High order linear hyperbolic equations with constant coefficients.

Intoduction to PDE

This is mostly from Fritz John, PDE, but with a small adjustment to be able to treat equations like

$$
\partial_{t}^{2} u+\Delta^{2} u=0
$$

We denote

$$
\partial=\left(\partial_{1}, \ldots, \partial_{n}\right)
$$

and

$$
\tau=\frac{\partial}{\partial t}
$$

We will consider operators

$$
P(\partial, \tau) u
$$

where P is a polynomial of degree N in its $n+1$ variables, and of degree $m \leq N$ in τ. We want to solve the problem

$$
\begin{equation*}
P(\partial, \tau) u=w, \quad \text { in } t>0 \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
\tau^{k} u=f_{k}, k=0, \ldots, m-1, \quad \text { at } t=0 \tag{2}
\end{equation*}
$$

We assume that the hyperplane $t=0$ is noncharacteristic, and we normalize $P(0,1)=1$. We assume that the polynomial has the form

$$
\begin{equation*}
P(\partial, \tau)=\tau^{m}+P_{1}(\partial) \tau^{m-1}+\ldots P_{m}(\partial) \tag{3}
\end{equation*}
$$

where $P_{j}(\partial)$ are polynomials of degree at most $N-m+j$. This is not the most general case we could treat by the same method, but it is sufficient for
our purposes. In Fritz John $N=m$. A standard form of the initial value problem is when

$$
\begin{equation*}
f_{0}=f_{1}=\cdots=f_{m-2}=0, \quad \text { and } f_{m-1}=g \tag{4}
\end{equation*}
$$

The solution of

$$
\begin{cases}P(\partial, \tau) u=w, & \text { in } t>0 \tag{5}\\ \tau^{k} u_{\mid t=0}=0, & \text { for } k=0, \ldots, m-1\end{cases}
$$

is given by the Duhamel formula

$$
\begin{equation*}
u(x, t)=\int_{0}^{t} U(x, t, s) d s \tag{6}
\end{equation*}
$$

where $U(x, t, s)$ solves the standard problem

$$
\left\{\begin{array}{l}
P(\partial, \tau) U(x, t, s)=0, \quad \text { in } t>s, \tag{7}\\
\tau^{k} U_{\mid t=s}=0, \quad \text { for } k=0, \ldots, m-2, \\
\tau^{m-1} U_{\mid t=s}=w(\cdot, s)
\end{array}\right.
$$

If we denote the solution of the standard problem

$$
\left\{\begin{array}{l}
P(\partial, \tau) u=0, \quad \text { in } t>0 \tag{8}\\
\tau^{k} u_{t=0}=0, \quad \text { for } k=0, \ldots, m-2 \\
\tau^{m-1} u_{\mid t=0}=g
\end{array}\right.
$$

by u_{g}, then the solution of the general problem

$$
\left\{\begin{array}{l}
P(\partial, \tau) u=w, \quad \text { in } t>0, \tag{9}\\
\tau^{k} u_{\mid t=0}=f_{k}, \quad \text { for } k=0, \ldots, m-1
\end{array}\right.
$$

is given by the sum of (6) above and

$$
\begin{align*}
& v=u_{f_{m-1}}+\left(\tau+P_{1}(\partial)\right) u_{f_{m-2}}+\left(\tau^{2}+P_{1}(\partial) \tau+P_{2}(\partial)\right) u_{f_{m-3}} \tag{10}\\
& +\left(\tau^{m-1}+P_{1}(\partial) \tau^{m-2}+\cdots+P_{m-1}(\partial)\right) u_{f_{0}}
\end{align*}
$$

In order to check this formula note that all the operators commute, so clearly $P(\partial, \tau) v=0$. Now, for $k=0, \ldots, m-1, j=0, \ldots, m-1$

$$
\tau^{j}\left(\tau^{k}+P_{1}(\partial) \tau^{k-1}+\ldots P_{k}(\partial)\right) u_{f_{m-k-1}}
$$

equals clearly 0 at $t=-0$ if $j+k \leq m-2$, i.e. $j \leq m-k-2$. It also equals zero if $j+k \geq m$ i.e. if $j \geq m-k$, because we can use the equation $P(\partial, \tau) u_{f_{m-k-1}}=0$ and

$$
\begin{aligned}
& \tau^{j}\left(\tau^{k}+P_{1}(\partial) \tau^{k-1}+\ldots P_{k}(\partial)\right) u_{f_{m-k-1}} \\
& =P(\partial, \tau)\left(\tau^{j+k-m} u_{f_{m-k-1}}\right)-\sum_{l=k+1}^{m} P_{l}(\partial) \tau^{m-l}\left(\tau^{j+k-m} u_{f_{m-k-1}}\right)
\end{aligned}
$$

Now the second sum vanishes because $0 \leq j+k-l \leq j-1 \leq m-2$ when $l \geq k+1$. Finally, when $j+k=m-1$ we get precisely f_{m-k-1}.

Now we consider the standard problem (8). Taking the Fourier transform with respect to the x variables we arrive at the problem

$$
\left\{\begin{array}{l}
P(i \xi, \tau) \widehat{u}(\xi, t)=0, \quad t>0 \tag{11}\\
\tau^{k} \widehat{u}(\xi, 0)=0, \quad k \leq m-2 \\
\tau^{m-1} \widehat{u}(\xi, 0)=\widehat{g}(\xi)
\end{array}\right.
$$

This is an ODE depending on parameters ξ. Let $Z(\xi, t)$ denote the fundamental solution, i.e., the solution of (11) with initial values

$$
\left\{\begin{array}{l}
Z(\xi, 0)=\tau Z(\xi, 0)=\cdots=\tau^{m-2} Z(\xi, 0)=0 \tag{12}\\
\tau^{m-1} Z(\xi, 0)=1
\end{array}\right.
$$

Then the Fourier inversion formula gives

$$
\begin{equation*}
u(x, t)=(2 \pi)^{-n} \int_{\mathbb{R}^{n}} e^{i x \cdot \xi} Z(\xi, t) \widehat{g}(\xi) d \xi \tag{13}
\end{equation*}
$$

All that remains to do is to justify the convergence of this integral and that we can carry differentiation under the integral sign. We will prove, under some conditions on $P(\partial, \tau)$ that

$$
\begin{equation*}
\left|\tau^{k} Z(\xi, t)\right| \leq C(1+|\xi|)^{(N-m+1) k} \tag{14}
\end{equation*}
$$

for all $\xi \in \mathbb{R}^{n}$ and $k=0,1, \ldots, m$ and t in a compact set. This will allow for differentiation under the integral sign if

$$
\int_{\mathbb{R}^{n}}(1+|\xi|)^{(N-m+1) m}|\widehat{g}| d \xi
$$

is finite, which is a smoothness assumption on the initial data.

Definition 1. (Garding) We say that the polynomial $P(\partial, \tau)$ is hyperbolic if there exists a real number γ such that, for any fixed $\xi \in \mathbb{R}^{n}$, the roots λ of $P(i \xi, i \lambda)$,

$$
\begin{equation*}
P(i \xi, i \lambda)=0 \tag{15}
\end{equation*}
$$

all lie in the half plane

$$
\begin{equation*}
\operatorname{Im} \lambda>\gamma \tag{16}
\end{equation*}
$$

Obviously, the point is that γ is the same for all ξ. Now we check (14). First, we represent

$$
\begin{equation*}
Z(\xi, t)=\frac{1}{2 \pi} \int_{\Gamma} \frac{e^{i \lambda t}}{P(i \xi, i \lambda)} d \lambda \tag{17}
\end{equation*}
$$

where Γ is a contour counterclockwise around all roots λ of $P(i \xi, i \lambda)$. Clearly (17) represents a solution of $P(i \xi, \tau) Z(\xi, t)=0$ because each differentiation in time brings down $i \lambda$, so

$$
P(i \xi, \tau) Z(\xi, t)=\frac{1}{2 \pi} \int_{\Gamma} e^{i \lambda} d \lambda=0
$$

Also, at $t=0$ we have

$$
\tau^{k} Z(\xi, 0)=\frac{1}{2 \pi} \int_{\Gamma} \frac{i^{k} \lambda^{k}}{P(i \xi, i \lambda)} d \lambda
$$

Deforming Γ to be a circle of radius R and letting $R \rightarrow \infty$ we obtain

$$
\tau^{k} Z(\xi, 0)=0
$$

for $k=0,1, \ldots, m-2$ and

$$
\tau^{m-1} Z(\xi, 0)=1
$$

So (17) indeed represents Z. Now we bound the roots. Writing

$$
i^{m} \lambda^{m}=-i^{m-1} \lambda^{m-1} P_{1}(i \xi)-\cdots-P_{m}(i \xi)
$$

and using

$$
\left|P_{j}(\xi)\right| \leq C(1+|\xi|)^{N-m+j}
$$

we have

$$
|\lambda|^{m} \leq C(1+|\xi|)^{N-m} \sum_{k=0}^{m-1}|\lambda|^{k}(1+|\xi|)^{m-k}
$$

We divide by $(1+|\xi|)^{m}$:

$$
\left(\frac{|\lambda|}{1+|\xi|}\right)^{m} \leq C(1+|\xi|)^{N-m} \sum_{k=0}^{m-1}\left(\frac{|\lambda|}{1+|\xi|}\right)^{k}
$$

Now either $\frac{|\lambda|}{1+|\xi|} \leq 1$ or, if not, then

$$
\sum_{k=0}^{m-1}\left(\frac{|\lambda|}{1+|\xi|}\right)^{k} \leq m\left(\frac{|\lambda|}{1+|\xi|}\right)^{m-1}
$$

so, in any case

$$
\begin{equation*}
\left|\lambda_{k}(\xi)\right| \leq C(1+|\xi|)^{N-m+1} \tag{18}
\end{equation*}
$$

for large enough C where we denoted $\lambda_{k}(\xi)$ the repeated roots of the equation $P(i \xi, i \lambda)=0$. Let us take now Γ to be the boundary of a union of possibly overlapping disks of radius 1 around the repeated roots $\lambda_{k}(\xi)$ of the equation $P(i \xi, i \lambda)=0$. Note that

$$
\begin{equation*}
\left|e^{i \lambda t}\right| \leq e^{(1-\gamma) t} \tag{19}
\end{equation*}
$$

holds for $\lambda \in \Gamma$. Because

$$
P(i \xi, i \lambda)=\Pi_{k=1}^{m}\left(\lambda-\lambda_{k}(\xi)\right)
$$

we have that

$$
|P(i \xi, i \lambda)| \geq 1, \quad \text { for } \lambda \in \Gamma
$$

Now, for each $\lambda \in \Gamma$ we have at least one $\lambda_{k}(\xi)$ at distance 1 , so

$$
\begin{equation*}
|\lambda| \leq C(1+|\xi|)^{N-m+1} \tag{20}
\end{equation*}
$$

holds for $\lambda \in \Gamma$ at the price of increasing C by 1 . It follows that

$$
\left|\tau^{k} Z(\xi, t)\right| \leq C(1+|\xi|)^{(N-m+1) k} e^{(1-\gamma) t}
$$

for $t \in \mathbb{R}$. This proves (14). Note that if $P(\partial, \tau)$ is homogeneous of degree m then Garding's hyperbolicity condition is equivalent to the condition that

$$
P(i \xi, i \lambda)=0, \xi \in \mathbb{R}^{n} \Rightarrow \lambda \in \mathbb{R} .
$$

