Degree in Infinite Dimensions

1 Schauder fixed point

Warning: Brouwer’s Thm is false in infinite dimensions. Example: /(5(N),
with unit closed ball B. Then

f:B_>aB> f(x):(|‘$H2_1?x17$27"')

is continuous, and if it had a fixed point, the fixed point equations would be
1 =0, 29 =21, ...,Tp11 = Tp, so the fixed point would be 0, but it had to
have norm equal to 1.

Definition 1. A continuous function F' : S C X — X, where X is a Banach
space, is compact if it maps bounded closed sets to relatively compact sets (sets
whose closure is compact)

Theorem 1. Let f : S — X where S is closed and bounded in the Banach
space X. Then f is compact iff it is a uniform limit of continuous finite
range maps.

Proof. If f is compact then K = f(S) is compact. Given € > 0 there exist
Ty ... 74 € K such that the balls B; of centers z; and radii € cover K. Let
1; be a partition of unity for K subordinated to the cover, i.e ¢; > 0 is
supported in B; and ). 1; =1 on K. Let

j(e)

Zm

Then f(z) belongs to the convex hull of z; and

I () \<Zm D) f(x) =il < e

The argument in the other direction is an exercise.
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Theorem 2. (Schauder fived point). Let S be a closed, convex, bounded
subset of a Banach space X, and let f : S — S be a compact map. Then f
has a fized point.

Proof. Consider f.(x) defined above, and let X, be the finite dimensional
linear spaced spanned by x;, i = 1,...j(€e). Since S is convex and f.(S) is
contained in the convex hull of f(S) we have f. : S — S N X.. Therefore
fe maps the closed bounded set S N X, to itself. This is a subset of X, so
we may apply the finite dimensional Brouwer fixed point theorem, and find
z. € XN S such that z. = f.(z.). Now f.(x.) has a convergent subsequence
by the relative compactness of f(S). Passing to the limit and using x. —

f(ze) = fe(ze) — f(x.), we finish the proof.

2 Leray-Schauder Degree

If X is a Banach space and ¢ = I — K where K : Q — X is a compact
transformation, then we the image under ¢(S) of a closed bounded set is
closed. Indeed, if y,, = ¢(x,) with z, € S converges to y € X then, because
S is bounded and K is compact we may extract a subsequence, relabeled z,,
such that Kz, — z, and then z, = ¢(x,) + Kz, converges to r =y + Kz.
By continuity, y =z — Kz.

If yo & P(ON), then it is at positive distance § from 9€2. We take an
e-approximation K. of K with range in X,, a finite dimensional subspace of
X such that yg € X.. If € < g then yg ¢ ¢.(0N2) where ¢, = I — K.. We
consider

Pe| x.n ¢ Xe nNQ — X,

Definition 2.
deg (¢, Qa ?/0) = deg <¢e| X N Qn X€7 yO)

This is well defined by the last proposition in the chapter on finite dimen-
sional degree. That means that we may change the finite dimensional space
X,, and we may also change the finite range approximation K.. This fol-
lows by first placing both approximation ranges in a common (larger) finite
dimensional space, and the using homotopy.

We note that if yo ¢ ¢(Q2) then deg (¢, 1) = 0. All results in the
chapter on finite dimensional degree are valid. In particular deg (¢, €, yo)



depends only on the homotopy class of ¢ : 92 — X \ {yo}, where the
homotopy is of the form ¢, = I — K, with K; continuous in ¢ € [0,1] and
compact for each ¢t. In particular, the image of an open set under a one-to-one
map ¢ = [ — K is open.

3 First elementary applications

First, an application of Schauder’s fixed point theorem. Let K(s,t) be a
continuous function and let

Ku(s) = /0 K (s,0) f(t, u(t))dt

where f:[0,1] x R — R is continuous and bounded. Taking X = C(][0,1])
we have that K is a compact map on any ball ||u]| < R. By the Schauder
fixed point, there exists u constinuous, such that

u(s) = Ku(s).

Indeed we want to find R such that K maps the ball of radius R into itself.
Now, let M = sup |f| and L = sup |K|. The range of K obeys ||[Ku|| < ML,
so that if we take R > ML we are done.

We recall from functional analysis that if K is a linear compact operator
then I — K is Fredholm of index zero. That is, range is closed, of finite
codimension, kernel is finite dimensional, and

dim ker(I — K') = codim Range (I — K).

We recall here also P(z, D) linear elliptic operators in Sobolev spaces and
Holder spaces, and embeddng theorems.

Now an application involving elliptic operators. Let P = P(x,0) be an
elliptic operator of order m

P(z,D)u = Z Ao ()0

laj<m

with principal symbol

pm(%f) = Z aa”

|la=m



that does not vanish for z € Q and ¢ € R™\ {0}. We consider boundary
conditions on 0f2 that are good: Bu = 0 on 02 imply that the P: X — Y
is a Fredholm operator (kernel finite dimensional, closed range with finite
dimensional codimension. In many cases the index of P is zero, i.e. the
dimension of the kernel equals the dimension of the coimage. Examples are
the Laplacian with Neumann or Dirichlet BC.

Now we consider a sublinear function g(z, 0%u) with |o| < m — 1, satis-
fying

lg(z,0%u)| < C(1+ Y [0%u])’

laf<1

with 7 < 1, uniformly for z € Q and arbitrary entries 0%u € R™ where M is
the number of such things. We consider the equation

P(z,D)u = g(x,0%)

with boundary conditions Bu = 0. We assume that the index of P is zero
and P is injective. Then there exists a C*(Q) solution. ( Assuming the
boundary, and all coefficients are smooth all the way to the boundary).

The idea of the proof is to take I — P~1g(x, 9u) and apply degree theory.
We may choose the space X = C™ 1(Q) N {Bu = 0}.

The steps of the proof are instructive. First we establish a priori es-
timates. For example, we can look at W™P(Q), p > n, and assuming a

solution, obtain uniform bounds
[tllmp < Crmp

with constant independent of anything. This comes from r < 1 and ellipticity.
We could have had a fully nonlinear equation here (right hand side depending
on all m derivatives). Then we show that this means that solutions have to
belong to a fixed ball of X. This uses Sobolev embedding and p > n and
the fact that the right hand side sees m — 1 derivatives only. Then we take a
stricly larger ball B C X. There are no solution on the boundary of this ball.
Also, by embeddings, K(u) = P~'g(z,0%u) is compact (because its range is
bounded in the Holder space C™~17(Q2), with v =1 — +. By homotopy to /
vis I —tK, the degree deg (I — K, B,0) = 1, and therefore there is a solution.
Smoothness follows by bootstrapping.

This was sublinear, but set the stage. Here is a semilinear example that
is not trivial: the existence of steady solutions of Navier-Stokes equations
with arbitrary forcing in both 2 and 3 dimensions.
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The equation
Au+ B(u,u) = f
where A is the Stokes operator and B(u,v) = P(u - Vv) has solutions u € V
for any f € L*(Q)? with Pf = f.

Here €2 is an open bounded set with smooth boundary, d = 2,3 and PP is
the projector on divergence-free functions in L?2. We recall notations: V is
the closure of the space of divergence-free C§°(£2) vectors in the topology of
HY(Q)4, d = 2,3. The Stokes operator is A = —PA with domain D(A4) =
V N H%(Q)4. The function

K(u)=A"'B(u,u): V=V
is compact. This follows because A~1B(u,u) is continuous
| A3 B(w, )|l < Cllullvlollyv
(see [2]). For any t € [0, 1], the equation
u+tK(u) =tAf

has no solutions on the boundary of the ball B = {u| |lully < R} for
R > ||[A71f|ly. Indeed, any solution in V obeys

lully, = (A~ f, u)v-.

Therefore, ¢(u) = u+ K (u)— A~ f obeys deg (¢, Br,0) = 1 and the equation
has solution in Bp.

Finally, for a quasilinear example: Damped and driven Euler equations
in 2D.

Consider a bounded domain € C R?. Consider a time independent force
F € H'(Q) and a positive constant v > 0. Then there exist H*({2) solutions
of the damped Euler equations

Yu+u-Vu+Vp=F divu=0
in 2 with v -n = 0 on 0.

The proof starts by adding artificial viscosity, thus producing a semilinear
equation. We take the vorticity-stream formulation of the equation, w = Aq,
u = V+1. The vorticity equation is

Yw+u-Vw=f
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with f = V1 - F. This we want to solve in L?. We take first v > 0 and seek
solutions of
—VAw+yw+u-Vw=f

with the artificial boundary condition w = 0 at 9€2. We should think of this
as being

VAP + (= AY) + T(b, AY) = f

where J(f,g9) = 0109 — O2f01g is the Poisson bracket. The boundary
conditions are ¢ = Ay = 0 at 9. (These are “good”).

We start by showing there exist solutions at fixed v. Then we pass to the
limit as v — 0. At fixed v.
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