High order linear hyperbolic equations with
constant coefficients.

Intoduction to PDE

This is mostly from Fritz John, PDE, but with a small adjustment to be
able to treat equations like

Ofu + A%u = 0.
We denote
0=(01,...,0n)
and
0
ot
We will consider operators
PO, T)u

where P is a polynomial of degree N in its n + 1 variables, and of degree
m < N in 7. We want to solve the problem

PO, T u=w, int>0 (1)

with
*u=f, k=0,...,m—1, at t=0. (2)

We assume that the hyperplane ¢ = 0 is noncharacteristic, and we normalize
P(0,1) = 1. We assume that the polynomial has the form

P@,7) = 7" + PL(O)T™ " + ... Pn(0) (3)

where P;(0) are polynomials of degree at most N —m + j. This is not the
most general case we could treat by the same method, but it is sufficient for



our purposes. In Fritz John N = m. A standard form of the initial value
problem is when

f0:f1:"':fm72:0a and fmflzg' (4)
The solution of

PO, T)u=w, int>0
rup_g = 0, fork=0,...,m—1

is given by the Duhamel formula

u(z,t) :/0 U(z,t,s)ds (6)

where U(x,t,s) solves the standard problem

PO, 7)U(x,t,s) =0, in t> s,
TPz =0, fork=0,...,m—2, (7)
T Wy = w(-, 8)

If we denote the solution of the standard problem

PO, 7T)u =0, int>0,
™Muy_g =0, fork=0,...,m—2, (8)

m—1 —
T Ujt=0 = 9

by ug4, then the solution of the general problem

PO, T)u=w, int>0, ()
TkU‘t:() = fy, fork=0,....m-—1

is given by the sum of (6) above and

v=uy, , +(T+ Pi(0))uy, ,+ (T2 + Pi(O)T + Py(D)) uy,, ,

+ (g P O)T™ R A Py (9)) (10)

In order to check this formula note that all the operators commute, so clearly
P(0,7)v =0. Now, for k=0,....m—1,j=0,..., m—1

Tj (Tk + P1<8)Tk_1 —+ ... Pk(ﬁ)) Ufm#%l



equals clearly O at t = —0if j+k < m—2,ie. j < m—k—2. It also
equals zero if 7 + k > m i.e. if j > m — k, because we can use the equation
P(0,T)uy,, , , =0and

TI (Tk + P ()Tt + ... Pk(ﬁ)) s,
- P(a7 T)(Tj—i_k_mufmfkfl) - Z?ik—f—l B(a)Tm_l(Tj+k_mufmfk71)

Now the second sum vanishes because 0 < j+k —1 <7 —1<m — 2 when
[ > k+ 1. Finally, when j + k = m — 1 we get precisely f,_x_1.

Now we consider the standard problem (8). Taking the Fourier transform
with respect to the x variables we arrive at the problem

PG, )€, t) =0, t>0,
*u(€,0) =0, k<m-—2, (11)
T, 0) = g(€).

This is an ODE depending on parameters £. Let Z(£,t) denote the funda-
mental solution, i.e., the solution of (11) with initial values

Z(£,0)=72(£,0)=---=7""2Z(£,0) =0,
{ Tn(z—lz)@,()) & (12)

Then the Fourier inversion formula gives

n

ulat) = (2" [ e=ez(E ) (13

All that remains to do is to justify the convergence of this integral and that
we can carry differentiation under the integral sign. We will prove, under
some conditions on P(0,7) that

[T Z (&, )| < C(1 4 |g)N Dk (14)

forall £ e R" and £ =0,1,...,m and ¢ in a compact set. This will allow for
differentiation under the integral sign if

[ @lenemeomglag

is finite, which is a smoothness assumption on the initial data.



Definition 1. (Garding) We say that the polynomial P (0, T) is hyperbolic if
there exists a real number v such that, for any fived & € R™, the roots A of
P(ig,iN),

P&, i) =0 (15)

all lie in the half plane
ImA\ >~ (16)

Obviously, the point is that v is the same for all £. Now we check (14).

First, we represent
1

ezAt
Z(&:t) = %/Fmd)\ (17)

where I is a contour counterclockwise around all roots A of P(i£,i\). Clearly
(17) represents a solution of P(i£,7)Z(£,t) = 0 because each differentiation
in time brings down i\, so

Pli€, T)Z(€,1) = % / NN = 0.

r

Also, at t = 0 we have

" 1 Y

Deforming I' to be a circle of radius R and letting R — oo we obtain
™Z(€,0)=0
for k=0,1,...,m — 2 and
T Z(€,0) = 1.
So (17) indeed represents Z. Now we bound the roots. Writing
MAT = =M TINTTIP (6€) — - — P (i€)

and using .
[P;(©)] < C(1L+ [g))™

we have

3
L

A" < CA+ 1™ > NP+ )™
0

B
Il



We divide by (14 [¢])™:

3

NI Nem ( A
(H!&\) <o+ 48

£
Il

0

Now either —2L < 1 or, if not, then

1+
m— 1( Al )k m( Al )m—l
2\ 11 I+ €]

M ()] < C(1+ g+

S0, in any case

!

(18)

for large enough C where we denoted Ay (&) the repeated roots of the equation
P(i&,i\) = 0. Let us take now I' to be the boundary of a union of possibly
overlapping disks of radius 1 around the repeated roots Ax(&) of the equation

P(i&,i)\) = 0. Note that
|€i)\t| < 6(1*7)15

holds for A € I'. Because
P(ig,i\) = I (A — A (€))

we have that
|P(i€,i\)| > 1, forAeTl

Now, for each A € T" we have at least one \;(§) at distance 1, so

Al < C(1+ gV

holds for A € I at the price of increasing C' by 1. It follows that

7 Z(6,1)] < C(1 + ¢y Dk

(19)

(20)

for t € R. This proves (14). Note that if P(9,7) is homogeneous of degree
m then Garding’s hyperbolicity condition is equivalent to the condition that

P(ig, i) =0, e R" = A e R.



