On singularity formation in a Hele-Shaw model

Peter Constantin, Tarek Elgindi, Huy Nguyen, and Vlad Vicol

ABSTRACT. We discuss a lubrication approximation model of the interface between two immiscible fluids
in a Hele-Shaw cell, derived in [CDG 193] and widely studied since. The model consists of a single one
dimensional evolution equation for the thickness 2h = 2h(x, t) of a thin neck of fluid,
Oth + 9, (hd2h) =0,
forz € (—1,1) and ¢ > 0. The boundary conditions fix the neck height and the pressure jump:
h(£1,t) =1,  92h(%1,t) = P > 0.

We prove that starting from smooth and positive h, as long as h(z,t) > 0, forz € [-1,1], ¢t € [0,7], no
singularity can arise in the solution up to time 7'. As a consequence, we prove for any P > 2 and any smooth
and positive initial datum that the solution pinches off in either finite or infinite time, i.e., inf (—1,1]x[0,7) b = 0,
for some T’ € (0, oo]. These facts have been long anticipated on the basis of numerical and theoretical studies.
August 28, 2017

1. Introduction

In the Hele-Shaw problem, two immiscible viscous fluids are placed in a narrow gap between two plates.
Neglecting variations transversal to the plates, the problem is modeled by two dimensional incompressible
and irrotational hydrodynamical equations. In the presence of surface tension, boundary conditions con-
nect the mean curvature of the interface separating the two fluids to the pressure jump. The fluids form
characteristic patterns [ST58]. The zero surface tension limit has been associated in the physical litera-
ture to Laplacian growth [KMWZ04], integrable systems [MWWZ00], and to diffusion-limited aggrega-
tion [WS81, Vic84, Hal00]. A dimension reduction, using lubrication approximation, leads to degenerate
fourth order parabolic equations in one space dimension. The original derivations are related to wetting, thin
films, and the triple junction between two fluids and a solid substrate (see [DG85, SH88, ODB97, BEI09]
and [ED74, Gre78, Hoc81]). Some of the mathematical papers related to the spreading of thin films and
bubbles are [BF90, BP96, BP98, GO03, GKO08, BW(2, Knul5, KM15, GIM17].

Our focus in this paper is on singularity formation. In this context, a one dimensional model for topology
change in a Hele-Shaw set-up was discussed in [CDG193]. The equation describes the evolution of the
thickness h of a thin neck of fluid. The paper [CDG 93] derives the evolution equation of % using lubri-
cation approximation, describes its variational dissipative structure and its steady states, and discusses the
possibility of reaching zero thickness in finite or infinite time. This singularity formation was investigated
theoretically and numerically in quite a number of studies. In [DGKZ93] a first numerical evidence of finite
time pinch off was obtained. Systematic expansions and numerical results for a wider range of problems in-
dicated finite time pinch off and velocity singularities in [GPS93]. A family of equations was considered in
[BBDK94], numerical results supporting selfsimilar behavior were obtained, and finite or infinite time pinch
off was asserted. In [ED94] numerical studies and physical arguments compared lubrication approximation
equations to careful experiments of drop formation ([CR80, CM80, PSS90]). In [CBEN99] experiment
and scaling near equal viscosities are accompanied by studies of the dependence of the breaking rate and
shape of the drop on the viscosity ratio. A comprehensive survey of selfsimilar behaviors is given in [EF08],
including a discussion of the pinch off scenarios presented on the basis of numerical evidence in [ABB96].
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MSC Classification: 35035, 35086.
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In spite of the remarkable success of the dramatically reduced model obtained by lubrication approximation
(see (1.1)—(1.2) below) to quantitatively describe experimental reality, as evidenced by numerical studies
and theoretical investigations, the finite time pinch off has yet to be rigorously proved. In this paper, we
prove an old conjecture of one of us, recorded in [ED94], that as long as h > 0 no singularity can arise
from smooth and positive initial data (see Theorem 1.1 below). We also prove that indeed, as suggested in
[CDG 193] and in [BBDK94], global in time behavior leads to pinch off, just as finite time singularities do
(see Theorem 1.7 below). To the best of our knowledge, this is the first rigorous proof for the emergence of
a pinching singularity in the one dimensional Hele-Shaw model of [CDG"93].

The equation we study ([CDG93])
Oth(x,t) + 0x(hO2h)(x,t) = 0, (x,t) € (—1,1) x (0, 00), (1.1)

is supplemented with boundary conditions
h(£1,t) =1, t>0,
O2h(£1,t) =P, t>0.

Here, P > 0 is the pressure of the less viscous fluid and A > 0 is half of the width of the thin neck. The
equation has a steady solution hp, given by (1.8) below, which is unique in a class of relatively smooth
solutions (see Proposition A.2). This steady solution has a neck singularity if P > 2 (a segment where it
is identically zero). The main result of the paper is to prove convergence to this solution in finite or infinite
time. In order to do so we start by obtaining a strong enough local existence result. We exploit further the
structure of the equation to pass to limit of infinite time, and prove that the limits have to be formed from
pieces of parabolas and straight lines where they do not vanish. Then we prove that the only possible valid
limit there is hp.

1.2)

We denote / = (—1,1) and for any 7" € (0, oc|, we define
X(T)={feL®(0,T;H*(I)):0:f € L*([0,T]; H*(I)) }
endowed with its natural norm. When 7' is finite, by interpolation X (T") is equivalent to the space
L>([0,T]; H*(I)) n L*([0, T); H>(1)).
THEOREM 1.1 (Local existence of strong solutions and continuation criterion). Let hg € H3(I) satisfy
the boundary conditions (1.2) and assume hg ,, = inf;hg > 0. There exists a positive finite time T,

depending only on P, h0HH3(I) and hg ym,, such that problem (1.1)-(1.2) with initial data hg has a unique
solution h € X (T') with inf o7 h > 0.

Moreover, there exists an increasing function F : Rt x RT — R™ depending only on P such that

1
< _ : .
Ihllxery < 7 (G Mhollu) (1.3)
Therefore, h blows up at a finite time T if and only if
infl’h(t, x)N\Oast /T (1.4)
Tre
Furthermore, if we denote
D(h(t)) = /h |03h)? (2, t)dx (1.5)
I
then
T
| Din®yit < sy + 1 (16)
0
for some C > 0 depending only on P, and
t
D(h(t)) = D(h(0)) + / </8th]8§h|2(:c,s)dxds 9 / 0, 0,h[? (2, 9)d ) ds 17
0 I T
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forae. t€0,T)
REMARK 1.2. We observe that the right-hand side of (1.3) does not explicitly depend on 7'. This fact is
used in the proof of Theorem 1.7.

The problem (1.1)-(1.2) has the energy

E(h(t) = ;/I]8xh(a:,t)]2dx+P/Ih(:c,t)dx

which dissipates according to
d
T E(h(t)) = =D(h(t)) = —/h(x,t)\agh(:c,t)\2dx <0

I

(see the proof of (2.11) below).
Define the steady solution i p by

P

hp(x):i(x2—1)+l, P e (0,2], (1.8a)
L(|lz| — zp)? <l|z|<1

hp(ﬂ?) _J2 (|ZE| :BP) ) rp > |$| =4 P>2, (1.8b)
0, |SU‘ < zp,

where zp =1 — \/% for P > 2. The energy dissipation rate D(h) vanishes for h = hp. When P € (0, 2],

hp is a smooth, nonnegative solution of (1.1)-(1.2). When P > 2, hp € WQ’OO(I) and has a jump of its
second derivative at +x p. In the second case, hp is a weak solution in the sense of the following definition.

DEFINITION 1.3 (Weak solution). We say that a nonnegative function h € L*([0,T); H*(I)) is a weak
solution of (1.1)-(1.2) on [0, T if there exists § > 0 such that for a.e. t € [0,T], h(t) € C*([-1,—1+46])N
C?([1 — 8,1]), h(t) verifies the boundary conditions (1.2), and

T T
1
/ /hatgpdxdt - / / (hO2h — =|0,h|*) 2 pdzdt = 0 (1.9)
0J1 0J1 2
forall p € Cg°(I x (0,T)).
The preceding definition is based on the identity
1
O (hO2h) = 02 (hO2h — 5@h\?). (1.10)

REMARK 1.4 (Global weak solutions). We prove in Theorem A.1 of the appendix that for any nonnegative
H' data that is smooth near +1 and satisfies the boundary condition (1.2), there exists a global weak solution
to (1.1)-(1.2). Related results for different boundary conditions can be found in [BF90, BP96, BP98].

The next proposition implies that i p has the least energy among all weak solutions.

PROPOSITION 1.5 (Energy minimizer). For any nonegative function h € H'(I) taking value 1 at £1 we
have E(h) > E(hp). Moreover, E(h) = E(hp) if and only if h = hp.

In order to prove the finite or infinite time pinch off, we show that a sequence of functions with bounded
energy F and vanishing energy dissipation rate D converges weakly to the energy minimizer hy,.

THEOREM 1.6 (Relaxation to energy minimizer). Let (h,,) be sequence of nonnegative H>(I) functions
satisfying (1.2). Assume that (hy,) is uniformly bounded in H'(I) and D(hy,) — 0. Then we have hy, — hp
in HY(I) and hy, — hp in H3 ({z : hp(z) > 0}). When P € (0,2), hy, — hp in H3(I).

As a corollary of Theorems 1.1 and 1.6 we have the main result of this paper:
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THEOREM 1.7 (Stability for P < 2 and pinch off for P > 2).

Part 1. If P € (0,2), then hp is asymptotically stable in H'(I). More precisely, there exist §,c,C > 0
depending only on P such that the following holds. If hg € H3(I) satisfies inf; hg > 0 and ||ho — hp||gn <
dthen h € X(T) forany T > 0, inf; g+ h > cand

15(t) = bl < Clho — el qry exp(—ct) Ve > 0.
Moreover, h(t) — hp in H3(I) as t — oc.

Part 2. If P > 2, then starting from any positive hg € H 3([ ), the solution h of (1.1)-(1.2), constructed in
Theorem 1.1, pinches off at either finite or infinite time. In the latter case, by Theorem 1.6, h(t,) — hp in
HY(I) and h(t,) — hpin H3 ({z : hp(z) > 0}) for some t, — <.

REMARK 1.8. When P > 2, if h is global in X, the bound (1.3) blows up since h is pinched at infinite time.
In particular, the bound for A in L>°([0,T]; H3(I)) blows up as T' — co. Nevertheless, along an unbounded
sequence of times, h converges to hp in H> ({x : hp(z) > 0}).

REMARK 1.9. Assume that & is a positive smooth solution of (1.1)-(1.2) on [0,7%), T* € (0, c0), and that
minger h(z, T*) = 0. Let z,,,(¢) be a position of the minimum of A in z at time ¢ and denote h,,(t) =
h(xpm(t),t). Since (Ozh)(zm(t),t) = 0, it is easy to see that

%m B (t) = —(03h) (xm(t),t) Yt € [0,T).

This implies
T*
/ (080 (o (8), )t = o0,
0

We also remark that in the derivation of model (1.1) (see [CDG93]), the speed of the flow is given by
v = 2h, and hence

e
/0 (0x0) (X (t), t)dt = 0.

This is one kind of singularity occurring when h touches 0 in finite time.

Throughout this paper, F (-, ..., -) denotes nonnegative functions which are increasing in each argument. F
may change from line to line unless it is enumerated.

2. A linear problem

Let T" be a positive real number and let g be a positive function satisfying

g€ L=((0,T]; H*(I)), g € L([0,T); L>(1)). 2.1
We study in this section the linear problem
Oth(x,t) + 05(gd5h)(x,t) =0,  (a,t) € I x (0,T),
h(£1,t) =1, 02h(£l,t)=P, t>0, (2.2)
h(z,t) = ho(z), t=0.

We prove the following well-posedness result.

THEOREM 2.1 (Strong solution for the linear problem). For every hg € H?>(I) satisfying the boundary
conditions (1.2), there exists a unique solution h € X (T) to problem (2.2). Moreover, denoting
co = inf xz,t) > 0,
0 (z,t)eIx[0,T] 9(z:?)
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then h obeys the bounds

1
1Al x 1) < 5’:(6*07 91l oo (o, 73:52(1)) > 102l L1 jo,77: 2o (1)) 1ol 13 (2.3)
[l oo 0,77, (1) < C(1+ ||Roll (1) (2.4)
T
/ /g O3h[2 dadt < C(1+ [hol3 ). 2.5)
0JI

Here, F and C depend only on P. Furthermore, denoting w = g 0>h we have that

2
/w((gj;];)dx— // g w(x, s)dxds — 2 //|82w] x,s)dzds, (2.6)
1 9\T,
w w 1 [t 0g
| < H(-,m 3 A - 105 I O PR cY)
H\/g L2(I) v L2(I) 2Jo 9% L2(1) (
31&9
o3l 9)ads < 3 | 4 = R (-, 8) o ryds
/ L \f L2(l 2Jo 92 L2(1 \f L2(1 W

(2.8)
hold for a.e. t € [0,T.

The remainder of this section contains the proof of Theorem 2.1. Let (g") a sequence of C*°([0,T] x I)
functions such that ¢"(x,t) > ¢p/2 and

g" = g € L®([0,T); H*(I)), 8ig" — dhg € L' ([0,T]; L®(I)). 29

Let hl} be a sequence of C°°(I) functions satisfying (1.2) and converging to hq in H3(I). By the classical
parabolic theory (see Theorem 6.2 [LM72]), there exists for each n a unique solution A" € C'° (T) to the
problem (2.2) with g replaced by g™ and hg replaced by hj. We prove a closed a priori estimate for h"
in X (T), a contraction estimate in H*(I), and then pass to the limit n — oo to obtain the existence and
uniqueness of a h € X (7T') solving (2.2). To this end, we set

P
u" =h" — —(z* - 1) — 1.
2
Then,

P
@wzqmw@w)mmjLu%ﬂ:w—gwbn—L (2.10)

and
u"(£1,) =0, wul (£1,-)=0.
Throughout sections 2.1, 2.2 and 2.3 we write u™ = u, h™ = h, h} = hg and g" = g to simplify notation.

2.1. H' energy. We first claim that h satisfies

d
pr (\ahP+Pm ‘/Q@MQSO (2.11)
1
Indeed, we have
d

1
5 [51002 = [ aohoh—omoun’, - [ anoin
I I I

— [outa0n)0in =~ [ giohP + Pod2hlL,
1 1
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and
d

dt
where we use the fact that 9;h(+1, ) = 0 (because h(+1,-) = 1). This proves (2.11).

Ph_ —P/a (902h) = —Pgd>h|*,,

Next, multiplying (2.10) by —0?u, then integrating by parts we get

—/@u@iu: /ﬁx(gﬁiu)aiu:gai’uﬁguﬂ_l —/g|8§u| = —/g|0§u|2.
I I I I

But
—/6tu6§u— —Oyudpul' +/8t8xu8$u /\8 ul?
noticing that d,u(+1, ) = 0 (because u(+1,-) = 0). Denoting
Er = 0uull 2y, D1 = [v90%ull 2,

we obtain
1d

—E?+ D} =
gt 0,

and hence )

BT + D130z = 5 Fa(0)
In particular, (2.13) and the definition of u gives

0zull 21y < 102w(0) || 2y < [|Ohol 21y + P-
Since u(+1,t) = 0, the Poincaré inequality also gives
lullz2(ry < CllOzullr2ry < C( + [[holli(r))

which implies together with (2.14) and the definition of w that

1Al oo (o, 711 (1)) < C(L+ |Rollz1(p))-
where C' only depends on P.
Moreover, by (2.13) we obtain

T
| Jotoznpasde < -+ o).
and by the positivity of g,
o3 bl L2 jo,m;22(1)) 7(1 + lholl i (ny)

ﬂ

where ¢ is as in the statement of the theorem.

2.2. H? energy. We multiply (2.10) by 9%u and integrate. On one hand,
/atuﬁﬁu = atu8§u|1_1 — /(%(%u@jzu = —/&t@xu@gu
I I

o 2 11 2002y = = — 2ul.

—/8x(98§’u)8§u: —/g@ﬁuQ—/ﬁxg(‘)guBiu.
I I I

By = [|02ull2(ry, D2 = Iv/g0pullr2(r)
6
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Denoting

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)



it follows that
1d 3, 94 1 2 o, Lo
5 thz +Dj = 5:1:93 udpu < *||3x9\|Loo 1x0,1) D102 < 55 1009l e (rx o P1 + 5 D2-
0
In view of (2.13), this ylelds

T 1 T
EY(T)+ [ Dhde < B30)+ Z0nsle oy | D
0

1
< E3(0) + @Ha:cgﬂioo(fx[o,T])E%(O)a
0
and consequently,

10201 Lo (jo77:22(1)) + Vol Ozl 2o, 1y;02(ry) < C(1 + [[holl ) + *HaxgllLoo (xpo,)) (hollgr(ry +C).
(2.19)
This, together with (2.16) implies

1
1| oo (jo.73: 12 (1)) + Vo llOhll 2o, rp:22(1y) < C (L + |lhollgr2) + CT)HangLOO(Ix[O,T])(HhOHHl(I) + ).
(2.20)

2.3. H? energy. A direct L? estimate for d3u would make high order boundary terms appear (up to
order 5) which are not given by the boundary conditions. Instead, we exploit further the structure of the
equation. Setting w = g 92h, we have 9;h = —0,w, and thus O, w(+1) = 3w(£1) = 0 in view of (1.2).
From the identity

Oyw = Drgdh + gd30sh = 89 w — gdiw

Org 2 _ atg w? / 4 3t9 2
2dt/ / i —w woyw —Sw

(9
=_ téqu /w({“)ifw
2 19 I

Integrating by parts twice and using the boundary conditions for w gives

[ wot = [ 162l
I I
which yields

wi(z,t) . [ w(z,0) g 2 ,
/1 ga.t) _/1 9(x,0) dm+/0/l R S)CMS_Z//Ia wle,s)deds, - (222)

we conclude

(2.21)

0
2 tg
sl + 12 w\|L2_§|r leall e ol (223)
and J 5
1 w 1 0Og w
o 22 oo | —= ][22 2.24
g arll e 19wl < 51 e 2 (224)
By (2.24) and Gronwall’s lemma,
w wo Org
— |1 72y + ||0%w]| 2 72y < ||l— || 12 exp / Loods). (2.25)
H\/EHL (o0,73;22) + 107wl 20,79 1.2) H\@OHL 2 [ I="lr=ds)

Moreover, since
ﬁiw = 8%9852’/1 + 28193;111 + g@ih
7



and

102kl oo (ry < CORR 21y, (2.26)
which follows from Poincaré-Wirtinger’s inequality and the fact that

/aghdx = 02h(1) — 9?h(-1)=P - P =0,
I
we get
lgd2hl > < 11079/l L2[|05R] o + 2(102g]| o< |0z Rl L2 + |07w]| 2

< Cliglla2 1950l 22 + [|03w]l 2
In view of (2.20), (2.25), (2.27), and the lower bound g > ¢y, we thus obtain

(2.27)

1
102R| poo jo.77,22) + 105R]| 22(j0.77,22) < }'(£7 g/l £oe (o, 77:2)5 1969l L1 o 13;100) 1Roll ). (2.28)

2.4. Proof of Theorem 2.1. A combination of (2.20), (2.18) and (2.28) leads to

n 1 n n n
A"l x (T SF(;,IIQ Il oo (0,13 122(0) s 18:9™ | L2 (0,17 100 > 16 | 13
0 (2.29)

1
< ]:(%, 191l Lo (fo.73;122 (1)) > 11069 || L1 (f0,79;2.00) 1ol s ) -
Recall that ;A" = —9,w"™ and O, w™(£1) = 0. It then follows from Poincaré’s inequality and (2.25) that
n n 1
10:h™ | L2 o,y < Cllw™ [ L2 jo,17;12) < }-(57 109l L1 (jo, 77150y 1ol s ) - (2.30)

By virtue of Aubin-Lions’s lemma applied with the triple H3(I) C C*(I) ¢ H'(I), there exists h € X (T')
such that

r™ — h in L2([0,T]; H(I))), (2.31)
" — x h in L°°([0,T); H3(I)), (2.32)
h™ — b in C([0,T]; C*(I)). (2.33)

For any test function ¢ € C5°(I x (0,7)),

T T
/ / ROy pdxdt + / / g O3 O pdxdt = 0.
0 I 0 I

The convergences (2.31) and (2.9) ensure that (h, g) satisfies the same weak formulation. Then because
h € L2([0,T); H*(I)) and g € L*>°([0,T]; H*(I)), we actually have 8;h+3,.(902h) = 0in L2([0,T]; H').
Next, (2.33) implies that h(0) = hg and the boundary conditions 9,h(+1,t) = 1, 92h(%1,t) = P are
observed for any ¢ € [0,7]. The bounds (2.3), (2.4) and (2.5) on h are inherited from the corresponding
bounds (2.29), (2.16) and (2.17) on h"™. Letting n — oo in (2.22) yields (2.6). Finally, integrating (2.23)
and letting n — oo we obtain (2.7) and (2.8).

The uniqueness of solutions follows from the energy inequality. Let hi, ho be two solutions of (2.2) with
the same initial condition hq. The difference k = hy — ho solves
Otk (z,t) + 0x(g03k)(x,t) =0,  (x,t) € I x (0,T),
k(£1,t) = 02k(&1,t) = 0, t>0, (2.34)
k(xz,t) =0, t=0.

Similarly to the H! energy estimate for u above, we multiply the first equation in (2.34) by —02k and

integrate by parts to get
1d
5 g710:k13 = = [ aloti? <o,
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consequently 9,k = 0. Since k(1) = 0 we conclude that £ = 0, concluding the proof of uniqueness.

3. A nondegenrerate problem

Fixing a small positive real number €, we prove in this section the global well-posedness of the following
nondegenerate nonlinear parabolic problem

Oth(z,t) + 0p(Vh2 + 202h) (x,t) = 0, (z,t) € I x (0,00),
h(£1,t) = 1,02h(£1,t) = P, t>0, (3.1
h(x,t) = ho(z), t=0.

THEOREM 3.1 (Strong solution for the nondegenerate nonlinear problem). For every hg € H? satisfying

the boundary conditions (1.2), and for every T > 0, there exists a unique solution h € X (T) to problem
(3.1). Moreover, h obeys the bounds

1
< 2
1Al x ) < }—(ianX[O,T] [ te’ [holl g3 ), (3.2)
1Al oo jo,11;m2 (1)) < C(1 A+ [[holl (1)) (3.3)

with F and C depending only on P. Furthermore, (2.5), (2.6), (2.7) and (2.8) hold with g = \/h? + 2.
3.1. Uniqueness. If /; and hy are two solutions of (3.1), we set k = hy — ho and g; = , /h? + €2,
j =1, 2. Observe that k solves

Ok(,t) + ( 105k) (x,t) + 0:((g1 — g2)03ho) (x,t) =0,  (x,t) € I x (0,00),
(il £) = 92k(£1,1) = 0, t>0, (3.4)
k(x,t) = O, t=0.

Multiplying the first equation in (3.4) by —92k and integrating by parts (note that d;h; € L*([0,T]; H}(I)))
we get

5 10k By == [l = [ (g1 - gm)bhadi
1 1

< e / kP — / (91 — 92)0PhadPk.
I I

l91(z) — g2(2)| < ||h1 — hallzee (1) < CllEl| 1(ry

It is readily seen that

which implies

(91 — 92) 0 ha0k
I

< CHkHHl(I)HaghQHLQ(I)HaikHLZ(I)

Since k(£1,-) = 0, Poincaré’s inequality gives ||k|[z1(r) < C| 02k 2(r)- This combined with a Young
inequality leads to

5 10 2a(ry < CllOukl 3y 03hal

Because ||03ha || 12(r) € L*([0,T]) for any T > 0 we conclude by Gronwall’s lemma that 0,k = 0 and thus
k=0.
9



3.2. Local existence. The existence of a local-in-time solution is obtained by Picard’s iterations. We
set hO(x,t) = ho(x) for all t > 0 and define recursively k"1, n > 0, to be the solution of the problem

8thn+1(x,t) + ax(gnJrlagthrl)(x’t) = 07 (.’L‘,t) el x (0700)7

gn+1 _ /|hn|2 +e2, 3.5)
h(£1,t) =1, 02h(£1,t) = P, t >0, '
h(z,t) = ho(x), t=0.

Applying recursively Theorem 2.1 we find that h™ € X (T') for any T' > 0. We now prove by induction that
there exist Tp, Cy > 0,

1 1
Ty = To(g’ hollgs),  Co = Co(ga lholl 3 ),

such that for any n > 0,

1A™ | x (15 + 19eh™ | 1 jo,10):0¢) < Co- (3.6)
In view of the identities
g™t = h™O¢h" 9,g"+! = h" Oz h" 2+l _ 0" * + h"Ozh"™ R0 R
/’hn|2 T2 /‘hn’2+€2 x /‘h"‘2+€2 (|h”\2—|—52)%
(3.7)
we find
10eg™ M L1 o,y < 10" | 10,7700 (3.8)
and
n+1 1 n
g™ e oy 2) < FC IR | zoo 0,77582)) (3.9)
This together with (2.3) yields
n 1 n n
1B x (1) < Fa(T, o A" Los (0,77 222)» 1Oeh™ (| L1 (0, 77:0» |0 £13)- (3.10)
Thus
n 1 n n
1" | 2,105 < F2(T, 2 10" (oo qo,r15m2), 1060 [ 22 0,750 ol 1r2) (3.11)

possibly with another . From the equation for A" ! we deduce that
102" L1 oyspoey < VTNOR™ | L2 0,170
< CﬁHQnH”Lw([o,T};HQ)thHHLZ’([O,T];HS) 3.12)
1
< VT Fs(T, o A" | oo 0,17 2225 |O6h™ | L1 (0, 77: 200 1ol £23)-

Thus (3.6) holds for n = 0, 1 with arbitrary Ty € (0, 1) and

1 1
Co > maux { ol s, Fa(L, 2, 1 holl s, 0. hollss), Fo(L, =, lholl s, 0. ol gs) | =2 M. (3.13)

Assume (3.6) for 0, 1, ...n with n > 1 we now prove it for n 4+ 1. A direct induction based on (3.10) would
amplify the bound for h"*!, and thus additional considerations are needed.

LEMMA 3.2. There exist 6 € (0,1) and Fs, Fg such that forall T < 1 andn > 1,

n 1 n— n—
IR x (1) < ]—“5<E,T5]-“6(Hh Y pee (o.rp:02 (1)) 10GR™ L2 0,131 ”h0HH3(1)>- (3.14)
10



PROOF. We first note that ©” := h"™ — gaz solves

Opu"™(z,t) + (%(g"@i’u”)(x,t) =0, (x,t) € I x (0,00),
n— IR+ e
9 | \2 +e%, (3.15)
u(£1,t) = 0zu™(£1,t) =0, t >0,
u™(z,t) = uf(x) := ho(z) — ng, t=0.
Then as in section 2.2, we multiply the first equation in (3.15) by 92u" and integrate by parts to obtain
1d
—|0%u "||L2 =— /g”|8§u"!2 — /axgnéiunaﬁu”.

Let us note that ;0%u € L?([0,T); H*(I)) and 0?u € L2([0,T); H}(I)). Employing the Gagliardo-
Nirenberg inequality

3
”33f||L2(1 < C'”34f||L2(1 Hf|| o Cllfllzzy, a= vk
we bound
’ 19" O Ogu™ | < (|0eg™ || Lo () 105u™ || 21y | 03u™ || 121y
< Cllg" sy |02 550 ™ 125
+ CHQ"HH?(I)Hag%UnHL%I)HunHB(I)-
Consequently

1020 e 0 77;22() + IV 0" 20 2

< 82" O)1Baqr) + Cllg" oty lle 5o rzecry / lotun L,

+ Cllg" (| oo (o, 17: 12 () 1" | oo (0,77;22(1)) /0 100" | 12 ()
Appealing to Holder’s inequality we can gain small factors of powers of 7":
T
1
/ lozu™ 125Gy < T2 |9 W% o sz /0 105" | 2y < T2 (105" | L2(p0 7221 -
Invoking (3.9) and (3.10) with n replaced by n — 1 leads to
1020™ | oo (jo.77:22(1)) + IV Ou™ | 220,77 22(1)
Tﬁfs(* 1R™ ) oo 0,182 (1) N0R™ ™| L o700y s ool as) =+ Nluoll a2y
for some B € (0,1) and for all ' < 1, n > 1. We thus obtain by virtue of (2.4),
1 _ _
A" | oo (jo,1;52) < TB]:A:(? IR oo o,13:02) s 10:R™ Ml £ o.13:1009» 1ol r3) + Cllhollgrz + C.
Substituting this and (3.12) (with n replaced by n — 1) in (3.10) yields

12" x ()
1 1 _ _
< F (T’ ;Tﬂ}l(g, 1B M oo (o722 10:h™ 20,7351 I holl a22) + Cllholl 2 + C,
1 n— n—
VT F(T, L Ml poo o,rgs12)s 10eR™ 11 o,13s100 ) ol s ) ||h0”H3)

<f5( , T F (|| ||L°°([O,T];H2)aHathnilHLQ([QT];Hl)))Hh0||H3)

for some v € (0,1), forall 7' < 1 andn > 1. O
11



Now we choose
1
Co > HlaX{M, F5(2 1 ”h0||H3)}
and Tp € (0, 1) satisfying
1
Ty F6(Co, Co) <1, +/ To]:g(?Co,Co, |hollgs) < Co
then owing to (3.12), (3.14) and the induction hypothesis,

157 ey + 190 L1 o gpzoe) < Co

which completes the proof of the uniform bounds (3.6). In fact, using the first equation in (3.5) and the
uniniform boundedness of h" in X (Tp) we deduce that 9;h™ is uniformly bounded in L?([0, Tp]; H'(I)).
Passing to the limit n — oo with the use of Aubin-Lions’s lemma, we obtain a solution A € X (Tp) of (3.1).
Moreover, Ty € (0, 1) depends only on ||ho|| x and £, and the bound

1
1Al x (1) < Co < F(=, [|hollm3)

)
9

holds. Finally, (2.5), (2.6), (2.7) and (2.8) hold with g = v/h? + €2 by applying Theorem 2.1 to (3.5) then
letting n — oo.

3.3. Global existence. We now iterate the above procedure over time intervals 7, of length less than
1 and glue the solutions together to obtain a maximal solution A defined on [0, 7%) with T € (0, oc].

PROPOSITION 3.3. Forany T < T%*, h obeys the bound

Pllxr) < F( “olhollis)s hn(T) = inf_|h]. (3.16)

b (T) + Ix[0,T)

PROOF. We revisit the energy estimates leading to Theorem 2.1 but with g replaced by h. First, the
inequality (2.11) holds,
d

1
— [ (3|0:h* + Ph) = — [ g|03n|* <O.
G [ Gloat + Py = [ glonf <

Letting u = h — g(xQ — 1) —1land g = Vh? + £2, as in sections 2.1 and 2.2 we have that

1d
5@E%JFD% <0 (3.17)

and

1d
5%E22 + D3 =~ /laxgﬁiuai‘u

hold, where
By = |0sull 12, D1 =v903ull 2,  Ba=107ullr2ry, D2 = [Iv/g0zull 2.

In particular, we deduce as for (2.16) that

1l oo 0,718 (1)) < C(L A+ holl () (3.18)
12



Writing 0,9 = 0, hh (Ozpu + Pa:) and noting that |h| < g we bound

g0 udtudz
I

</|6mu6§u8§u|dx+P/‘:r@i’u@iu‘dx
I I

< hm(Tl) 1105l =) PrDa + G2 D1 s
< hm(;)_l_suaacUHHI(I)DlDz + lelb
< - (C) EsD1Dy + hm(TP)—I—EDlDZ’

< g0+ hznfw@”“ bt

where the bound

which follows from Poincaré—Wirtinger’s inequality together with the fact that | ; Ozu = 0, was used. Thus

1d C C
E2 D 7E2D2 — _D?
s 2 Tt Syt et
which combined with (3.17) yields
1d 1 C C
——FE%+ 2 < 7]5 D? 7E2D2
2dt 272~ h2(T)+e2 2 1—h2() !
with B2 = WE% + E3. Then by the Gronwall lemma,
C
| B2l oo jo,71) < 1] oo o,y < £(0) eXP(WHDl”%Q([O,T]))
C 3.19)
<FE - _F? .
< B(0) exp(- iy FH0)
It follows that o
D2 z2¢0,17) < m”E2”Loo([o,T})HD1HL2([0,T])
c C , (3.20)
<—F(0 ————5 E7(0))E1(0).

A combination of (3.18), (3.17), (3.19) and (3.20) leads to

1| oo (o, 73: 121y + 1O2R| £2q0,77:22(1)) + 193Rl| £2(0,77:22(1y) < F ( [hollg=).  (3.21)

b
hi(T) + €’

We now turn to the H? estimate. As proved in section 3.2, (2.7) and (2.8) (with ¢ = v/h3 + £2) hold on
each iterative time interval 7,,, and thus hold on [0, 7] by gluing them together. In other words, we have for
a.e. t € (0,7 that

w w 6g
||%('at)||L2(I)§H7( N e2n) /II = (9) 2 llw(, 8)| e ds (3.22)
1 [ Oig w
2 <! 2 / Q.. oy )| peds. (3.2
/H@ 5) || 2ds < H\f( s Ollz2r) + 5 ; Hg%(ﬂS>HL2(I)H\/§<aS)HLQ(I)Hw(7s)”L ds. (3.23)

But by (2.26) it is readily seen that

lwllze < Cligllz=l|hllze < C(llhllze + )|0zh]l 2
13



and

18egll 2 < 10kl 2 < Cllhll 2 (1830 2 + |0z0] 22)- (3.24)
Consequently
w wo C
l—=llreeqoryr2) < l—= M2 + ———=4
Vi L>(]0,T);L?) 9 L (o (T) _|_5)%
with

A= ||wHL<>o([0,T];L°°)||5t9||L2([0,T];L2)

< C([|hll g + )Pl Loo (0,17, 12) (HathL%[o,T];L?)|!<9§h||L2([o,T};L2) + |16§h||%2([o,T};L2)>

1
< -
in view of (3.21), and
|02w]? <o, ¢y gl ]
— (e} T2 [e%s} T2 oS} .J 00
L2([0,T];L2) = 9 \/>0 L2 hm(T)—l-E)% \/g Lo ([0,T;L?) t91lL ([0,77;L2) Loo([0,TT;L°°)
1 wo C C
< sll—17= + [— M2+ ——=F4)A
AV AL wmav+eﬁ< VI (h(T) + ) )
1
< P — .
< ]:(hm(T) py 170l £r2)
Appealing to (2.27) with g = h we deduce that
1
3 5
9Bl oo (jo,7;22) + 1021l oo (0,73;22) < ]:(hm(T) 2 l[hollgs) (3.25)
from which (3.16) follows. ]

Now (3.16) implies the global bound

1
1Al x 1y < 5’:(? [holl 1)

for any T' < T™. We thus conclude that T* = oco. Furthermore, the bounds (3.2) and (3.3) follow from
(3.18), (3.25) and (3.21).

4. Proof of Theorem 1.1

Let hy € H? satisfy the boundary conditions (1.2) and
h07m = inf hg > 0.

Step 1. (Approximate equations) For each € € (0, 1], let A be the solution of the nondegenrate problem

+ (V/h2 +203he) (2, 1) = 0, (z,t) € (—=1,1) x (0, 00),

P, t>0, 4.1)

hE(il,t) =1, 02he(£1,t)
he(z,t) = ho(x), t=0.
According to Theorem 3.1, h® € X (T') for any T' > 0 and h. obeys the bounds
Itellxcr) < F (e o Wollae), @2)
[hell oo (o111 (1)) < C(1+ [[holl g2 (ry) (4.3)
with
hem(T) = inf |he(z,t)] .

(z,t)eIx[0,T]
14



Moreover, (2.5) and (2.6) hold with g = \/h2 + £2.
Using the equation for h. and (4.2) we get
1
Oih . < Fl—m— |7
0thell L2 o,y < (he,m(T) s Iholl grs)

for all 7" < 1. This implies

t
he(2,1) > he(z,0) — \/ bz, 5)ds|
0
> hom — VT | 0uhe || 120,172
1
> howm — VTF(———In w<T<1.
= Vﬁ(@ﬂﬂ+g”wm)

Step 2. (Bootstrap) Denote

1
d(T)= —— T<1.
(T) hem(T) + €

We choose Cj sufficiently large and 7y sufficiently small so that
1

Co > —
0 h07m7

ho,m
VI F(Co. [ holls) < =5,
1

ho.m — VToF2(Co, ||holl grs)

Co >
This is possible by taking

2 ho,m
00>K, VT F2(Co, [[hol|gs) < 02’ .

We claim that
d-(Ty) < Cy Ve > 0.
Indeed, if (4.9) is not true then there exists €9 > 0 such that d.,(Tp) > Cy. By (4.6),
1 1
= <
hO,m +e hO,m

dso (0) < Co.

By the continuity of d., (-), there exists 71 € (0,7p) such that d,(71) = Cp. Then (4.7) implies

ho,m
VI F(deo (T1), [[hollgs) = VT1F (Co, [|hollgs) < V/ToF (Co, ||hollgs) < 02
We deduce from (4.5) that

1
inf hey > —hom >0
IXI[I(},Tl] f0 = 2 0

and
heom(T1) > hom — /ToF (Co, ||ho||gz) > 0.

Hence
1 1

< .
heom(T1) +€0 = hom — F(Co, [[hol| #r3)
This contradicts (4.8), and thus we conclude the claim (4.9). Coming back to (4.5) we find

C'0 - dao (Tl) -

1
inf  he> hom, Ve >O0.
Ix [O,To]

15
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Step 3. (Conclusion of the argument) Inserting (4.9) into (4.2) and (4.4) yields
el x(zo) + 19hell 20,1008 (1)) < Mo

for some My depending only on ||k || g3 (1) and ho . Sete = 1 and rename h,, = he, d,, = d.. According
to Aubin-Lions’s lemma, there exists h € X (1) such that

hn — h in L*([0, Tp); H>(I)), (4.10)
A" — % h in L>=([0, Tp); H3(I)), (4.11)
hn — b in C([0, Tp); C*(1)). 4.12)

Moreover, it is easy to check that & solves the problem (1.1)-(1.2). Letting ¢ — 0 in (4.5) we find
1
inf h > -hom > 0.
Ix[0,To] 2
Next, it follows from (4.2) and the convergences (4.10), (4.11) that
1

Wa ||h0||H3)-

We can replace lim inf by lim of a subsequence ny — oo. For some (xg,tx) € I x [0, o], hn,.m(To) =
Py 7k, ). By the compactness of [—1, 1] x [0, Tp), there exists a subsequence ny, — oo such that

(xkjatkj) - (1‘0,t0) € [_17 1] x [07TO]7 h‘”kj (xk'j7tkj) - h(iEo,to) > inf h
IX[O,To]

1Al x 1) < lim inf [Anllx (1) < linrr_1>ioréf}'(

where (4.12) was used in the second convergence. Consequently

1
1z < F(~ ol
X (To) (hmj_m hnkj (Th;»tr,) + i )
1
SFli—h ’
- (lanX[QTO]h [0S

where the fact that F is increasing was used.
In addition, passing to the limit in (2.5) and (2.6) leads to (1.6) and (1.7) repsectively.
Finally, because h is positive on I, it is unique by the same argument as in section 3.1.

5. Proof of Proposition 1.5
Let h € H'(I) be a nonnegative function satisfying 2(£1) = 1. We have
1
E(h(t)) == / |0,h|*dx + P/hda:
21 I
1 1
= / 10.(h — hp)|’dz + = / |0, hp|?dx + /8x(h — hp)Ozhpdx + P/hda:.
2 Jr 2 Jr I I
Integration by parts in the cross term gives
/ax(h — hp)Oyhpdx = (h — hp)dyhp|t, — /(h — hp)dihpdr = — /(h — hp)d2hpdx
I I I

since h = hp at 1.
Case 1: P € (0,2]. In this case 92hp = P, and thus

1 1
B(h(t) = 3 /I 0u(h — hp) P+ /I Ohp 2 + P/Ihp > E(hp).
16



Moreover, E(h(t)) = E(hp) if and only if 9;(h — hp) = 0 which is equivalent to h = hp by the boundary
condition h(+1) = hp(£1) = 1.

Case 2: P > 2. Then 92hp(z) = P if |z| > xp and = 0 if |z| < xp. Thus

E(h(t)) = 1/|8x(h—hp)|2dx+1/|8xhp|2d:n~|—P/h—P/ (h— hp)
2 Jr 2 Jr I zp<|z|<1

1 1 P
= /|8x(h—hp)\2d:r+/|8xhp\2d:r—|—P/ hp+P/ h
2Jr 2)r rp<lz|<l —zp
1 2 1 2 o
== [ |0:(h—hp)|Pdz+ = [ |0zhp|*dz+ P [ hp+ P h
21 21 I e

> E(hp).
Moreover, E(h(t)) = E(hp) if and only if
Oz(h—hp)=0 onl,
h=0 on(—zp,zp).

Again, owing to the boundary condition h(+1) = hp(41) = 1, this is equivalent to h(x,-) = hp(z) for
|| > zpand h = 0 on (—xp,zp). In other words, h = hp.

6. Proof of Theorem 1.6

Let h,, be sequence of nonnegative H 3([ ) functions satisfying (1.2). Assume that h,, is uniformly bounded
in H(I) and D(h,,) — 0. Note that in view of the Gagliardo-Nirenberg inequality

1 1
12y < ClOFN z2ll 120 + ClAl L ()

the energy F defines a norm which is equivalent to the H'(I) norm. Then, by extracting a subsequence,
still denoted t,,, we have h,, — hs in H'(I). In particular,

hn — hoe  in C(T). 6.1)
Observe that if at some z9 € I = [~1,1], hoo(20) > O then for some § > 0, hog > 2hoo(z0) on
I, = (x0— 9,20 +9)NI. By (6.1), hy, > %hoo(on) on I, s for sufficiently large n. By the definition
of D(h) we get
/ |02h,, () Pd2z — 0. (6.2)
I;

0,0
By interpolation, the quantity

N3(u) = /1 (uf? + |0%u[?)dz
z(,0

defines a norm which is equivalent to the [ 3 (Iz,,5) norm. It follows from (6.1) and (6.2) that h,, — h in
N3 and

< Tims 1 2 . 3 2
N3(hso) < hnnl)L%fN3(h(tn)) nh_}ngo . | ()] dm+nh_>ngo » |0y b ()| “dx
[ P,
I:L‘O,(s

hence
/ 10 hoo (2) [2daz = 0.
I

(0,6
We have proved that



LEMMA 6.1. If hoo(z0) > 0, 2o € I, then there exists a neighborhood 1,5 = (xg — 8,20+ 0) N I of
xqg in which h,, ho are positive, 8ghoo =0, and h,, — hy in H3(Ix075). Consequently, 8;%00 =0on
Z ={x € 1: hoo(x) > 0}, hence h is either a parabola or a straight line on each connected component
(which are open intervals) of Z.

The next lemma rules out the possibility that h,, goes down to 0 at a non-zero angle.

LEMMA 6.2. Let g € I and J = (wg, 20 + 6) C I. Let k € C*(J) be such that k > 0 on J and k, 0.k,
02k are right-continuous at xo with k(zg) = 0 and dyk(z{) # 0. Let ky, be a sequence of nonnegative
functions in H?(I) such that k,(£1) = ¢ > 0 and k,, — k in C?(.J). Then,

/kn|a§kn|2 4 0.
I

The same conclusion holds if J is placed by (xog — 6,x0) C I and a:('f is replaced by x in the assumptions
on k.

PROOF. Assume by contradiction
/ k| 02k |? — 0. (6.3)
I
Then in view of Hoder’s inequality and the boundedness of k,, in L>°(I), we have for any I’ C I that
1 1
‘/ ke 02k, id (/ kg\agkn‘zdx> * < VI sup ||kl ooy (/ kn\agkn‘zdm> 3
I n I

from which it follows that

/ kn02k, — 0 VI' C I (6.4)
I/
Since
1
k(xd)0zk(xg) — ((9 k() = =5 (Ouk(ag))* < 0

there exists ¢ € (0, ) so small that 0,k (g + ) # 0 and

1

k(zo 4 €)02k(zo + €) — 5 (Ouk(wo + £))? <.

Here, the assumptions that k& € C2(.J) and k, 9.k, Ok are right continuous at o were used. We note that
kn(x) > ¢ > 0onJ; = (x9 + &, 0 + ) for all n. This combined with (6.3) yields [, |95k, |> — 0, and
thus k,, — k in H3(.J1) since we know k,, — k in C°(Jy). In particular, K € C?(.J1) and

kn(zo +€) — k(o +¢€) >0, Opkn(xo+e) = Opk(zo+6) #0, 92kn(xo+e) — 02k(zo + ).

Let z,, be the global minimum of k,, on I. We know that k,, > 0, k, (1) = ¢ > 0 and k,(x¢) — k(z0) = 0,
hence ,, € I for n sufficiently large. Then d,k(x,) = 0 and 92k, (x,) > 0. Now we compute

xo+e€ zo+e To+€
/ knd3ky = kn0’kp — / Dukn 02k,

= k(o + £)0%kn (0 + ) — kn(w)0kn () — 5 (Oukn(ro + ) + 3 (Dukn ()’

1
= Fn(@o + &) kn (70 + &) = hin ()0 kn(2n) — 5 (Oukn(0 + €))*.
Since ky, (2,)0%k,, (x,) > 0, the right-hand side is smaller than or equal to

1
En(xo + E)aikn(a:o +e)— 5(8551%(3:0 + 5))2
18



which converges to

k(zo 4 €)02k(xo + €) (Dpk(zo+¢€))? <0

1
2
while the left-hand side converges to 0, according to (6.4). This contradiction concludes the proof. g
We now proceed to show ho, = hp. First, hoo(1) = lim h, (1) = 1. By Lemma 6.1, there exists g € (0, 1)
such that h,, — hoo in H3((1 — 80,1)), hoo > 0 and 93hoe = 0 on (1 — &g, 1). In particular, h,, — hoo

in C%([1 — 60,1]) and 0?heo(1) = lim 92h,, (1) = P. Let J = (1,1 — §) be the connected component of
Z ={x €1 : hy(x) > 0} whose closure contains 1. Then A is a parabola of the form

P P
hoo(:c):§x2+ax+b, 5 ta+tb=1 (6.5)

onJ.

Case I: P € (0,2). We claim that § > 1. Assume by contradiction 6 < 1. Then he(x9) = 0 with
xo:=1—09 €[0,1). According to Lemma 6.2, 9, hoo(x0) = 0. This is equivalent to

2

a

A:=a?>-2P(1—a—2%)=(a+ P)?-2P =0,
o= —7p,

where the first condition is equivalent to a = a1 = V2P — Pora = a2 = —vV2P — P. If a = a; then
—@ =1- \/% < 0. If a = a9 then xg = @ > 1. Both cases being impossible, we

conclude that § > 1. In particular, h assumes the form (6.5) on [—¢, 1] with some £ > 0.

Trog —

Similarly, if we start from z = —1 we also have that hoo(z) = $2? + d’z + V/ for x € [—1,¢'] for some
¢’ € (0,1) and ¢/, b’ € R. Necessarily ax + b = a’z + b’ on [—¢,¢'], and thus (a’,V') = (a,b). In other
words, hoo assumes the form (6.5) on the whole interval [—1, 1]. Equalizing hoo(—1) = hoo(1) = 1 leads
to a = 0. We thus conclude that

P
h(z) = 5(:):2 —1)+1=hp on|[-1,1].
Case 2: P > 2. Arguing as in Case 1 we find 6 < 1 and hoo (o) = 0 with

/2
1’0:1—(5:1— ﬁ:xPE[Ql)y
anda = V2P — P.

When P = 2, 29 = 0 and @ = 0. Hence ho(7) = 2% on [0, 1]. A similar argument also gives ho(7) = x
on [—1,0], hence hoo = hp.

2

Consider now the case P > 2. Then 29 = zp € (0, 1) and

heo(z) = §m2+aa:+b:§x2+(\/ﬁ—P)x+1—\/ﬁ—i-g: g(w—xp)z
on [zp,1]. We claim that hoo = 0 on [0,2p), then by symmetry ho, = hp. Assume by contradiction
heo(x1) > 0 for some 21 € [0,2p). Let (a,b) C I be the connected component of Z = {x € I : hoo > 0}
that contains x1. Necessarily h(b) = 0 and b < xzp. By Lemma 6.1, h is either a parabola or a straight
line (a,b). Let us show that both cases are impossible. Indeed, if h is a straight line on (a, b) then ho hits
0 at x = b (from the left) with an angle, which is impossible according to Lemma 6.2. Assume now that h,
is a parabola on (a, b). Since ho, must touch down from the left of b at zero angle, the only possibility is that
the parabola £ 22 + ax + b is positive while its slope is negative on (—00,b). Thus hoo(z) = L2 + az +b
on the whole interval [—1, b]. But then hoo(—1) = hoo(1) = 1 yields a = 0 which contradicts the fact that

a =+v2P — P < 0. Therefore, hoo = hp when P > 2.
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By Lemma 6.1, h,, — hp in H ({z : hp(z) > 0}) forany P > 0. Furthermore, when P € (0,2), hp > 0
on I and one can take in Lemma 6.1 I, 5 = I for any xo € I, hence h,, — hp in H3(I). We have actually
proved that any subsequence of (h,,) has a subsequence with desired convergence properties. Because the
limit is unique (and is equal to hp) we conclude that in fact the whole sequence h,, has those properties.

7. Proof of Theorem 1.7

Part 1. Let P € (0,2), and let hg € H3(I) satisfy (1.2) and inf; hg > 0. According to Theorem 1.1, there
exist a maximal time of existence 7™ € (0, co] and a unique solution . € X(T') with infy, (o7 h > 0 for
any T < T*. Setu = h — hp, then because 9>hp = 0 we have

opu(z,t) + 0p(hd3u)(z,t) = 0, (x,t) € I x (0,T%), 7.1
w(£1,t) = 02u(£1,t) = 0, t>0. '
Multiplying the first equation in (7.1) by —92u and integrating by parts, we obtain as in section 2.1,
3 1Ol = = [ B0 BRu(e OPds, ¢ ©.77) 7.2
In particular,
(5 )2y < N0xu(-0)ll2y, t€(0,T7).
Since u(%1, -) = 0, Poincaré’s inequality together with the embedding H'(I) c C([) yields
[, )l oo (1) < CullOpul-, )l L2r) < CullOpul-, 0)l[ L2y, ¢ € (0,T7).
Consequently,
2—P
h(@,t) = hoo(x) — C1|0zu(-, 0)[| 21y = (- 0)ll 221
and thus Lo p
hz,t) > = =—— 7.3
(z,1) = 5 9 (7.3)
for all (z,t) € I x [0, T*) provided
1 2—-P
10zu(-,0)|| z2(r) < 20, 2 -

Therefore, 7" = oo according to the blow-up criterion (1.4).

Next, we show that h converges to h., exponentially in H'(I). Indeed, because ?u(+1,-) = 0 and
J; Opudz = u(1) — u(—1) = 0, Poincaré’s inequalities yield

|03 (z, )| 2y = CollFaula, ) L2y = Csl|0zu(, t)l| 21y

which combined with (7.3) and (7.2) leads to

d

s, O3y < ~Calldau( D2
By Gronwall’s lemma,

10zu(- D)l L2ry < [10pul-; 0)[|L2(r) exp(=Cat) Vi > 0.
Finally, note that u(+1, -) = 0 we conclude by Poincaré’s inequality that
[u(, )l 2y < Cllul, 0)|| gy exp(=Cat) -Vt > 0. (7.4)

Let us now turn to prove that D(h) € lel(RJr). According to (1.6), D(h) € L*(R*). Thus, by virtue of
(1.7), it remains to show that

A :/8th8§h]2(x,s)d:c—2/]8$8th2(x,s)dx € LY(R™).
I I
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In the rest of this proof, we write LPLY = LP(R™; L9(I)). We first note that by (3.24),
10k ]| 212 < Clll| e g2 (103R o2 + 103B] L2L2)- (7.5)
Consider next 9,0;h = —02hd3h — 20,h0%h — hO2h. Tt is readily seen that
10:h0z Rl 1212 < Cllhll oo g2 |0zhl| 202, [|ROZRI p2r2 < OB oo g 1030 L2 2
Using (2.26) we bound
10202 h ] 1212 < 02l 2 102h ] 2o < CIHOZA e g2 |02 o

Consequently
10:0ehl| 212 < Cll|| oo 21|03 h | 22 + Ol oo pr1 1037 22 L2 (7.6)
In view of the lower bound (7.3), it follows from (1.3) that
12/l x ey < Fllhollas)- (7.7)

This together with (7.6) yields

oo
/ /|8x8th]2(x,s)da:ds = [|0:0th|F212 < F(|hol|zr3)- (7.8)
o JI
On the other hand, using (2.26) and Holder’s inequality we get

/If?th!ai’hIQd:r <10l 2 2RI L2 103 R | oo (1) < CNORN 2 03B L2y 03Bl 21y,

/ /ath\ath(x,s)dx
0 I
Employing (7.5) and (7.7) we deduce that

/ /ath\agh]2(x,s)dx
o 1

which combined with (7.8) concludes that A € L'(R*). This completes the proof of D(h) € W1 1(R1).
According to Corollary 8.9 [Brell] we then have D(h(t)) — 0 as t — oo, and thus Theorem 1.6 implies
that h(t) — hpin H3(I) ast — oo.

Part 2. Let P > 2, and let hg € H3(I) satisfy (1.2) and inf; hg > 0. Suppose that the solution A to (1.1)-
(1.2) with initial data hg is not pinched at finite time neither at infinite time, then according to Theorem 1.1,
h is global, h € X (T') for any T' > 0, and

hence
ds < C||0h| 22|02 oo 12| 03h| L2 2

ds < F([[ho )

inf h>c¢ (7.9)
Ix[0,00)
for some ¢y > 0. Set
P
hoo() = 5( 2_1)+1.

Observe that h is a stationary solution of (1.1)-(1.2) and h, vanishes at £/ g — 1. Asbefore, u = h—h
satisfies (7.1). By virtue of (7.9), the proof of (7.4) also gives

[uC, Oy < Cllul-, 0)|[ 11y exp(=Ct) vt > 0.
In particular,
T (1A 6) ~ hoo ()l = 0.
Because hoo( g — 1) = 0, we deduce that lim;_, o h(4/ g — 1,t) = 0 which contradicts (7.9).

Assume now that A is global in time. Since D(h) € L'(R™) there exists t,, — oo such that D(h(t,)) — 0.
By virtue of Theorem 1.6, h(t,) — hp in H*(I) and h(t,) — hpin H3 ({z : hp(z) > 0}).
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Appendix A. Weak solutions

THEOREM A.1 (Existence of global weak solutions). Let hy € H'(I) be a nonnegative function such that
ho € H3((—=1,—1+60)) N H3((1 — 80, 1)) for some & € (0, 1) and hyg satisfies (1.2). Let T be a positive
real number. Then there exists a global weak solution h of (1.1)-(1.2) in the sense of Definition 1.3. More
precisely,

h e C(I x [0,T)) N L>([0,T]; H' (1)) N L*([0, T1); H*(I)) N H'((0,T); H~(I))
and there exists § € (0, 1) independent of T' such that
he L*([0,T); H*((—1,-1+6)) N H3((1 - 6,1))).
PROOF. Let h? € H3(I) be a sequence of nonnegative functions satisfying (1.2) such that A — h in

HY(I) N H3(J). According to Theorem 3.1 there exists for each n a unique solution A € X ([0, 1), for
any 7" > 0, to the problem

Oh™(x,t) + ax(\/magh”)(x, t) =0, (x,t) € I x (0,00),
h™(£1,t) = 1,02h"(£1,t) = P, t>0, (A.1)
h™(z,t) = hi(x), t=0.

Moreover, there exists C' > 0 independent of n and 7" such that
1A | oo (0,170 (1)) < ClIRG 211 (A2)
and
T
| [ a1t a sdeds < Ot gy + . " = VIR0 (A3)
o JrI
Writing g"03h™ = 9, (g"02h™) — 0,g"O2h"™ we have
0 = O™ + 0, (g"O2h™) = O:h™ + 0 (g"0?h™) — 0, (Dpg™ O*R™).

Then, for any p € C5°(I x (0,7)),

T T T
—/ /h”@gp%—/ /g"@ih”@%@%—/ /&;g"@gh"&rgp = 0. (A4)
o JI o Jr o Jr

Because h"(+1,-) = 1 and h" is uniformly bounded in L= (R™; C 2 (I)) (by virtue of (A.2) and the em-
bedding H'(I) c C'2(T)), there exists § > 0 sufficiently small such that
1
h™(z,t) > 5 V>0, Ve e Jp:=[-1,-14+0]U[l-6,1]:=J;UJi,.
It then follows from (A.3) that
1030 | L2r512(01y) < C = Cllholl () (A.5)

which combined with (A.2) and interpolation yields

1A™ | 20,1130 )) < C = Cllhollgr(py, T), VT > 0. (A.6)

Let A > 0 depend only on ||k || g71(7y such that [|A™|| oo (1 xr+) < A for all n. We define

A r A
o) == [ s ) == [ fuloyar
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Note that g,,(s) < 0 and F,(s) > 0 for any s < A. Let y be a nonnegative cut-off function equal to 1 on
I := I\ J; and supported on (—1,1). Multiplying the first equation in (A.1) by f,(h"(z,t))x(z) then
integrating by parts we obtain

/8th”fn(h”)xd:c = —/ax(g”agh")fn(h”)xdx
I I

— / g SR f! (W) O h" xdx + / g 2R £ (W) Oy xda
I I

— / OEh" O, K" xdx + / G O3R" fr (W) Dy xdix
I 1

=— / |02h™ |2xdx — / D2h" 9, "0y xda + / g O2h" fr (W™D xdex.
I I I
Since

d
/&gh"fn(h”)xdx = — [ F,(h")xdz
I dt Jp

we deduce that

T
/Fn(h”)(a:,T)de—}—/ / |02h" 2 xdxds
I o Jn (A7)

T T
< / Fo(h™)(z,0)xdx — / / O2h" 9, h" 0, xdads + / / g O2h" fr (W) Oy xdzds.
I 0o JI 0o JI
We split
T T T
/ / O2h" 9, h" 0, xdx = / 2h"0,h" 0, xdx + / O2h" 9, h" Oy xdx =: Hy + Hy.
0 JI 0 JI 0 JJa
Using Holder’s inequality and (A.2) we get

|Hy| < CllOZh" | 2o m:02(ny)» - C = Cllholl gy, T)-

On the other hand, (A.6) gives
|Ha| < C = C(l|hollzi(n), T)-

Thus
T

/ /@%h"axh”@xxdxds < CHag%hn”L2([0,T};L2(h)) +C, C= C’(HhOHm(I),T). (A.8)
o JI

Applying Holder’s inequality together with (A.2) and (A.3) we find

T
/ / GO (W) xdads| < C = C([lholl s 1. T). (A9)
0 I

In addition, it is easy to see that

/IFn(h")(x,O)xdx < C = C(|holl ). (A.10)

Putting together (A.7), (A.8), (A.9) and (A.10) yields
1020™ 122 o2 (1)) < ClORR L2 orysL2 iy + €5 C = Clllhollmi 1y, T)-
Consequently, there exists C' = C(||hol| gr1(1), T') such that
1020 | 20,12 (1)) < € V.

This together with (A.6) implies
1020 | 20, 7:22(ry) < € Vn. (A.11)
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Let us fix a positive (finite) time 7". A combination of (A.2) and (A.3) leads to the uniform boundedness
of g"d3h™ in L2([0, T]; L*(I)), hence the uniform boundedness of 9;h™ in L2([0, T]; H~1(I)). Using this,
(A.2), (A.6), (A.11) and Aubin-Lions’s lemma we conclude that up to extracting a subsequence,
W — hin L*([0,T); H*(I)), A" — hin C(I x [0, T]) 0 L*([0,T); H' (1)) N L*([0,T}; C*(J1))
for some
h e C(T x [0,T]) N L>([0,T]; H'(I)) N L*([0, T]; H*(I)) N L*([0, T); H*(J14) 0 H?(J1,))

with ;b € L2((0,T); H-*(I)). In particular, h satisfies the boundary conditions (1.2) for a.e. t € [0, 7).
We claim that

h(z,t) >0 V(x,t) €I x[0,T].
Indeed, coming back to (A.7) we deduce from (A.8), (A.9) and (A.10) that

ﬂmwwwmsammww> (A12)

foralln > 0 and ¢t < T. Assume by contradiction h(zo,to) < O for some (zg,tg) € I x [0,T]. Since
h™ — h uniformly on I x [0, T, there exist » > 0 and ny € N such that

hon(z,t0) < —n  if |z — x0| < 6§, n > np.
But for such z,

R (e, t0) = — [

h™(z,to

A 0 0
fn(s)ds > / fn(s)ds — / foo(s)ds asm — oo
) - -n
by the monotone convergence theorem, here
foo(s) := lim fp(s) = —o0
n—oo
for any s < 0. It follows that

/Fn(h”(:c,to)) — 400

I
which contradicts (A.12), and thus h > 0.

Then letting n — oo in (A.4) leads to

T T T
—/ /haw +/ /h6§h8§g0+/ /&Th@ﬁh@xgp =0 VYoeC&Ix(0,T)). (A.13)
0 I 0 I 0 I

Writing 9, hd2h = %850 |0zh|? and integrating by parts in the last integral we arrive at

T T
1
—/0 /Ihﬁtgo +/0 /I (hO2h — §|8xh|2)8§g0 =0 VeeC&I x(0,T)). (A.14)
In other words, A is a weak solution of (1.1)-(1.2) in the sense of Definition 1.3. ]

In general, weak solutions can be non-unique. Nevertheless, the steady weak solution A p is unique as shown
in the next Proposition.

PROPOSITION A.2 (Uniqueness of hp). Forany P > 0, hp is the unique even weak steady solution, in the
sense of Definition 1.3, to (1.1)-(1.2).

PROOF. It is easy to check that hp is an even weak steady solution in the sense of Definition 1.3.
Assume now that h is an even weak steady solution, we prove that h = hp. We first notice that the weak
formulation (1.9) is equivalent to 9,0, (h02h — |9;h|?) = 0in 2'(I), or again 9, (hd%h — 1|0,h|?) = C
in 2'(I) for some constant C. We claim that C' = 0. Indeed, writing hd2h = 9, (hd,h) — |0.h|?) we get

1 1
C/I<p = —<h8§h - 5‘8:13}1’278917@9'(1),@(1) = —(h(’?ih - §|8:vh’273w<ﬂ)L2(1),L2(1)
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for any p € Z(I). Noting that h is even, we can make the change of variables x — —x to obtain

C/ h82h7 *|8 h| I§01>L2( I),L 0/901

with 1 (-) = p(—) € 2(I). Since [, p1 = [, ¢ for any ¢ € Z(I) we conclude that C' = 0 as claimed.
We thus have

o_myh—qam 82%) 12(1).L2(1)
= (6§h, ax(h@))L2(1)7L2(]) - (6§h, 8$hSO)L2(I)7L 2(] ) (8 ‘8 h‘ ) (1),L2(1) (A.15)

= (03, ho) =1 (1), 113.1)

for any o € H{(I). If h(zg) > 0, g € 1, there exists a neighborhood I, of z¢ in I such that b > $h(z()
on I;,. For any ¢ € H}(I,,), defining

%, T € Iy,

P@ =30, ser\L,

we have ¢ € H}(I,,) C H}(I) and by (A.15),
3 —

This implies 93h = 0 in 2'(I,,), and thus 8§h = 0in .@’ ({h > 0}). Consequently, on each connected
component (which are open intervals) of {h > 0}, h is either a parabola or a straight line. In addition, h
cannot hit 0 at a non-zero angle because h € H?(I). We are thus in the same situation as in the proof of
Theorem 1.6 which allows us to conclude that h = hp. O
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