
High order linear hyperbolic equations with
constant coefficients.

Intoduction to PDE

This is mostly from Fritz John, PDE, but with a small adjustment to be
able to treat equations like

∂2
t u+ ∆2u = 0.

We denote
∂ = (∂1, . . . , ∂n)

and

τ =
∂

∂t
.

We will consider operators
P (∂, τ)u

where P is a polynomial of degree N in its n + 1 variables, and of degree
m ≤ N in τ . We want to solve the problem

P (∂, τ)u = w, in t > 0 (1)

with
τ ku = fk, k = 0, . . . ,m− 1, at t = 0. (2)

We assume that the hyperplane t = 0 is noncharacteristic, and we normalize
P (0, 1) = 1. We assume that the polynomial has the form

P (∂, τ) = τm + P1(∂)τm−1 + . . . Pm(∂) (3)

where Pj(∂) are polynomials of degree at most N −m + j. This is not the
most general case we could treat by the same method, but it is sufficient for
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our purposes. In Fritz John N = m. A standard form of the initial value
problem is when

f0 = f1 = · · · = fm−2 = 0, and fm−1 = g. (4)

The solution of {
P (∂, τ)u = w, in t > 0
τ ku|t=0 = 0, for k = 0, . . . ,m− 1

(5)

is given by the Duhamel formula

u(x, t) =

� t

0

U(x, t, s)ds (6)

where U(x, t, s) solves the standard problem
P (∂, τ)U(x, t, s) = 0, in t > s,
τ kU|t=s = 0, for k = 0, . . . ,m− 2,
τm−1U|t=s = w(·, s)

(7)

If we denote the solution of the standard problem
P (∂, τ)u = 0, in t > 0,
τ ku|t=0 = 0, for k = 0, . . . ,m− 2,
τm−1u|t=0 = g

(8)

by ug, then the solution of the general problem{
P (∂, τ)u = w, in t > 0,
τ ku|t=0 = fk, for k = 0, . . . ,m− 1

(9)

is given by the sum of (6) above and

v = ufm−1 + (τ + P1(∂))ufm−2 + (τ 2 + P1(∂)τ + P2(∂))ufm−3

+ (τm−1 + P1(∂)τm−2 + · · ·+ Pm−1(∂))uf0
(10)

In order to check this formula note that all the operators commute, so clearly
P (∂, τ)v = 0. Now, for k = 0, . . . ,m− 1, j = 0, . . . ,m− 1

τ j
(
τ k + P1(∂)τ k−1 + . . . Pk(∂)

)
ufm−k−1
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equals clearly 0 at t = −0 if j + k ≤ m − 2, i.e. j ≤ m − k − 2. It also
equals zero if j + k ≥ m i.e. if j ≥ m− k, because we can use the equation
P (∂, τ)ufm−k−1

= 0 and

τ j
(
τ k + P1(∂)τ k−1 + . . . Pk(∂)

)
ufm−k−1

= P (∂, τ)(τ j+k−mufm−k−1
)−

∑m
l=k+1 Pl(∂)τm−l(τ j+k−mufm−k−1

)

Now the second sum vanishes because 0 ≤ j + k − l ≤ j − 1 ≤ m− 2 when
l ≥ k + 1. Finally, when j + k = m− 1 we get precisely fm−k−1.

Now we consider the standard problem (8). Taking the Fourier transform
with respect to the x variables we arrive at the problem

P (iξ, τ)û(ξ, t) = 0, t > 0,
τ kû(ξ, 0) = 0, k ≤ m− 2,
τm−1û(ξ, 0) = ĝ(ξ).

(11)

This is an ODE depending on parameters ξ. Let Z(ξ, t) denote the funda-
mental solution, i.e., the solution of (11) with initial values{

Z(ξ, 0) = τZ(ξ, 0) = · · · = τm−2Z(ξ, 0) = 0,
τm−1Z(ξ, 0) = 1.

(12)

Then the Fourier inversion formula gives

u(x, t) = (2π)−n
�

Rn

eix·ξZ(ξ, t)ĝ(ξ)dξ (13)

All that remains to do is to justify the convergence of this integral and that
we can carry differentiation under the integral sign. We will prove, under
some conditions on P (∂, τ) that∣∣τ kZ(ξ, t)

∣∣ ≤ C(1 + |ξ|)(N−m+1)k (14)

for all ξ ∈ Rn and k = 0, 1, . . . ,m and t in a compact set. This will allow for
differentiation under the integral sign if

�
Rn

(1 + |ξ|)(N−m+1)m|ĝ|dξ

is finite, which is a smoothness assumption on the initial data.
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Definition 1. (Garding) We say that the polynomial P (∂, τ) is hyperbolic if
there exists a real number γ such that, for any fixed ξ ∈ Rn, the roots λ of
P (iξ, iλ),

P (iξ, iλ) = 0 (15)

all lie in the half plane
Imλ > γ (16)

Obviously, the point is that γ is the same for all ξ. Now we check (14).
First, we represent

Z(ξ, t) =
1

2π

�
Γ

eiλt

P (iξ, iλ)
dλ (17)

where Γ is a contour counterclockwise around all roots λ of P (iξ, iλ). Clearly
(17) represents a solution of P (iξ, τ)Z(ξ, t) = 0 because each differentiation
in time brings down iλ, so

P (iξ, τ)Z(ξ, t) =
1

2π

�
Γ

eiλdλ = 0.

Also, at t = 0 we have

τ kZ(ξ, 0) =
1

2π

�
Γ

ikλk

P (iξ, iλ)
dλ

Deforming Γ to be a circle of radius R and letting R→∞ we obtain

τ kZ(ξ, 0) = 0

for k = 0, 1, . . . ,m− 2 and

τm−1Z(ξ, 0) = 1.

So (17) indeed represents Z. Now we bound the roots. Writing

imλm = −im−1λm−1P1(iξ)− · · · − Pm(iξ)

and using
|Pj(ξ)| ≤ C(1 + |ξ|)N−m+j

we have

|λ|m ≤ C(1 + |ξ|)N−m
m−1∑
k=0

|λ|k(1 + |ξ|)m−k

4



We divide by (1 + |ξ|)m:(
|λ|

1 + |ξ|

)m
≤ C(1 + |ξ|)N−m

m−1∑
k=0

(
|λ|

1 + |ξ|

)k
Now either |λ|

1+|ξ| ≤ 1 or, if not, then

m−1∑
k=0

(
|λ|

1 + |ξ|

)k
≤ m

(
|λ|

1 + |ξ|

)m−1

so, in any case
|λk(ξ)| ≤ C(1 + |ξ|)N−m+1 (18)

for large enough C where we denoted λk(ξ) the repeated roots of the equation
P (iξ, iλ) = 0. Let us take now Γ to be the boundary of a union of possibly
overlapping disks of radius 1 around the repeated roots λk(ξ) of the equation
P (iξ, iλ) = 0. Note that

|eiλt| ≤ e(1−γ)t (19)

holds for λ ∈ Γ. Because

P (iξ, iλ) = Πm
k=1(λ− λk(ξ))

we have that
|P (iξ, iλ)| ≥ 1, for λ ∈ Γ

Now, for each λ ∈ Γ we have at least one λk(ξ) at distance 1, so

|λ| ≤ C(1 + |ξ|)N−m+1 (20)

holds for λ ∈ Γ at the price of increasing C by 1. It follows that∣∣τ kZ(ξ, t)
∣∣ ≤ C(1 + |ξ|)(N−m+1)ke(1−γ)t

for t ∈ R. This proves (14). Note that if P (∂, τ) is homogeneous of degree
m then Garding’s hyperbolicity condition is equivalent to the condition that

P (iξ, iλ) = 0, ξ ∈ Rn ⇒ λ ∈ R.

5


