-y)| dy \\ &\le m_{f}(x) \sum_{k=1}^{\infty} c_{k} |B_{k}| = m_{f}(x) \|\phi\|_{L^{1}(dx)} \end{aligned}$$

By approximating from below by step functions we have

Proposition 1 Let $\phi(x) = a(|x|)$ be a radial function with a(r) > 0, a(r) decreasing. Then

$$\sup_{\epsilon>0} (|f|*\phi_{\epsilon})(x) \le \|\phi\|_{L^1(dx)} m_f(x)$$

holds for every $f \in L^p(dx)$.

In particular, by choosing $a(r) = \frac{c_n}{(1+r^2)^{\frac{n+1}{2}}}, r = |x|$ we obtain,

$$(\phi_{\epsilon} * f)(x) = \int_{\mathbb{R}^n} f(y) p_{\epsilon}(x - y) dy = P_{\epsilon}(f)(x)$$

the Poisson integral of f where $p_t(z) = c_n \frac{t}{(t^2+|z|^2)^{\frac{n+1}{2}}}$ is the Poisson kernel for the half-space.

Proposition 2 Let $f \in L^p(\mathbb{R}^n)$, $1 \le p \le \infty$ and let $P_t(f)(x)$ be its Poisson integral, t > 0. Then

$$|P_t(f)(x)| \le m_f(x)$$

Exercise 1 Prove that there exists a positive constant C, so that

$$m_f(x) \le C \sup_{t>0} P_t(f)(x)$$

holds for any f > 0 function in L^p .

We define now, for $x_0 \in \mathbb{R}^n$ and aperture α , the cone in \mathbb{R}^{n+1}_+

$$\Gamma_{\alpha}(x_0) = \{(x,t) \in \mathbb{R}^{n+1} \mid |x - x_0| < \alpha t\}$$

Definition 3 We say that u(x,t) has the nontangential limit l at x_0 if, for any $\alpha > 0$

$$\lim_{(x,t)\to(x_0,0),\ (x,t)\in\Gamma_{\alpha}(x_0)}u(x,t)=l$$

where (x, t) tends to $(x_0, 0)$ within the cone $\Gamma_{\alpha}(x_0)$.

Theorem 3 If $f \in L^p(\mathbb{R}^n)$, $1 \le p \le \infty$ then the Poisson integral

$$P_t(f)(x) = \int_{\mathbb{R}^n} f(y) p_t(x-y) dy$$

has the nontangential limit $f(x_0)$ at any point x_0 belonging to the set of Lebesgue points of f.

Proof. We use the fact that, for $(x, t) \in \Gamma_{\alpha}(x_0)$

$$p_t(x-y) \le d_\alpha p_t(x_0-y)$$

with d_{α} a positive constant depending on α and n. Then we write

$$|P_t(f)(x) - f(x_0)| = \left| \int_{\mathbb{R}^n} p_t(x-y) \left[f(y) - f(x_0) \right] dy \right|$$

$$\leq \int_{\mathbb{R}^n} |f(y) - f(x_0)| p_t(x-y) dy \leq d_\alpha \int_{\mathbb{R}^n} |f(y) - f(x_0)| p_t(x_0-y) dy$$

The theorem is proven on the basis of the following exercise:

Exercise 2 Let $f \in L^p(\mathbb{R}^n)$, $1 \leq p \leq \infty$ and let $\phi(x) = a(|x|)$ be a function with a(r) positive and decreasing, and with $\int_{\mathbb{R}^n} \phi(x) dx = 1$. Let $\phi_{\epsilon}(x) = \epsilon^{-n} \phi(\frac{x}{\epsilon})$. Then

$$\lim_{\epsilon \to 0} \int_{\mathbb{R}^n} |f(x_0 - y) - f(x_0)| \phi_{\epsilon}(y) dy = 0$$

holds for any point x_0 in the Lebesgue set of f.