Degree in Infinite Dimensions

1 Schauder fixed point

Warning: Brouwer's Thm is false in infinite dimensions. Example: $\ell_{2}(\mathbb{N})$, with unit closed ball B. Then

$$
f: B \rightarrow \partial B, \quad f(x)=\left(\|x\|^{2}-1, x_{1}, x_{2}, \ldots\right)
$$

is continuous, and if it had a fixed point, the fixed point equations would be $x_{1}=0, x_{2}=x_{1}, \ldots, x_{n+1}=x_{n}$, so the fixed point would be 0 , but it had to have norm equal to 1 .
Definition 1. A continuous function $F: S \subset X \rightarrow X$, where X is a Banach space, is compact if it maps bounded closed sets to relatively compact sets (sets whose closure is compact)
Theorem 1. Let $f: S \rightarrow X$ where S is closed and bounded in the Banach space X. Then f is compact iff it is a uniform limit of continuous finite range maps.
Proof. If f is compact then $K=\overline{f(S)}$ is compact. Given $\epsilon>0$ there exist $x_{1} \ldots x_{j(\epsilon)} \in K$ such that the balls B_{i} of centers x_{i} and radii ϵ cover K. Let ψ_{i} be a partition of unity for K subordinated to the cover, i.e $\psi_{i} \geq 0$ is supported in B_{i} and $\sum_{i} \psi_{i}=1$ on K. Let

$$
f_{\epsilon}(x)=\sum_{i=1}^{j(\epsilon)} \psi_{i}(f(x)) x_{i}
$$

Then $f_{\epsilon}(x)$ belongs to the convex hull of x_{i} and

$$
\left\|f(x)-f_{\epsilon}(x)\right\| \leq \sum_{i=1}^{j(\epsilon)} \psi_{i}(f(x))\left\|f(x)-x_{i}\right\| \leq \epsilon
$$

The argument in the other direction is an exercise.

Theorem 2. (Schauder fixed point). Let S be a closed, convex, bounded subset of a Banach space X, and let $f: S \rightarrow S$ be a compact map. Then f has a fixed point.

Proof. Consider $f_{\epsilon}(x)$ defined above, and let X_{ϵ} be the finite dimensional linear spaced spanned by $x_{i}, i=1, \ldots j(\epsilon)$. Since S is convex and $f_{\epsilon}(S)$ is contained in the convex hull of $f(S)$ we have $f_{\epsilon}: S \rightarrow S \cap X_{\epsilon}$. Therefore f_{ϵ} maps the closed bounded set $S \cap X_{\epsilon}$ to itself. This is a subset of X_{ϵ} so we may apply the finite dimensional Brouwer fixed point theorem, and find $x_{\epsilon} \in X_{\epsilon} \cap S$ such that $x_{\epsilon}=f_{\epsilon}\left(x_{\epsilon}\right)$. Now $f_{\epsilon}\left(x_{\epsilon}\right)$ has a convergent subsequence by the relative compactness of $f(S)$. Passing to the limit and using $x_{\epsilon}-$ $f\left(x_{\epsilon}\right)=f_{\epsilon}\left(x_{\epsilon}\right)-f\left(x_{\epsilon}\right)$, we finish the proof.

2 Leray-Schauder Degree

If X is a Banach space and $\phi=I-K$ where $K: \bar{\Omega} \rightarrow X$ is a compact transformation, then we the image under $\phi(S)$ of a closed bounded set is closed. Indeed, if $y_{n}=\phi\left(x_{n}\right)$ with $x_{n} \in S$ converges to $y \in X$ then, because S is bounded and K is compact we may extract a subsequence, relabeled x_{n}, such that $K x_{n} \rightarrow z$, and then $x_{n}=\phi\left(x_{n}\right)+K x_{n}$ converges to $x=y+K z$. By continuity, $y=x-K z$.

If $y_{0} \notin \phi(\partial \Omega)$, then it is at positive distance δ from $\partial \Omega$. We take an ϵ-approximation K_{ϵ} of K with range in X_{ϵ}, a finite dimensional subspace of X such that $y_{0} \in X_{\epsilon}$. If $\epsilon \leq \frac{\delta}{2}$ then $y_{0} \notin \phi_{\epsilon}(\partial \Omega)$ where $\phi_{\epsilon}=I-K_{\epsilon}$. We consider

$$
\phi_{\epsilon \mid X_{\epsilon} \cap \bar{\Omega}}: X_{\epsilon} \cap \bar{\Omega} \rightarrow X_{\epsilon}
$$

Definition 2.

$$
\operatorname{deg}\left(\phi, \Omega, y_{0}\right)=\operatorname{deg}\left(\phi_{\epsilon \mid X_{\epsilon} \cap \bar{\Omega}}, \Omega \cap X_{\epsilon}, y_{0}\right)
$$

This is well defined by the last proposition in the chapter on finite dimensional degree. That means that we may change the finite dimensional space X_{ϵ}, and we may also change the finite range approximation K_{ϵ}. This follows by first placing both approximation ranges in a common (larger) finite dimensional space, and the using homotopy.

We note that if $y_{0} \notin \phi(\bar{\Omega})$ then $\operatorname{deg}\left(\phi, \Omega, y_{0}\right)=0$. All results in the chapter on finite dimensional degree are valid. In particular $\operatorname{deg}\left(\phi, \Omega, y_{0}\right)$
depends only on the homotopy class of $\phi: \partial \Omega \rightarrow X \backslash\left\{y_{0}\right\}$, where the homotopy is of the form $\phi_{t}=I-K_{t}$, with K_{t} continuous in $t \in[0,1]$ and compact for each t. In particular, the image of an open set under a one-to-one $\operatorname{map} \phi=I-K$ is open.

3 First elementary applications

First, an application of Schauder's fixed point theorem. Let $K(s, t)$ be a continuous function and let

$$
K u(s)=\int_{0}^{1} K(s, t) f(t, u(t)) d t
$$

where $f:[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous and bounded. Taking $X=C([0,1])$ we have that K is a compact map on any ball $\|u\| \leq R$. By the Schauder fixed point, there exists u constinuous, such that

$$
u(s)=K u(s)
$$

Indeed we want to find R such that K maps the ball of radius R into itself. Now, let $M=\sup |f|$ and $L=\sup |K|$. The range of K obeys $\|K u\| \leq M L$, so that if we take $R \geq M L$ we are done.

We recall from functional analysis that if K is a linear compact operator then $I-K$ is Fredholm of index zero. That is, range is closed, of finite codimension, kernel is finite dimensional, and

$$
\operatorname{dim} \operatorname{ker}(I-K)=\operatorname{codim} \text { Range }(I-K)
$$

We recall here also $P(x, D)$ linear elliptic operators in Sobolev spaces and Hölder spaces, and embeddng theorems.

Now an application involving elliptic operators. Let $P=P(x, \partial)$ be an elliptic operator of order m

$$
P(x, D) u=\sum_{|\alpha| \leq m} a_{\alpha}(x) \partial^{\alpha} u
$$

with principal symbol

$$
p_{m}(x, \xi)=\sum_{|\alpha|=m} a_{\alpha} \xi^{\alpha}
$$

that does not vanish for $x \in \bar{\Omega}$ and $\xi \in \mathbb{R}^{n} \backslash\{0\}$. We consider boundary conditions on $\partial \Omega$ that are good: $B u=0$ on $\partial \Omega$ imply that the $P: X \rightarrow Y$ is a Fredholm operator (kernel finite dimensional, closed range with finite dimensional codimension. In many cases the index of P is zero, i.e. the dimension of the kernel equals the dimension of the coimage. Examples are the Laplacian with Neumann or Dirichlet BC.

Now we consider a sublinear function $g\left(x, \partial^{\alpha} u\right)$ with $|\alpha| \leq m-1$, satisfying

$$
\left|g\left(x, \partial^{\alpha} u\right)\right| \leq C\left(1+\sum_{|\alpha| \leq 1}\left|\partial^{\alpha} u\right|\right)^{r}
$$

with $r<1$, uniformly for $x \in \bar{\Omega}$ and arbitrary entries $\partial^{\alpha} u \in \mathbb{R}^{M}$ where M is the number of such things. We consider the equation

$$
P(x, D) u=g\left(x, \partial^{\alpha} u\right)
$$

with boundary conditions $B u=0$. We assume that the index of P is zero and P is injective. Then there exists a $C^{\infty}(\bar{\Omega})$ solution. (Assuming the boundary, and all coefficients are smooth all the way to the boundary).

The idea of the proof is to take $I-P^{-1} g\left(x, \partial^{\alpha} u\right)$ and apply degree theory. We may choose the space $X=C^{m-1}(\bar{\Omega}) \cap\{B u=0\}$.

The steps of the proof are instructive. First we establish a priori estimates. For example, we can look at $W^{m, p}(\Omega), p>n$, and assuming a solution, obtain uniform bounds

$$
\|u\|_{m, p} \leq C_{m, p}
$$

with constant independent of anything. This comes from $r<1$ and ellipticity. We could have had a fully nonlinear equation here (right hand side depending on all m derivatives). Then we show that this means that solutions have to belong to a fixed ball of X. This uses Sobolev embedding and $p>n$ and the fact that the right hand side sees $m-1$ derivatives only. Then we take a stricly larger ball $B \subset X$. There are no solution on the boundary of this ball. Also, by embeddings, $K(u)=P^{-1} g\left(x, \partial^{\alpha} u\right)$ is compact (because its range is bounded in the Hölder space $C^{m-1, \gamma}(\Omega)$, with $\gamma=1-\frac{n}{p}$. By homotopy to I vis $I-t K$, the degree $\operatorname{deg}(I-K, B, 0)=1$, and therefore there is a solution. Smoothness follows by bootstrapping.

This was sublinear, but set the stage. Here is a semilinear example that is not trivial: the existence of steady solutions of Navier-Stokes equations with arbitrary forcing in both 2 and 3 dimensions.

The equation

$$
A u+B(u, u)=f
$$

where A is the Stokes operator and $B(u, v)=\mathbb{P}(u \cdot \nabla v)$ has solutions $u \in V$ for any $f \in L^{2}(\Omega)^{d}$ with $\mathbb{P} f=f$.

Here Ω is an open bounded set with smooth boundary, $d=2,3$ and \mathbb{P} is the projector on divergence-free functions in L^{2}. We recall notations: V is the closure of the space of divergence-free $C_{0}^{\infty}(\Omega)$ vectors in the topology of $H^{1}(\Omega)^{d}, d=2,3$. The Stokes operator is $A=-\mathbb{P} \Delta$ with domain $\mathcal{D}(A)=$ $V \cap H^{2}(\Omega)^{d}$. The function

$$
K(u)=A^{-1} B(u, u): V \rightarrow V
$$

is compact. This follows because $A^{-\frac{3}{4}} B(u, u)$ is continuous

$$
\left\|A^{-\frac{3}{4}} B(u, v)\right\|_{V} \leq C\|u\|_{V}\|v\|_{V}
$$

(see [2]). For any $t \in[0,1]$, the equation

$$
u+t K(u)=t A^{-1} f
$$

has no solutions on the boundary of the ball $B_{R}=\left\{u \mid\|u\|_{V}<R\right\}$ for $R>\left\|A^{-1} f\right\|_{V}$. Indeed, any solution in V obeys

$$
\|u\|_{V}^{2}=t\left\langle A^{-1} f, u\right\rangle_{V}
$$

Therefore, $\phi(u)=u+K(u)-A^{-1} f$ obeys $\operatorname{deg}\left(\phi, B_{R}, 0\right)=1$ and the equation has solution in B_{R}.

Finally, for a quasilinear example: Damped and driven Euler equations in 2 D .

Consider a bounded domain $\Omega \subset \mathbb{R}^{2}$. Consider a time independent force $F \in H^{1}(\Omega)$ and a positive constant $\gamma>0$. Then there exist $H^{1}(\Omega)$ solutions of the damped Euler equations

$$
\gamma u+u \cdot \nabla u+\nabla p=F, \quad \operatorname{div} u=0
$$

in Ω with $u \cdot n=0$ on $\partial \Omega$.
The proof starts by adding artificial viscosity, thus producing a semilinear equation. We take the vorticity-stream formulation of the equation, $\omega=\Delta \psi$, $u=\nabla^{\perp} \psi$. The vorticity equation is

$$
\gamma \omega+u \cdot \nabla \omega=f
$$

with $f=\nabla^{\perp} \cdot F$. This we want to solve in L^{2}. We take first $\nu>0$ and seek solutions of

$$
-\nu \Delta \omega+\gamma \omega+u \cdot \nabla \omega=f
$$

with the artificial boundary condition $\omega=0$ at $\partial \Omega$. We should think of this as being

$$
\nu \Delta^{2} \psi+\gamma(-\Delta \psi)+J(\psi, \Delta \psi)=f
$$

where $J(f, g)=\partial_{1} f \partial_{2} g-\partial_{2} f \partial_{1} g$ is the Poisson bracket. The boundary conditions are $\psi=\Delta \psi=0$ at $\partial \Omega$. (These are "good").

We start by showing there exist solutions at fixed ν. Then we pass to the limit as $\nu \rightarrow 0$. At fixed ν.

References

[1] L. Nirenberg, Topics in Nonlinear Functional Analysis, CIMS, 19731974.
[2] P. Constantin, C. Foias, Navier-Stokes Equations, U. Chicago Press, 1988.

