Degree in Infinite Dimensions

1 Schauder fixed point

Warning: Brouwer's Thm is false in infinite dimensions. Example: $\ell_2(\mathbb{N})$, with unit closed ball B. Then

$$f: B \to \partial B, \qquad f(x) = (||x||^2 - 1, x_1, x_2, \dots)$$

is continuous, and if it had a fixed point, the fixed point equations would be $x_1 = 0, x_2 = x_1, \ldots, x_{n+1} = x_n$, so the fixed point would be 0, but it had to have norm equal to 1.

Definition 1. A continuous function $F : S \subset X \to X$, where X is a Banach space, is compact if it maps bounded closed sets to relatively compact sets (sets whose closure is compact)

Theorem 1. Let $f : S \to X$ where S is closed and bounded in the Banach space X. Then f is compact iff it is a uniform limit of continuous finite range maps.

Proof. If f is compact then $K = \overline{f(S)}$ is compact. Given $\epsilon > 0$ there exist $x_1 \dots x_{j(\epsilon)} \in K$ such that the balls B_i of centers x_i and radii ϵ cover K. Let ψ_i be a partition of unity for K subordinated to the cover, i.e $\psi_i \ge 0$ is supported in B_i and $\sum_i \psi_i = 1$ on K. Let

$$f_{\epsilon}(x) = \sum_{i=1}^{j(\epsilon)} \psi_i(f(x)) x_i$$

Then $f_{\epsilon}(x)$ belongs to the convex hull of x_i and

$$||f(x) - f_{\epsilon}(x)|| \le \sum_{i=1}^{j(\epsilon)} \psi_i(f(x)) ||f(x) - x_i|| \le \epsilon$$

The argument in the other direction is an exercise.

Theorem 2. (Schauder fixed point). Let S be a closed, convex, bounded subset of a Banach space X, and let $f : S \to S$ be a compact map. Then f has a fixed point.

Proof. Consider $f_{\epsilon}(x)$ defined above, and let X_{ϵ} be the finite dimensional linear spaced spanned by x_i , $i = 1, \ldots, j(\epsilon)$. Since S is convex and $f_{\epsilon}(S)$ is contained in the convex hull of f(S) we have $f_{\epsilon} : S \to S \cap X_{\epsilon}$. Therefore f_{ϵ} maps the closed bounded set $S \cap X_{\epsilon}$ to itself. This is a subset of X_{ϵ} so we may apply the finite dimensional Brouwer fixed point theorem, and find $x_{\epsilon} \in X_{\epsilon} \cap S$ such that $x_{\epsilon} = f_{\epsilon}(x_{\epsilon})$. Now $f_{\epsilon}(x_{\epsilon})$ has a convergent subsequence by the relative compactness of f(S). Passing to the limit and using $x_{\epsilon} - f(x_{\epsilon}) = f_{\epsilon}(x_{\epsilon}) - f(x_{\epsilon})$, we finish the proof.

2 Leray-Schauder Degree

If X is a Banach space and $\phi = I - K$ where $K : \Omega \to X$ is a compact transformation, then we the image under $\phi(S)$ of a closed bounded set is closed. Indeed, if $y_n = \phi(x_n)$ with $x_n \in S$ converges to $y \in X$ then, because S is bounded and K is compact we may extract a subsequence, relabeled x_n , such that $Kx_n \to z$, and then $x_n = \phi(x_n) + Kx_n$ converges to x = y + Kz. By continuity, y = x - Kz.

If $y_0 \notin \phi(\partial \Omega)$, then it is at positive distance δ from $\partial \Omega$. We take an ϵ -approximation K_{ϵ} of K with range in X_{ϵ} , a finite dimensional subspace of X such that $y_0 \in X_{\epsilon}$. If $\epsilon \leq \frac{\delta}{2}$ then $y_0 \notin \phi_{\epsilon}(\partial \Omega)$ where $\phi_{\epsilon} = I - K_{\epsilon}$. We consider

$$\phi_{\epsilon|X_{\epsilon}\cap\overline{\Omega}}: X_{\epsilon}\cap\overline{\Omega}\to X_{\epsilon}$$

Definition 2.

$$deg(\phi, \Omega, y_0) = deg\left(\phi_{\epsilon \mid X_{\epsilon} \cap \overline{\Omega}}, \Omega \cap X_{\epsilon}, y_0\right)$$

This is well defined by the last proposition in the chapter on finite dimensional degree. That means that we may change the finite dimensional space X_{ϵ} , and we may also change the finite range approximation K_{ϵ} . This follows by first placing both approximation ranges in a common (larger) finite dimensional space, and the using homotopy.

We note that if $y_0 \notin \phi(\Omega)$ then deg $(\phi, \Omega, y_0) = 0$. All results in the chapter on finite dimensional degree are valid. In particular deg (ϕ, Ω, y_0)

depends only on the homotopy class of $\phi : \partial \Omega \to X \setminus \{y_0\}$, where the homotopy is of the form $\phi_t = I - K_t$, with K_t continuous in $t \in [0, 1]$ and compact for each t. In particular, the image of an open set under a one-to-one map $\phi = I - K$ is open.

3 First elementary applications

First, an application of Schauder's fixed point theorem. Let K(s,t) be a continuous function and let

$$Ku(s) = \int_0^1 K(s,t)f(t,u(t))dt$$

where $f: [0,1] \times \mathbb{R} \to \mathbb{R}$ is continuous and bounded. Taking X = C([0,1]) we have that K is a compact map on any ball $||u|| \leq R$. By the Schauder fixed point, there exists u constinuous, such that

$$u(s) = Ku(s).$$

Indeed we want to find R such that K maps the ball of radius R into itself. Now, let $M = \sup |f|$ and $L = \sup |K|$. The range of K obeys $||Ku|| \le ML$, so that if we take $R \ge ML$ we are done.

We recall from functional analysis that if K is a *linear* compact operator then I - K is Fredholm of index zero. That is, range is closed, of finite codimension, kernel is finite dimensional, and

$$\dim \ker(I - K) = \operatorname{codim} \operatorname{Range} (I - K).$$

We recall here also P(x, D) linear elliptic operators in Sobolev spaces and Hölder spaces, and embedding theorems.

Now an application involving elliptic operators. Let $P = P(x, \partial)$ be an elliptic operator of order m

$$P(x,D)u = \sum_{|\alpha| \le m} a_{\alpha}(x)\partial^{\alpha}u$$

with principal symbol

$$p_m(x,\xi) = \sum_{|\alpha|=m} a_{\alpha}\xi^{\alpha}$$

that does not vanish for $x \in \overline{\Omega}$ and $\xi \in \mathbb{R}^n \setminus \{0\}$. We consider boundary conditions on $\partial\Omega$ that are good: Bu = 0 on $\partial\Omega$ imply that the $P : X \to Y$ is a Fredholm operator (kernel finite dimensional, closed range with finite dimensional codimension. In many cases the index of P is zero, i.e. the dimension of the kernel equals the dimension of the coimage. Examples are the Laplacian with Neumann or Dirichlet BC.

Now we consider a sublinear function $g(x, \partial^{\alpha} u)$ with $|\alpha| \leq m - 1$, satisfying

$$|g(x,\partial^{\alpha}u)| \le C(1+\sum_{|\alpha|\le 1} |\partial^{\alpha}u|)^r$$

with r < 1, uniformly for $x \in \overline{\Omega}$ and arbitrary entries $\partial^{\alpha} u \in \mathbb{R}^M$ where M is the number of such things. We consider the equation

$$P(x,D)u = g(x,\partial^{\alpha}u)$$

with boundary conditions Bu = 0. We assume that the index of P is zero and P is injective. Then there exists a $C^{\infty}(\overline{\Omega})$ solution. (Assuming the boundary, and all coefficients are smooth all the way to the boundary).

The idea of the proof is to take $I - P^{-1}g(x, \partial^{\alpha}u)$ and apply degree theory. We may choose the space $X = C^{m-1}(\overline{\Omega}) \cap \{Bu = 0\}.$

The steps of the proof are instructive. First we establish a priori estimates. For example, we can look at $W^{m,p}(\Omega)$, p > n, and assuming a solution, obtain uniform bounds

$$||u||_{m,p} \le C_{m,p}$$

with constant independent of anything. This comes from r < 1 and ellipticity. We could have had a fully nonlinear equation here (right hand side depending on all m derivatives). Then we show that this means that solutions have to belong to a fixed ball of X. This uses Sobolev embedding and p > n and the fact that the right hand side sees m-1 derivatives only. Then we take a strictly larger ball $B \subset X$. There are no solution on the boundary of this ball. Also, by embeddings, $K(u) = P^{-1}g(x, \partial^{\alpha}u)$ is compact (because its range is bounded in the Hölder space $C^{m-1,\gamma}(\Omega)$, with $\gamma = 1 - \frac{n}{p}$. By homotopy to Ivis I - tK, the degree deg (I - K, B, 0) = 1, and therefore there is a solution. Smoothness follows by bootstrapping.

This was sublinear, but set the stage. Here is a semilinear example that is not trivial: the existence of steady solutions of Navier-Stokes equations with arbitrary forcing in both 2 and 3 dimensions. The equation

$$Au + B(u, u) = f$$

where A is the Stokes operator and $B(u, v) = \mathbb{P}(u \cdot \nabla v)$ has solutions $u \in V$ for any $f \in L^2(\Omega)^d$ with $\mathbb{P}f = f$.

Here Ω is an open bounded set with smooth boundary, d = 2, 3 and \mathbb{P} is the projector on divergence-free functions in L^2 . We recall notations: V is the closure of the space of divergence-free $C_0^{\infty}(\Omega)$ vectors in the topology of $H^1(\Omega)^d$, d = 2, 3. The Stokes operator is $A = -\mathbb{P}\Delta$ with domain $\mathcal{D}(A) =$ $V \cap H^2(\Omega)^d$. The function

$$K(u) = A^{-1}B(u, u) : V \to V$$

is compact. This follows because $A^{-\frac{3}{4}}B(u, u)$ is continuous

$$||A^{-\frac{3}{4}}B(u,v)||_{V} \le C||u||_{V}||v||_{V}$$

(see [2]). For any $t \in [0, 1]$, the equation

$$u + tK(u) = tA^{-1}f$$

has no solutions on the boundary of the ball $B_R = \{u \mid ||u||_V < R\}$ for $R > ||A^{-1}f||_V$. Indeed, any solution in V obeys

$$||u||_V^2 = t \langle A^{-1}f, u \rangle_V.$$

Therefore, $\phi(u) = u + K(u) - A^{-1}f$ obeys deg $(\phi, B_R, 0) = 1$ and the equation has solution in B_R .

Finally, for a quasilinear example: Damped and driven Euler equations in 2D.

Consider a bounded domain $\Omega \subset \mathbb{R}^2$. Consider a time independent force $F \in H^1(\Omega)$ and a positive constant $\gamma > 0$. Then there exist $H^1(\Omega)$ solutions of the damped Euler equations

$$\gamma u + u \cdot \nabla u + \nabla p = F, \quad \operatorname{div} u = 0$$

in Ω with $u \cdot n = 0$ on $\partial \Omega$.

The proof starts by adding artificial viscosity, thus producing a semilinear equation. We take the vorticity-stream formulation of the equation, $\omega = \Delta \psi$, $u = \nabla^{\perp} \psi$. The vorticity equation is

$$\gamma \omega + u \cdot \nabla \omega = f$$

with $f = \nabla^{\perp} \cdot F$. This we want to solve in L^2 . We take first $\nu > 0$ and seek solutions of

$$-\nu\Delta\omega + \gamma\omega + u\cdot\nabla\omega = f$$

with the artificial boundary condition $\omega = 0$ at $\partial \Omega$. We should think of this as being

$$\nu \Delta^2 \psi + \gamma (-\Delta \psi) + J(\psi, \Delta \psi) = f$$

where $J(f,g) = \partial_1 f \partial_2 g - \partial_2 f \partial_1 g$ is the Poisson bracket. The boundary conditions are $\psi = \Delta \psi = 0$ at $\partial \Omega$. (These are "good").

We start by showing there exist solutions at fixed ν . Then we pass to the limit as $\nu \to 0$. At fixed ν .

References

- L. Nirenberg, Topics in Nonlinear Functional Analysis, CIMS, 1973-1974.
- [2] P. Constantin, C. Foias, Navier-Stokes Equations, U. Chicago Press, 1988.