
Degree in Infinite Dimensions

1 Schauder fixed point

Warning: Brouwer’s Thm is false in infinite dimensions. Example: `2(N),
with unit closed ball B. Then

f : B → ∂B, f(x) = (‖x‖2 − 1, x1, x2, . . . )

is continuous, and if it had a fixed point, the fixed point equations would be
x1 = 0, x2 = x1, . . . , xn+1 = xn, so the fixed point would be 0, but it had to
have norm equal to 1.

Definition 1. A continuous function F : S ⊂ X → X, where X is a Banach
space, is compact if it maps bounded closed sets to relatively compact sets (sets
whose closure is compact)

Theorem 1. Let f : S → X where S is closed and bounded in the Banach
space X. Then f is compact iff it is a uniform limit of continuous finite
range maps.

Proof. If f is compact then K = f(S) is compact. Given ε > 0 there exist
x1 . . . xj(ε) ∈ K such that the balls Bi of centers xi and radii ε cover K. Let
ψi be a partition of unity for K subordinated to the cover, i.e ψi ≥ 0 is
supported in Bi and

∑
i ψi = 1 on K. Let

fε(x) =

j(ε)∑
i=1

ψi(f(x))xi

Then fε(x) belongs to the convex hull of xi and

‖f(x)− fε(x)‖ ≤
j(ε)∑
i=1

ψi(f(x))‖f(x)− xi‖ ≤ ε

The argument in the other direction is an exercise.
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Theorem 2. (Schauder fixed point). Let S be a closed, convex, bounded
subset of a Banach space X, and let f : S → S be a compact map. Then f
has a fixed point.

Proof. Consider fε(x) defined above, and let Xε be the finite dimensional
linear spaced spanned by xi, i = 1, . . . j(ε). Since S is convex and fε(S) is
contained in the convex hull of f(S) we have fε : S → S ∩ Xε. Therefore
fε maps the closed bounded set S ∩ Xε to itself. This is a subset of Xε so
we may apply the finite dimensional Brouwer fixed point theorem, and find
xε ∈ Xε ∩ S such that xε = fε(xε). Now fε(xε) has a convergent subsequence
by the relative compactness of f(S). Passing to the limit and using xε −
f(xε) = fε(xε)− f(xε), we finish the proof.

2 Leray-Schauder Degree

If X is a Banach space and φ = I − K where K : Ω → X is a compact
transformation, then we the image under φ(S) of a closed bounded set is
closed. Indeed, if yn = φ(xn) with xn ∈ S converges to y ∈ X then, because
S is bounded and K is compact we may extract a subsequence, relabeled xn,
such that Kxn → z, and then xn = φ(xn) + Kxn converges to x = y + Kz.
By continuity, y = x−Kz.

If y0 6∈ φ(∂Ω), then it is at positive distance δ from ∂Ω. We take an
ε-approximation Kε of K with range in Xε, a finite dimensional subspace of
X such that y0 ∈ Xε. If ε ≤ δ

2
then y0 /∈ φε(∂Ω) where φε = I − Kε. We

consider
φε| Xε∩Ω : Xε ∩ Ω→ Xε

Definition 2.

deg (φ,Ω, y0) = deg
(
φε| Xε∩Ω,Ω ∩Xε, y0

)
This is well defined by the last proposition in the chapter on finite dimen-

sional degree. That means that we may change the finite dimensional space
Xε, and we may also change the finite range approximation Kε. This fol-
lows by first placing both approximation ranges in a common (larger) finite
dimensional space, and the using homotopy.

We note that if y0 /∈ φ(Ω) then deg (φ,Ω, y0) = 0. All results in the
chapter on finite dimensional degree are valid. In particular deg (φ,Ω, y0)
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depends only on the homotopy class of φ : ∂Ω → X \ {y0}, where the
homotopy is of the form φt = I − Kt, with Kt continuous in t ∈ [0, 1] and
compact for each t. In particular, the image of an open set under a one-to-one
map φ = I −K is open.

3 First elementary applications

First, an application of Schauder’s fixed point theorem. Let K(s, t) be a
continuous function and let

Ku(s) =

ˆ 1

0

K(s, t)f(t, u(t))dt

where f : [0, 1] × R → R is continuous and bounded. Taking X = C([0, 1])
we have that K is a compact map on any ball ‖u‖ ≤ R. By the Schauder
fixed point, there exists u constinuous, such that

u(s) = Ku(s).

Indeed we want to find R such that K maps the ball of radius R into itself.
Now, let M = sup |f | and L = sup |K|. The range of K obeys ‖Ku‖ ≤ML,
so that if we take R ≥ML we are done.

We recall from functional analysis that if K is a linear compact operator
then I − K is Fredholm of index zero. That is, range is closed, of finite
codimension, kernel is finite dimensional, and

dim ker(I −K) = codim Range (I −K).

We recall here also P (x,D) linear elliptic operators in Sobolev spaces and
Hölder spaces, and embeddng theorems.

Now an application involving elliptic operators. Let P = P (x, ∂) be an
elliptic operator of order m

P (x,D)u =
∑
|α|≤m

aα(x)∂αu

with principal symbol

pm(x, ξ) =
∑
|α|=m

aαξ
α
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that does not vanish for x ∈ Ω and ξ ∈ Rn \ {0}. We consider boundary
conditions on ∂Ω that are good: Bu = 0 on ∂Ω imply that the P : X → Y
is a Fredholm operator (kernel finite dimensional, closed range with finite
dimensional codimension. In many cases the index of P is zero, i.e. the
dimension of the kernel equals the dimension of the coimage. Examples are
the Laplacian with Neumann or Dirichlet BC.

Now we consider a sublinear function g(x, ∂αu) with |α| ≤ m − 1, satis-
fying

|g(x, ∂αu)| ≤ C(1 +
∑
|α|≤1

|∂αu|)r

with r < 1, uniformly for x ∈ Ω and arbitrary entries ∂αu ∈ RM where M is
the number of such things. We consider the equation

P (x,D)u = g(x, ∂αu)

with boundary conditions Bu = 0. We assume that the index of P is zero
and P is injective. Then there exists a C∞(Ω) solution. ( Assuming the
boundary, and all coefficients are smooth all the way to the boundary).

The idea of the proof is to take I−P−1g(x, ∂αu) and apply degree theory.
We may choose the space X = Cm−1(Ω) ∩ {Bu = 0}.

The steps of the proof are instructive. First we establish a priori es-
timates. For example, we can look at Wm,p(Ω), p > n, and assuming a
solution, obtain uniform bounds

‖u‖m,p ≤ Cm,p

with constant independent of anything. This comes from r < 1 and ellipticity.
We could have had a fully nonlinear equation here (right hand side depending
on all m derivatives). Then we show that this means that solutions have to
belong to a fixed ball of X. This uses Sobolev embedding and p > n and
the fact that the right hand side sees m− 1 derivatives only. Then we take a
stricly larger ball B ⊂ X. There are no solution on the boundary of this ball.
Also, by embeddings, K(u) = P−1g(x, ∂αu) is compact (because its range is
bounded in the Hölder space Cm−1,γ(Ω), with γ = 1− n

p
. By homotopy to I

vis I− tK, the degree deg (I−K,B, 0) = 1, and therefore there is a solution.
Smoothness follows by bootstrapping.

This was sublinear, but set the stage. Here is a semilinear example that
is not trivial: the existence of steady solutions of Navier-Stokes equations
with arbitrary forcing in both 2 and 3 dimensions.
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The equation
Au+B(u, u) = f

where A is the Stokes operator and B(u, v) = P(u · ∇v) has solutions u ∈ V
for any f ∈ L2(Ω)d with Pf = f .

Here Ω is an open bounded set with smooth boundary, d = 2, 3 and P is
the projector on divergence-free functions in L2. We recall notations: V is
the closure of the space of divergence-free C∞0 (Ω) vectors in the topology of
H1(Ω)d, d = 2, 3. The Stokes operator is A = −P∆ with domain D(A) =
V ∩H2(Ω)d. The function

K(u) = A−1B(u, u) : V → V

is compact. This follows because A−
3
4B(u, u) is continuous

‖A−
3
4B(u, v)‖V ≤ C‖u‖V ‖v‖V

(see [2]). For any t ∈ [0, 1], the equation

u+ tK(u) = tA−1f

has no solutions on the boundary of the ball BR = {u | ‖u‖V < R} for
R > ‖A−1f‖V . Indeed, any solution in V obeys

‖u‖2
V = t〈A−1f, u〉V .

Therefore, φ(u) = u+K(u)−A−1f obeys deg (φ,BR, 0) = 1 and the equation
has solution in BR.

Finally, for a quasilinear example: Damped and driven Euler equations
in 2D.

Consider a bounded domain Ω ⊂ R2. Consider a time independent force
F ∈ H1(Ω) and a positive constant γ > 0. Then there exist H1(Ω) solutions
of the damped Euler equations

γu+ u · ∇u+∇p = F, divu = 0

in Ω with u · n = 0 on ∂Ω.
The proof starts by adding artificial viscosity, thus producing a semilinear

equation. We take the vorticity-stream formulation of the equation, ω = ∆ψ,
u = ∇⊥ψ. The vorticity equation is

γω + u · ∇ω = f
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with f = ∇⊥ · F . This we want to solve in L2. We take first ν > 0 and seek
solutions of

−ν∆ω + γω + u · ∇ω = f

with the artificial boundary condition ω = 0 at ∂Ω. We should think of this
as being

ν∆2ψ + γ(−∆ψ) + J(ψ,∆ψ) = f

where J(f, g) = ∂1f∂2g − ∂2f∂1g is the Poisson bracket. The boundary
conditions are ψ = ∆ψ = 0 at ∂Ω. (These are “good”).

We start by showing there exist solutions at fixed ν. Then we pass to the
limit as ν → 0. At fixed ν.
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