
Maximal functions, non-tangential limit

Analysis III

1 Maximal functions

Definition 1 Let f ∈ Lp(Rn), 1 ≤ p ≤ ∞. The (Hardy-Littlewood) maximal
function mf (x) is defined as

mf (x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)|dy

Here B(x, r) ⊂ Rn is the Euclidean ball centered at x with radius r, and |B|
denotes Lebesgue measure. We introduce a variant of the maximal function
for convenience. We define

nf (x) = sup
Qx

1

|Qx|

∫
Qx

|f(y)|dy

and call it the cubic maximal function. Here Qx = x+Q are non-degenerate
open cubes centered at x and with sides parallel to the axis, Q = (−r, r)n

where r > 0 is a real number. We use the notation x+Q = {y| ∃q ∈ Q, y =
x + q}, It is clear that there exist two constants depending on dimension of
space only so that

cnf (x) ≤ mf (x) ≤ Cnf (x)

holds for all f . It is also clear that if f ∈ L∞(Rn) then ‖m(f)‖L∞ ≤ ‖f‖L∞

holds.

Lemma 1 Let Q1 ⊂ Q2 ⊂ · · · ⊂ Qk be a finite family of nonempty open
cubes with sides parallel to the axis, centered at the origin. Assume that
a bounded set S ⊂ Rn is given, and we have associated to each x ∈ S a
number i(x) ∈ {1, . . . k} and with it the cube Qx = x+Qi(x), translate of the
corresponding Qi(x). Then there exist a finite collection of points x1, . . . , xl

such that
S ⊂ ∪l

i=1Qxi
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and for any y ∈ Rn there exist at most 2n cubes Qxi
to which y may belong.

Proof. We pick x1 so that i(x1) is largest available. Then we choose x2 ∈
S \ Qx1 so that i(x2) is largest available from i(x) with x ∈ S \ Qx1 , then
x2 ∈ S\(Qx1∪Qx2) with maximal available i(x), and we continue inductively.
We obtain a sequence of open cubes centered at xi ∈ S such that xi /∈ Qxj

for any i 6= j. This implies that the distance between the centers is bounded
below by the smallest of the half-lengths of sides of Qi, i.e. by half the side
length of Q1, which is positive. Because xi ∈ S, and S is bounded, the
sequence must be finite and the union of cubes covers S. Now assume that
y ∈ Rn is arbitrary. We consider hyperplanes passing through y with sides
parallel to the axis. These form 2n octants. If xi and xj belong to the same
octant, and y ∈ Qxi

∩ Qxj
then, if, say, Qxj

has the bigger side of the two,
then xi ∈ Qxj

, contradicting the construction. So at most one Qxi
per octant

can contain y.

Theorem 1 There exists a constant c depending only on dimension such
that, whenever f ∈ L1(Rn) and

Fs = {x ∈ Rn | mf (x) > s > 0}

then
|Fs| ≤

c

s
‖f‖L1(dx).

Proof. We are going to use nf , prove the inequality for it, and deduce it
therefore for mf . Let

S ⊂ {x | nf (x) > s}

be a compact set. For any x ∈ S there exists (by definition) a non-empty
open cube Qx centered at x such that

1

|Qx|

∫
Qx

|f(y)|dy > s

Because of the continuity of the integral, there exists a neighborhood U of
x, so that for every p ∈ U we have

1

|Qp|

∫
Qp

|f(y)|dy > s
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where Qp = p− x+Qx. We cover S with finitely many such neighborhoods,
and select the cubes Q1, . . . Qk, associated to them (we may order them by
size). Thus, for any p ∈ S there exists an index i(p) such that

1

|Qp|

∫
Qp

|f(y)|dy > s

where Qp = p + Qi(p). By the Lemma, we have a finite collection of points
x1, . . . xl so that

S ⊂ ∪l
i=1Qxi

and every point y ∈ Rn belongs to at most 2n sets Qxi
. This means that

l∑
i=1

χQxi
(y) ≤ 2nχ∪Qi

(y)

where χQ denotes the characteristic function of the set Q. Now

|S| ≤ |∪Qxi
| ≤

∑
i |Qxi

|
≤ 1

s

∑
i

∫
Qxi

|f(y)|dy = 1
s

∫ (∑
i χQxi

(y)
)
|f(y)|dy

≤ 2n 1
s

∫
∪Qi

|f(y)|dy ≤ 2n

s
‖f‖L1(dx).

This concludes the proof. The map f 7→ mf is sublinear, in the sense that
mf+g ≤ mf +mg and mcf = |c|mf . If h ∈ Lp we take the two functions g(x)
and f(x) = h(x)− g(x) where

g(x) =

{
h(x), if |h(x)| ≤ 1

0, if |h(x) > 1.

Clearly g ∈ L∞ and f ∈ L1, and by sublinearity

mh ≤ mf +mg.

Therefore mh is almost everywhere finite. The maximal operator is not
bounded in L1, but is of weak type 1 − 1. (That means precisely the in-
equality in the theorem).

Definition 2 Let T be a sublinear operator mapping Lp(Rn), 1 ≤ p ≤ ∞
into a space of measurable functions. We say that T is of weak-type (p, q), if
there exists a constant C such that

|{x | |T (f)(x)| > s}| ≤
(
Cs−1‖f‖Lp(dx)

)q

holds for all f ∈ Lp(Rn).
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The maximal operator is bounded all Lp, 1 < p. In order to see this, we refer
to the distribution function

λg(s) = |{x | |f(x)| > s}|

and recall that

‖g‖p
Lp(dx) = −

∫ ∞

0

spdλg(s) = p

∫ ∞

0

sp−1λg(s)ds

Theorem 2 There exist constants Cpn depending on dimension n and on
p > 1 such that

‖mf‖Lp(dx) ≤ Cpn‖f‖Lp(dx)

holds for every f ∈ Lp(dx).

Proof. Let 1 < p ≤ ∞, let s > 0. We let

fs(x) =

{
f(x) if |f(x)| > s,

0 if |f(x)| ≤ s,

and

f s(x) =

{
f(x) if |f(x)| ≤ s,

0 if |f(x)| > s,

Then clearly f = fs + f s, fs ∈ L1(dx), f s ∈ L∞(dx). We denote by λ, λs, λ
s

the distribution functions of mf ,mfs ,mfs . By subadditivity,

mf ≤ mfs +mfs

and hence λ(2s) ≤ λs(s) + λs(s). But mfs ≤ ‖f s‖L∞(dx) ≤ s, so λs(s) = 0.
So, λ(2s) ≤ λs(s) holds. We obtain therefore

‖mf‖p
Lp(dx) = p2p

∫∞
0
sp−1λ(2s)ds ≤ p2p

∫∞
0
sp−1λs(s)ds

≤ p2pC
∫∞

0
sp−2‖fs‖L1(dx) = Cp2p

∫∞
0
sp−2

∫
|f(x)|>s

|f(x)|dx
= Cp2p

∫
Rn |f(x)|

∫ |f(x)|
0

sp−2ds = C p2p

p−1

∫
Rn |f(x)|pdx

This proves the theorem. Now note that if φ = 1
|B1|χB1 is the normalized

characteristic function of the unit ball (normalized so as to have integral
equal to one) then the maximal function can be written

mf (x) = sup
ε>0

(φε ∗ |f |)
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where
φε(x) = ε−nφ(

x

ε
)

and (f ∗ g)(x) =
∫
f(x − y)g(y)dy is convolution. Similarly, if ψ is the

characteristic function of the unit cube (−1
2
, 1

2
)n, then

nf = sup
ε>0

(ψε ∗ |f |)

Many operators in analysis are bounded by the maximal operator. Let us
consider real positive numbers ck, and balls centered at the origin Bk =
B(0, rk). Let

φ =
∞∑

k=1

ckχk

where χk is the characteristic function of Bk. Then

(φε ∗ |f |)(x) =
∑∞

k=1 ckε
−n

∫
|y|≤εrk

|f(x− y)|dy
=

∑∞
k=1 ck|Bk| (εn|Bk|)−1 ∫

εBk
|f(x− y|dy

≤ mf (x)
∑∞

k=1 ck|Bk| = mf (x)‖φ‖L1(dx)

By approximating from below by step functions we have

Proposition 1 Let φ(x) = a(|x|) be a radial function with a(r) > 0, a(r)
decreasing. Then

sup
ε>0

(|f | ∗ φε)(x) ≤ ‖φ‖L1(dx)mf (x)

holds for every f ∈ Lp(dx).

In particular, by choosing a(r) = cn

(1+r2)
n+1

2
, r = |x| we obtain,

(φε ∗ f)(x) =

∫
Rn

f(y)pε(x− y)dy = Pε(f)(x)

the Poisson integral of f where pt(z) = cn
t

(t2+|z|2)
n+1

2
is the Poisson kernel for

the half-space.

Proposition 2 Let f ∈ Lp(Rn), 1 ≤ p ≤ ∞ and let Pt(f)(x) be its Poisson
integral, t > 0. Then

|Pt(f)(x)| ≤ mf (x)
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Exercise 1 Prove that there exists a positive constant C, so that

mf (x) ≤ C sup
t>0

Pt(f)(x)

holds for any f > 0 function in Lp.

We define now, for x0 ∈ Rn and aperture α, the cone in Rn+1
+

Γα(x0) = {(x, t) ∈ Rn+1 | |x− x0| < αt}

Definition 3 We say that u(x, t) has the nontangential limit l at x0 if, for
any α > 0

lim
(x,t)→(x0,0), (x,t)∈Γα(x0)

u(x, t) = l

where (x, t) tends to (x0, 0) within the cone Γα(x0).

Theorem 3 If f ∈ Lp(Rn), 1 ≤ p ≤ ∞ then the Poisson integral

Pt(f)(x) =

∫
Rn

f(y)pt(x− y)dy

has the nontangential limit f(x0) at any point x0 belonging to the set of
Lebesgue points of f .

Proof. We use the fact that, for (x, t) ∈ Γα(x0)

pt(x− y) ≤ dαpt(x0 − y)

with dα a positive constant depending on α and n. Then we write

|Pt(f)(x)− f(x0)| =
∣∣∫

Rn pt(x− y) [f(y)− f(x0)] dy
∣∣

≤
∫

Rn |f(y)− f(x0)|pt(x− y)dy ≤ dα

∫
Rn |f(y)− f(x0)|pt(x0 − y)dy

The theorem is proven on the basis of the following exercise:

Exercise 2 Let f ∈ Lp(Rn), 1 ≤ p ≤ ∞ and let φ(x) = a(|x|) be a function
with a(r) positive and decreasing, and with

∫
Rn φ(x)dx = 1. Let φε(x) =

ε−nφ(x
ε
). Then

lim
ε→0

∫
Rn

|f(x0 − y)− f(x0)|φε(y)dy = 0

holds for any point x0 in the Lebesgue set of f .
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