
Harmonic functions, Second Order Elliptic
Equations I

Introduction to PDE

1 Green’s Identities, Fundamental Solution

Let Ω be a bounded open set in Rn, n ≥ 2, with smooth boundary ∂Ω.
The fact that the boundary is smooth means that at each point x ∈ ∂Ω the
external unit normal vector ν(x) is a smooth function of x. (If the boundary
is Ck then this function is Ck−1. Locally, ∂Ω is an embedded hypersurface -
a manifold of codimension 1). Green’s identities are∫

Ω

(v∆u+∇u · ∇v)dx =

∫
∂Ω

(v∂νu)dS (1)

and ∫
Ω

(v∆u− u∆v)dx =

∫
∂Ω

(v∂νu− u∂νv)dS. (2)

In the two identities above, u and v are real valued functions twice contin-
iously differentiable in Ω, (u, v ∈ C2(Ω)), with first derivatives that have
continuous extensions to Ω. The Laplacian ∆ is

∆u =
n∑
j=1

∂2u

∂2xj
=

n∑
j=1

∂2
ju,

the gradient is
∇u = (∂1u, . . . , ∂nu),

partial derivatives are

∂i =
∂

∂xi
,

1



the normal derivative is
∂νu = ν · ∇u

where x · y =
∑n

j=1 xjyj. Finally, dS is surface measure.

Exercise 1 Prove that (2) follows from (1) and that (1) follows from the
familiar Green’s identity∫

Ω

(∇ · Φ) dx =

∫
∂Ω

(Φ · ν)dS (3)

where Φ is a C1(Ω) vector field (n functions) that has a continuous extension
to Ω.

Exercise 2 Prove that the Laplacian commutes with rotations: ∆(f(Rx)) =
(∆f)(Rx), where R is a O(n) matrix, i.e. RRt = RtR = I with Rt the
transpose. Consequently, rotation invariant functions (i.e., radial functions,
functions that depend only on r = |x|) are mapped to rotation invariant
functions. Show that, for radial functions,

∆f = frr +
n− 1

r
fr

where r = |x|, fr = x
r
· ∇f .

The equation ∆f = 0 in the whole plane has affine solutions. If we seek
solutions that are radial, that is

frr +
n− 1

r
fr = 0, for r > 0,

then, multiplying by rn−1, we see that rn−1fr should be constant. There
are only two possibilities: this constant is zero, and then f itself must be a
constant, or this constant is not zero, and then f is a multiple of r2−n (plus
a constant) if n > 2 or a multiple of log r (plus a constant).

The fundamental solution is

N(x) =

{ 1
2π

log |x|, if n = 2,
1

(2−n)ωn
|x|2−n, if n ≥ 3.

(4)

Here ωn is the area of the unit sphere in Rn. Note that N is radial, and it is
singular at x = 0.
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Proposition 1 Let f ∈ C2
0(Rn), and let

u(x) =

∫
Rn

N(x− y)f(y)dy. (5)

Then u ∈ C2(Rn) and
∆u = f

Lemma 1 Let N ∈ L1
loc(Rn) and let φ ∈ C1

0(Rn). Then u = N ∗ φ is in
C1(Rn) and

∇u(x) =

∫
N(x− y)∇φ(y)dy

Idea of proof of the lemma. First of all, the notation: Lploc is the space
of functions that are locally in Lp and that means that their restrictions to
compacts are in Lp. The space C1

0 is the space of functions with continu-
ous derivatives of first order, and having compact support. Because φ has
compact support

u(x) =

∫
N(x− y)φ(y)dy =

∫
N(y)φ(x− y)dy

is well defined. Fix x ∈ Rn and take h ∈ Rn with |h| ≤ 1. Note that

1
|h|

(
u(x+ h)− u(x)− h ·

∫
N(x− y)∇φ(y)dy

)
=∫

N(y) 1
|h| (φ(x+ h− y)− φ(x− y)− h · ∇φ(x− y)) dy

The functions y 7→ 1
|h| (φ(x+ h− y)− φ(x− y)− h · ∇φ(x− y)) for fixed x

and |h| ≤ 1 are supported all in the same compact, are uniformly bounded,
and converge to zero as h → 0. Because of Lebesgue dominated, it follows
that u is differentiable at x and that the derivative is given by the desired
expression. Because

∇u(x) =

∫
N(y)∇φ(x− y)dy

and ∇φ is continuous, it follows that ∇u is continuous. This finishes the
proof of the lemma.
Idea of proof of the Proposition 1. By the Lemma, u is C2 and

∆u(x) =

∫
N(x− y)∆f(y)dy

3



Fix x. The function y 7→ N(x − y)∆f(y) is in L1(Rn) and compactly sup-
ported in |x− y| < R for a large enough R that we’ll keep fixed. Therefore

∆u(x) = lim
ε→0

∫
{y;ε<|x−y|<R}

N(x− y)∆f(y)dy

We will use Green’s identities for the domains ΩR
ε = {y; ε < |x − y| < R}.

This is legitimate because the function y 7→ N(x−y) is C2 in a neighborhood
of ΩR

ε . Note that, because of our choice of R, f(y) vanishes identically near
the outer boundary |x− y| = R. Note also that ∆yN(x− y) = 0 for y ∈ ΩR

ε .
From (2) we have ∫

{y;ε<|x−y|<R}N(x− y)∆ f(y)dy =∫
|x−y|=εN(x− y)∂νf(y)dS −

∫
|x−y|=ε f(y)∂νN(x− y)dS

The external unit normal at the boundary is ν = −(x− y)/|x− y|. The first
integral vanishes in the limit because |∇f | is bounded, N(x−y) diverges like
ε2−n (or log ε) and the area of boundary vanishes like εn−1:∣∣∣∣∫

|x−y|=ε
N(x− y)∂νf(y)dS

∣∣∣∣ ≤ Cε‖∇f‖∞

in n > 2, and the same thing replacing ε by ε log ε−1 in n = 2. The second
integral is more amusing, and it is here that it will become clear why the
constants are chosen as they are in (4). We start by noting carefully that

−∂νN(x− y) =
1

ωn
|x− y|1−n.

Therefore, in view of the fact that |x− y| = ε on the boundary we have

−
∫
|x−y|=ε

f(y)∂νN(x− y)dS =
1

εn−1ωn

∫
|x−y|=ε

f(y)dS

Passing to polar coordinates centered at x we see that

−
∫
|x−y|=ε

f(y)∂νN(x− y)dS =
1

ωn

∫
|z|=1

f(x+ εz)dS

and we do have

lim
ε→0

1

ωn

∫
| z|=1

f(x+ εz)dS = f(x)

because f is continuous.
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Remark 1 The fundamental solution solves

∆N = δ.

This is rigorously true in the sense of distributions, but formally it can be
appreciated without knowledge of distributions by using without justification
the fact that δ is the identity for convolution δ ∗ f = f , the rule ∆(N ∗ f) =
∆N ∗ f and the Proposition above.

2 Harmonic functions

Definition 1 We say that a function u is harmonic in the open set Ω ⊂ Rn

if u ∈ C2(Ω) and if
∆u = 0

holds in Ω.

We denote by B(x, r) the ball centered at x of radius r, by Af (x, r) the
surface average

Af (x, r) =
1

ωnrn−1

∫
∂B(x,r)

f(y)dS

and by Vf (x, r) the volume average

Vf (x, r) =
n

ωnrn

∫
B(x,r)

f(y)dy

Proposition 2 Let Ω be an open set, let u be harmonic in Ω
and let B(x, r) ⊂ Ω. Then

u(x) = Au(x, r) = Vu(x, r)

holds.

Idea of proof. Let ρ ≤ r and apply (2) with domain B(x, ρ) and functions
v = 1 and u. We obtain ∫

∂B(x,ρ)

∂νu dS = 0

On the other hand, because

Au(x, ρ) =
1

ωn

∫
|z|=1

u(x+ ρz)dS
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it follows that

d

dρ
Au(x, ρ) =

1

ωn

∫
|z|=1

z · ∇u(x+ ρz) dS =
1

ρn−1ωn

∫
∂B(x,ρ)

∂νu dS = 0

So Au(x, ρ) does not depend on ρ for 0 < ρ ≤ r. But, because the function
u is continuous, limρ→0Au(x, ρ) = u(x), so that proves

u(x) = Au(x, r).

The relation

Vf (x, r) = nr−n
∫ r

0

ρn−1Af (x, ρ)dρ,

valid for any integrable function, implies the second equality, in view of the
fact that Af (x, ρ) = u(x) does not depend on ρ.

Remark 2 The converse of the mean value theorem holds. If u is C2 and
u(x) = Au(x, r) for each x and r sufficiently small, then u is harmonic.
Indeed, in view of the above, the integral

∫
B(x,r)

∆u(y)dy must vanish for

each x and r small enough, and that implies that there cannot exist a point
x where ∆u(x) does not vanish.

Theorem 1 (Weak maximum principle.) Let Ω be open, bounded. Let u ∈
C2(Ω) ∩ C0(Ω) satisfy

∆u(x) ≥ 0, ∀x ∈ Ω.

Then
max
x∈Ω

u(x) = max
x∈∂Ω

u(x).

Idea of proof. If ∆u > 0 in Ω then clearly u cannot have an interior
maximum, so its maximum must be achieved on the boundary. If ∆u ≥ 0,
then a useful trick is to add ε|x|2. The function u(x) + ε|x|2 achieves its
maximum on the boundary, for any positive ε. Therefore,

max
x∈Ω

u(x) + εmin
x∈Ω
|x|2 ≤ max

x∈∂Ω
u(x) + εmax

x∈∂Ω
|x|2

and the result follws by taking the limit ε→ 0.

Remark 3 If u is harmonic, then by applying the previous result to both u
and −u we deduce that

max
x∈Ω
|u(x)| = max

x∈∂Ω
|u(x)|
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Definition 2 A continuous function u ∈ C0(Ω) is subharmonic in Ω if ∀x ∈
Ω, ∃r > 0 so that

u(x) ≤ Au(x, ρ)

holds ∀ρ, 0 < ρ ≤ r.

Exercise 3 Let u ∈ C2(Ω), and assume that ∆u(x) ≥ 0 holds for any x ∈ Ω.
Prove that u is subharmonic.

Theorem 2 (Strong maximum principle) Let Ω be open, bounded and con-
nected. Let u ∈ C0(Ω) be subharmonic. Then, either u is constant, or

u(x) < sup
x∈Ω

u(x)

holds.

Idea of proof. Let M = supx∈Ω u(x). Consider the sets S1 = {x ∈
Ω; u(x) < M} and S2 = {x ∈ Ω; u(x) = M}. The two sets are disjoint, and
S1 is open. We show that S2 is open as well. Indeed, take x ∈ S2. Then

0 ≤ Au(x, ρ)−M =
1

ρn−1ωn

∫
∂B(x,ρ)

(u(y)−M)dS ≤ 0.

Because the integrand is non-positive we deduce that u(y) = M for all y such
that |y − x| = ρ, with any 0 < ρ < r. This means that S2 is open.

Remark 4 The result implies that, if u ∈ C2(Ω) ∩ C0(Ω) satisfies ∆u ≥ 0
in the bounded open connected domain Ω, then either u is constant, or

u(x) < max
x∈∂Ω

u(x)

holds.

3 Green’s functions, Poisson kernel

Exercise 4 Let Ω be open, bounded, with smooth boundary. Let u ∈ C2(Ω)
with first derivatives that are continuous up to the boundary ∇u ∈ C(Ω). Let
x ∈ Ω Then

u(x) =

∫
∂Ω

(u∂νN −N∂νu) dS +

∫
Ω

N(x− y)∆u(y)dy (6)

is true. The function N in the boundary integral is computed at x− y, with
y ∈ ∂Ω; the normal derivative refers to the external normal at y.
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Hint: Take a small ball B(x, r) ⊂ Ω and write (2) in Ω \ B(x, r), with
functions u and N(x − y). Then use the calculation from the proof of the
Proposition 1.

Let us consider now the inhomogeneous Dirichlet problem{
∆u = f,
u|∂Ω = g

where f is some given function in Ω and g is a continuous function on ∂Ω.
Suppose that we can find, for each x ∈ Ω, a harmonic function n(x)(y) such
that {

∆yn
(x)(y) = 0

n(x)(y) = N(x− y), for y ∈ ∂Ω.

Then, applying (2) we have

0 = −
∫

Ω

n(x)(y)∆u(y)dy +

∫
∂Ω

(N∂νu− u∂νn(x))dS.

Adding to (6) we deduce that

G(x, y) = N(x− y)− n(x)(y)

provides the solution to the Dirichlet problem,

u(x) =

∫
Ω

G(x, y)f(y)dy +

∫
∂Ω

g(y)∂νG(x, y)dS (7)

Note that the Green’s function satisfies{
∆yG(x, y) = δ(x− y)
G(x, y) = 0 for y ∈ ∂Ω

with δ(x − y) the δ function concentrated at x. When f = 0 we obtain the
representation of harmonic functions u(x) for x ∈ Ω that satisfy u(y) = g(y)
for y ∈ ∂Ω:

u(x) =

∫
∂Ω

P (x, y)g(y)dS (8)

with
P (x, y) = ∂νG(x, y) (9)

the Poisson kernel. The representations (7) and (8) are useful, but the
Green’s function and the Poisson kernel for a general domain are hard to
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obtain explicitly. Two important examples that can be computed are the
half plane and the ball. The main idea, in both cases, is to reflect the singu-
larity away. The reflection is rather straightforward for the half-plane, less
so for the ball.

Let Ω = {x ∈ Rn, xn > 0}. Set,

G(x, y) = N(x− y)−N(x∗ − y)

where x∗ = (x1, . . . , xn−1,−xn). This is a Green’s function for Ω. It is
convenient to write a point in Ω as x = (x′, xn) with x′ ∈ Rn−1 and xn > 0.
Then x∗ = (x′,−xn), the Poisson kernel is a function of x′−y′ and xn, where
y = (y′, 0) represents a point on the boundary,

P (x′ − y′, xn) =
2xn
ωn

(
|x′ − y′|2 + x2

n

)−n
2

Proposition 3 Let g be a continuous bounded function of n − 1 variables,
and let n > 1. The function

u(x) =

∫
Rn−1

P (x′ − y′, xn)g(y′)dy′

is harmonic in xn > 0 and the limit limxn→0 u(x′, xn) = g(x′) holds.

Let now Ω = B(0, R). Let x ∈ Ω and set x∗ = R2

|x|2x. Note that if y ∈ ∂Ω
then

|x∗ − y|
|x− y|

=
R

|x|
does not depend on y. For n > 2 take the fundamental solutions N(x − y)
and N(x∗ − y) and write

G(x, y) = N(x− y)−
(
|x|
R

)2−n

N(x∗ − y)

Clearly, for y ∈ ∂Ω, G(x, y) vanishes. The second term is not singular in
y ∈ Ω, so it is harmonic in y. The Poisson kernel is

P (x, y) =
1

Rωn

R2 − |x|2

|x− y|n
(10)

This works even in n = 2.
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Proposition 4 Let g be a continuous function on ∂B(0, R) in Rn, n ≥ 2.
The function

u(x) =

{ ∫
∂B(0,R)

P (x, y)g(y)dS, for |x| < R

u(x) = g(x), for |x| = R

given by the Poisson kernel (10) is harmonic in |x| < R, and continuous in
|x| ≤ R.

The proof uses the following properties of the Poisson kernel:

P (x, y) ∈ C∞, P (x, y) > 0 for |x| < R, |y| = R,
∆xP (x, y) = 0, for |x| < R, |y| = R,∫
∂B(0,R)

P (x, y)dS = 1 ∀x, |x| < R,

limx→z, |x|<R P (x, y) = 0, uniformly for |y| = |z| = R, |z − y| ≥ δ > 0.

4 Method of Perron

Theorem 3 Let Ω be an open bounded set, f a continuous function on ∂Ω.
We will assume that ∂Ω has the barrier property (see below). Then there
exists a harmonic function u ∈ C2(Ω) ∩ C(Ω) such that u = f on ∂Ω.

The method of Perron is based on subharmonic functions and the observation
that all such functions that have boundary values not larger than f , have to
lie below u. If a solution exists, then it is subharmonic, so clearly u(x) =
supS s(x) where the supremum is taken among all subharmonic functions s
that are dominated by f on the boundary. The rest of this section shows
how to turn this idea into math.

We will denote by σ(Ω) the set of subharmonic functions in Ω, that is, the
set of continuous functions in Ω such that u(x) ≤ Au(x, r) for all r sufficiently
small:

σ(Ω) = {u ∈ C(Ω); ∃ρ > 0, ∀ r < ρ, u(x) ≤ Au(x, r)}

(We use the notation Af (x, r) from the previous section on the Laplacian).

Lemma 2 If Ω is connected and u ∈ σ(Ω) ∩ C(Ω) then

max
Ω

u ≤ max
∂Ω

u

holds.
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We proved this in the first section on the Laplacian.

Definition 3 If u ∈ σ(Ω) and B(x, r) ⊂ Ω, we set ux,r to be the function

ux,r(y) =

{
u(y), if y /∈ B(x, r)
h(y), if y ∈ B(x, r)

where ∆h = 0 in B(x, r) and h(y) = u(y) for y ∈ ∂B(x, r).

The existence and uniqueness of h have been established earlier.

Lemma 3 If u ∈ σ(Ω) and B(x, r) ⊂ Ω then

u(y) ≤ ux,r(y)

holds for all y ∈ Ω, and moreover

ux,r ∈ σ(Ω).

Proof. From definitions, it is clear that we need to check the inequality
u ≤ ux,r only for y ∈ B(x, r). There it follows from the fact that u − h ∈
σ(B(x, r))∩C(B(x, r)) and vanishes on the boundary of B(x, r) so it’s non-
positive by the maximum principle Lemma 2. For the second part, we need
to show that

ux,r(y) ≤ Aux,r(y, ρ)

for small ρ. If y /∈ B(x, r) then clearly this is true because u is subharmonic
and ux,r = u in the open set Ω \ B(x, r). If y ∈ B(x, r) then ux,r is sub-
harmonic near y because it is harmonic near y. It remains to check the case
y ∈ ∂B(x, r). But there ux,r(y) = u(y) ≤ Au(y, ρ) ≤ Aux,r(y, ρ) for small
enough ρ, because u is subharmonic and u ≤ ux,r.

Lemma 4 If u ∈ σ(Ω) then u ≤ Au(x, r) holds for all r such that B(x, r) ⊂
Ω.

Indeed, if B(x, r) ⊂ Ω then u(x) ≤ ux,r(x) = Aux,r(x, r) = Au(x, r).

Lemma 5 A function u is harmonic in Ω if and only if u ∈ σ(Ω) and
−u ∈ σ(Ω).

Indeed, if u ∈ σ(Ω) and B(x, r) ⊂ Ω then u ≤ ux,r; if also −u ∈ σ(Ω) then
u = ux,r and therefore u is harmonic in B(x, r).
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Lemma 6 If u ∈ C(Ω) and if u(x) = Au(x, ρ) for sufficiently small ρ then
u is harmonic in Ω.

Indeed, then u ∈ σ(Ω) and −u ∈ σ(Ω).

Definition 4 Let f ∈ C(∂Ω) and consider

σf (Ω) = {u ∈ σ(Ω) ∩ C(Ω); u(y) ≤ f(y),∀ y ∈ ∂Ω}.

We define, for x ∈ Ω,
wf (x) = sup

u∈σf (Ω)

u(x)

Note that, if
m = inf

∂Ω
f, M = sup

∂Ω
f

then the constant function m belongs to σf (Ω), so that the latter is not
empty. Also, for any u ∈ σf (Ω), we have from the maximmum principle that
u ≤M , and therefore wf (x) is finite for any x.

Lemma 7 If u1, . . . , uk ∈ σf (Ω) then v = max{u1, . . . , uk} ∈ σf (Ω).

Indeed, clearly v ∈ C(Ω) and v ≤ f on ∂Ω. If B(x, r) ⊂ Ω then

v(x) ≤ max{Au1(x, r), . . . Auk(x, r)} ≤ Av(x, r)

Proposition 5 Let h1, h2, . . . be harmonic functions in an open bounded set
B, and assume that hk ∈ C(B) and that there exists a constant C such
that supx∈∂B |hk| ≤ C holds for all k. Then there exists a subsequence of hk
that converges uniformly on compact subsets of B to a limit function that is
harmonic.

Idea of proof. Let K ⊂⊂ B and let d > 2dist(K, ∂B) Let x ∈ K and let
r < d. Then, by the maximum principle, |hk(y)| ≤ C for |x− y| = r. On the
other hand, using the Poisson formula for the ball B(x, r) and differentiating
it, we obtain |∇hk(x)| ≤ n

r
C. This bound is uniform for all x ∈ K and all

k an therefore the sequence hk is uniformly bounded and equicontinuous on
the compact K. By Arzela-Ascoli, the sequence has a uniformly convergent
subsequence.

Lemma 8 The function wf is harmonic in Ω.
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Proof. Let B(x, r) ⊂ Ω, and let xk be any sequence in B(x, ρ), with ρ < r.
Because of the definition, there exist functions ujk ∈ σf (Ω) such that

wf (xk) = lim
j→∞

ujk(xk)

holds for any k = 1, 2, . . . . Let uj = max{uj1, . . . , u
j
j}. Because uj ∈ σf (Ω)

is larger than ujk, it follows that wf (xk) ≥ uj(xk) ≥ ujk(xk) so, as j → ∞,
limj→∞ u

j(xk) = wf (xk) holds for all k. Replacing uj by max{uj,m} we may
assume without loss of generality m ≤ uj ≤ M in Ω. Now we replace uj by
ujx,ρ. These are harmonic functions, larger than uj and still in σf (Ω) so, the
limit still is achieved. We have found thus a sequence of harmonic functions
hj in B(x, r) such that m ≤ hj ≤ M and limj→∞ hj(xk) = wf (xk) holds for
all k. By the previous proposition there exists a subsequence of hj (denoted
again hj) that converges uniformly on B(x, ρ) to a harmonic function W .
The function W may depend on the sequence xk and the subsequnece of hj.
Nevertheless, for any sequence xk we found a harmonic function W such that
wf (xk) = W (xk). This is enough. First, by choosing xk → x, it follows from
the continuity of W that wf (xk) converges, for any sequence xk → x. This
implies that wf is continuous. Now, by taking xk dense, we find that the
continuous function wf agrees with a harmonic function on a dense set, so
wf is harmonic in B(x, ρ).

Definition 5 (Barrier property). We assume that for any y ∈ ∂Ω there
exists a barrier function Qy ∈ σ(Ω) ∩ C(Ω) such that

Qy(y) = 0, Qy(x) < 0 ∀x ∈ ∂Ω, x 6= y

Lemma 9 Assume the barrier property. Then, for any y ∈ ∂Ω,

lim inf
x→y,x∈Ω

wf (x) ≥ f(y)

holds.

Indeed, let ε > 0, K > 0 be constants, and let u(x) = f(y) − ε + KQy(x).
Clearly u ∈ C(Ω) ∩ σ(Ω) and u ≤ f − ε on ∂Ω, and u(y) = f(y)− ε. Then,
because f is continuous, there exists δ = δ(ε) so that f(x) > f(y)− ε holds
for x ∈ ∂Ω, |x − y| < δ. Therefore, u(x) ≤ f(x) for |x − y| ≤ δ. On the
other hand, for |x− y| ≥ δ we know that supQy is strictly negative, so there
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exists a choice of K = K(ε) that large enough so that u(x) ≤ f(x) holds for
|x−y| ≥ δ. This means that u ∈ σf (Ω) and then it follows that u(x) ≤ wf (x)
holds for all x ∈ Ω. But then,

f(y)− ε = lim
x→y

u(x) ≤ lim inf
x∈Ω, x→y

wf (x)

Finally, we have

Lemma 10 Assume the barrier property. Then f(y) = limx∈Ω, x→y wf (x)
holds.

In view of the lemma above, it is enough to prove only lim supx→y wf (x) ≤
f(y). We consider −w−f . Writing u = −U we have −w−f = inf U for all
U such that −U ∈ C(Ω) ∩ σ(Ω), satisfying −U ≤ −f on ∂Ω. Then, if
u ∈ σf (Ω), it follows that u − U ≤ 0 on ∂Ω, therefore the same holds in Ω.
Then it follows that wf ≤ −w−f in Ω. Applying the previous lemma to w−f
we obtain that

lim sup
x∈Ω, x→y

wf (x) ≤ lim sup
x∈Ω, x→y

−w−f (x) = − lim inf
x∈Ω, x→y

w−f ≤ f(y).

This completes the proof of the lemma, and of the theorem.
Remarks.

1. Let y ∈ ∂Ω and assume it has a local barrier, i.e, there exists a
neighborhood N of y in Rn and a subharmonic function Q ∈ σ(Ω ∩ N) ∩
C((Ω ∩N)) satisfying Q(x) < 0 for x ∈ Ω ∩N \ {y}, Q(y) = 0. Then there
exist a barrier at y relative to Ω. Indeed, let B ⊂⊂ N be a ball centered
at y. Consider M = sup

{
Q(x) | x ∈ N ∩ Ω \B

}
. Consider the function

Qy(x) equal to Qy(x) = max(Q(x),M) for x ∈ Ω ∩ B, and Qy(x) = M for
x ∈ Ω \B. Then Qy is a barrier for Ω at y.

2. If Ω has the exterior ball property at y ∈ ∂Ω then the domain has
a barrier at y. The exterior ball property simply means that there exists
a ball B = B(X,R) so that Ω ∩ B = {y}. Indeed, the function Q(x) =

|x −X|2−n − R2−n is a barrier for Ω at y if n > 2, and Q(x) = log
(

R
|x−X|

)
isa barrier if n = 2.

3. We say that the boundary ∂Ω is regular if there is a barrier at every
point in ∂Ω. The Perron method can be stated as

Theorem 4 Let Ω be an open bounded set in Rn. Then the problem{
∆u(x) = 0, ∀x ∈ Ω
u(x) = f(x), ∀x ∈ ∂Ω

14



has a a solution for every f ∈ C(∂Ω) if, and only if the boundary ∂Ω is
regular.

The “only if” part of the theorem follows by noting that if y ∈ ∂Ω and
f(x) = −|x−y|, if we can find a harmonic function u that solves u(x) = f(x)
on the boundary, then obviously u is a barrier at y.

5 Dirichlet principle, variational solutions

Let Ω be a bounded open set in Rn. Let f ∈ C(Ω), g ∈ C(∂Ω) a and let

A = {w ∈ C2(Ω); w|∂Ω = g}.

Let

I[w] =

∫
Ω

(
1

2
|∇w|2 + wf

)
dx. (11)

Proposition 6 u ∈ C2(Ω) solves{
∆u = f in Ω,
u = g on ∂Ω

(12)

if, and only if
u = min

w∈A
I[w].

Note carefully that this is not an existence theorem, rather, it states the
equivalence of two possible existence theorems. One theorem asserts that
the Poisson problem with data f and g has a solution u with the desired
smoothness. The other theorem asserts that one can minimize the integral
I[w] and find a true minimum, in the class of admissible functions A. The
variational method considers the minimization program. The program con-
sists in two steps. The first step is to establish the existence of a minimum.
Unfortunately, the natural function spaces for I[w] are not spaces of con-
tinuous functions, but rather Sobolev spaces based on L2. This presents an
opportunity to generalize: the right-hand side f will be allowed to be in L2,
because the method does not require more. There is a price to pay: the
minimum thus obtained is not smooth. The second step is to show that if
the function f is smooth then the solution is smooth. There are two ways
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of doing this, via Sobolev spaces and embedding thms, or via Hölder spaces.
Although the method of Perron gave C2(Ω) solutions for continuous g, spaces
of continuous functions are not robust enough for analysis: certain natural
integral operators, like convolution with N are not well behaved in spaces of
continuous functions, but they are well-behaved in Lp and Hölder spaces.

5.1 H1
0(Ω)

Definition 6 Let Ω ⊂ Rn be an open bounded set with smooth boundary.
The space H1(Ω) is the completion of C∞(Rn) with norm

‖u‖2
H1(Ω) =

∫
Ω

(|∇u|2 + |u|2)dx.

Let Ω be open, arbitrary. The space H1
0 (Ω) is the closure of C∞0 (Ω) in the

norm ‖u‖H1(Ω).

Similar definitions are given for the whole space and the torus. In those cases
H1

0 = H1. However, in bounded domains H1
0 is strictly smaller: it represents

functions that vanish at the boundary, in a weak sense.

Exercise 5 Show that H1
0 ((0, 1)) 6= H1((0, 1)).

Lemma 11 (Poincaré Inequality) There exists a constant π(Ω) > 0 depend-
ing on the open bounded domain Ω such that∫

Ω

|u|2 ≤ π(Ω)

∫
Ω

|∇u|2dx

holds for all u ∈ H1
0 (Ω).

Proof. Because Ω is bounded in the direction x1, we know that there exists
an interval [a, b] such that t ∈ [a, b] holds for all t such that there exists
x2, . . . xn so that x = (t, x2, . . . , xn) ∈ Ω. Because both sides of the inequality
are continuous in H1 and because of the definition of H1

0 , we may assume,
WLOG that u ∈ C∞0 (Ω). Then

u(x1, . . . xn)2 = 2

∫ x1

a

u(t, x2, . . . , xn)(∂1u)(t, x2, . . . , xn)dt

16



By Schwartz:

u(x1, . . . xn)2 ≤ 2

{∫ b

a

u2(t, x2, . . . , xn)dt

} 1
2
{∫ b

a

|∇u(t, x2, . . . , xn)|2 dt
} 1

2

We keep x1 fixed, integrate dx2 . . . dxn and use Schwartz again:∫
u2(x1, x2, . . . xn)dx2 . . . dxn ≤ 2‖u‖L2‖∇u‖L2 .

We integrate dx1 on [a, b], noting that the RHS is independent of x1:

‖u‖2
L2 ≤ 2(b− a)‖u‖L2‖∇u‖L2 .

Dividing by ‖u‖L2 we obtain the inequality with π(Ω) = 4(b−a)2. It is clear
from this proof that we do not need to use the boundedness of Ω, only the
existence of some direction in which Ω is bounded.

Exercise 6 Show that the Poincaré inequality fails in H1(Ω) if Ω is bounded.
Show that the Poincaré inequality fails in some unbounded domains: for in-
stance in H1

0 (R).

The Poincaré inequality implies that the scalar product

(u, v) =

∫
Ω

∇u · ∇vdx

is equivalent (gives the same topology) with the scalar product in H1
0 (Ω):

< u, v >=

∫
Ω

(uv +∇u · ∇v)dx

Theorem 5 Let Ω be a bounded open set. Let f ∈ L2(Ω). Then, there exists
a unique u ∈ H1

0 (Ω) that solves

I[u] = min
w∈H1

0 (Ω)
I[w]

where

I[w] =

∫ (
1

2
|∇w|2 + wf

)
dx.

The function u satisfies the variational formulation of the problem (12) with
g = 0:

(u, v) +

∫
Ω

vfdx = 0 ∀ v ∈ H1
0 (Ω) (13)
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Proof. The function I[w] is bounded below. Indeed, using Schwartz we have

I[w] ≥ 1

2

∫
Ω

|∇w|2dx− ‖f‖L2‖w‖L2

and using the Poincaré inequality

I[w] ≥ 1

2C
‖w‖2

L2 − ‖f‖L2‖w‖L2

and that is bounded below. Thus, the infimum exists:

m = inf
w∈H1

0 (Ω)
I[w].

Let wk be a minimizing sequence, I[wk] → m. The sequence is bounded in
H1

0 (Ω) because (wk, wk) are bounded. Therefore there exists a subsequence
(denoted again wk) and an element u in H1

0 (Ω) such that wk converges weakly
to u,

lim
k

(wk, v) = (u, v) ∀v ∈ H1
0 (Ω).

Then, because v 7→
∫

Ω
vfdx is linear and continuous in H1

0 , hence weakly
continuous, it follows that∫

Ω

ufdx = lim
k

∫
wkfdx

Exercise 7 In a Hilbert space, the square of the norm is weakly lower semi-
continuous.

By the above exercise,

1

2

∫
Ω

|∇u|2dx ≤ 1

2
lim inf

k

∫
Ω

|∇wk|2dx

This shows that u achieves the minimum.

I(u) = m.

The variational formulation (13) follows by looking at the function

q(t) = I(u+ tv)
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for fixed, but arbitrary v ∈ H1
0 (Ω) and t real. q(t) is a quadratic polynomial

in t,

q(t) = I(u) + t

{
(u, v) +

∫
Ω

vfdx

}
+
t2

2
(v, v)

that has a minimum at t = 0. The variational formulation is equivalent
to the fact that q′(0) = 0. The uniqueness of u follows immediately from
variational formulation with v = u, the inequality

‖u‖2 ≤ C(u, u) ≤ 2C‖f‖L2‖u‖L2 ,

thus
‖u‖L2 ≤ 2C‖f‖L2 ,

and because the variational formulation is linear.

6 Weak solutions of second order uniformly

elliptic equations

Let Ω ⊂ Rn be an open bounded set, and suppose we are given real functions
aij(x), bi(x), c(x) that belong to L∞(Ω). We assume that aij(x) = aji(x) and
the uniform ellipticity condition: There exists γ > 0 such that∑

ij

aij(x)ξiξj ≥ γ|ξ|2 (14)

holds for all x ∈ Ω and ξ ∈ Rn. We consider the operator

(P (x,D)u)(x) = −
∑
ij

∂i (aij∂ju) +
∑
i

bi∂iu+ cu (15)

We associate to P (x,D) a bilinear form,

B : H1
0 (Ω)×H1

0 (Ω)→ R

B(u, v) = a(u, v) + (b · ∇u, v) + (cu, v)

where

a(u, v) =

∫
Ω

∑
ij

aij(x)(∂iu(x))(∂jv(x))dx,
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(b · ∇u)(x) =
∑
i

bi(x)(∂iu(x))

and we use the notation

(f, g) =

∫
Ω

f(x)g(x)dx.

Definition 7 Let f ∈ L2(Ω). We say that u ∈ H1
0 (Ω) is a variational

solution of {
P (x,D)u = f, in Ω,

u|∂Ω = 0

if
B(u, v) = (f, v)

holds for all v ∈ H1
0 (Ω).

Theorem 6 Let Ω be an open bounded set, f ∈ L2(Ω), let P (x,D) be defined
as above. Assume that ∇ · b ∈ L∞(Ω) and

γ > π(Ω)

[
1

2
‖∇ · b‖L∞ + ‖c−‖L∞

]
(16)

where π(Ω) is the constant in Poincaré’s inequality, and we used the notation
c−(x) = max{−c(x), 0}. Then there exists a unique variational solution of
P (x,D)u = f , u ∈ H1

0 (Ω).

Remark. Note that if c(x) ≥ 0 and ∇ · b = 0 a.e. in Ω then the result is
valid for arbitrary γ > 0. Proof. The form B(u, v) is bilinear, continuous
and coercive. By Lax-Milgram’s theorem, there exists a unique variational
solution.

Theorem 7 (Lax-Milgram) Let H be a real Hilbert space, B : H ×H → R
be bilinear, continuous

|B(u, v)| ≤ C‖u‖‖v‖, ∀ u, v ∈ H

and coercive, i.e. there exists γ > 0 such that

B(u, u) ≥ γ‖u‖2

holds for all u ∈ H. Let f : H → R be linear and continuous Then there
exists a unique u ∈ H such that

B(u, v) = (f, v)

holds for all v ∈ H.
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Proof (of Lax-Milgram). By Riesz representation, for any u ∈ H there
exists U ∈ H such that B(u, v) = (U, v) holds for all v ∈ H. Bilinearity of
B implies that U = Au is a linear operator. Continuity implies that A is
bounded, ‖Au‖ ≤ C‖u‖. Coercivity implies ‖Au‖ ≥ γ‖u‖. This last fact
implies that A is one-to-one and that its range is closed. Moreover, the range
of A is H, because if v is perpendicular on therange then B(v, v) = 0, and
hence, by coercivity v = 0.

Let us verify now the conditions of Lax-Milgram: Continuity is clear:

|B(u, v)| ≤ α‖∇u‖L2‖∇v‖L2 + β‖∇u‖L2‖v‖L2 + ‖c‖L∞‖u‖L2‖v‖L2

For coercivity we have

B(v, v) ≥ γ‖∇v‖2
L2 −

[
1

2
‖∇ · b‖L∞ + ‖c−‖L∞

]
‖v‖2

L2

where we used the fact that, for v ∈ H1
0 and b ∈ (L∞)n with ∇ · b ∈ L∞ we

have ∫
Ω

(b · ∇v)vdx = −1

2

∫
(∇ · b)v2dx.

7 Regularity of weak solutions

Theorem 8 (Interior regularity) Assume that aij ∈ C1(Ω), b ∈ (L∞(Ω))n,
c ∈ L∞(Ω). Assume that u ∈ H1(Ω) is a variational solution of P (x,D)u =
f , and f ∈ L2(Ω). Then u ∈ H2

loc(Ω) and, for every relatively compact open
set U ⊂⊂ Ω, there exists a constant C depending only on U and Ω, such that

‖u‖H2(U) ≤ C
[
‖u‖L2(Ω) + ‖f‖L2(Ω)

]
. (17)

The method of proof is to use finite differences and the coercivity of the
principal bilinear form a(u, v). Let

((δih)v)(x) = h−1(v(x+ hei)− v(x))

be the difference quotient. Let U ⊂⊂ Ω.

Theorem 9 (a) If 1 ≤ p <∞. There exists a constant C so that for every
u ∈ W 1,p(Ω) and |h| ≤ 1

2
dist(U, ∂Ω) we have

‖δihu‖Lp(U) ≤ C‖∇u‖Lp(Ω).
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(b) If 1 < p ≤ ∞ and if u ∈ Lp(Ω) satisfies

‖δih(u)‖Lp(U) ≤ C

uniformly for all |h| small enough, then u ∈ W 1,p(U) and

‖∇u‖Lp(U) ≤ C.

Note that in (b) we have 1 < p. The result fails for p = 1. For an example
of this failure, we may consider the case n = 1, Ω = (−1, 1), u(x) = 1 for
x ≥ 0, u(x) = 0 for x < 0. Then δhu is bounded in L1 but the derivative
u′ = δ /∈ L1.
Idea of proof of the interior regularity. We take a smooth cutoff function
χ ≥ 0, so that χ = 1 on an open neighborhood of U and χ ∈ C∞0 (V ) with
U ⊂⊂ V ⊂⊂ Ω. We know by definition

B(u, v) = (f, v)

holds for all v ∈ H1
0 (Ω). We pick 1 ≤ k ≤ n, h small enough and consider

v = −δk−h(χ2δkhu)

Clearly, v ∈ H1
0 (Ω) is an admissible test function and we have

a(u, v) =
∑
ij

∫
Ω

δkh(aij∂iu)∂j(χ
2δkh(u))dx

because
(f, δk−hg) = −(δkhf, g)

and δkh∂j = ∂jδ
k
h. Then, we use a product rule

δkh(au) = aδkh(u) + τ kh (u)δkh(a)

with τ kh (u)(x) = u(x+ hek). We deduce

a(u, v) ≥ γ

∫
Ω

χ2
∣∣δkh∇u∣∣2 dx− E(u)

with
E(u) ≤ C‖∇u‖L2(V )

[
‖χδkh∇u‖L2(Ω) + ‖∇u‖L2(V )

]
.
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For the lower order terms (involving b · ∇u and f) we do not “integrate by
parts”, i.e., we do not move δk−h to apply to them, but we use instead the
fact that

‖v‖L2(V ) ≤ C
[
‖χδkh∇u‖L2(Ω) + ‖∇u‖L2(V )

]
.

We deduce, after a few calculations,

‖u‖2
H2(U) ≤ C

[
‖f‖2

L2(Ω) + ‖∇u‖2
L2(V )

]
By taking another cutoff function, ψ ∈ C∞0 (Ω) ψ = 1 on a neighborhood of
V and using the definition and the test function v = ψ2u we discover after
standard manipulations that∫

Ω

ψ2|∇u|2dx ≤ C

∫
Ω

[
f 2(x) + u2(x)

]
dx.

This finishes the proof.

Theorem 10 Assume that aij ∈ C1(Ω), assume that ∂Ω ∈ C2, b, c ∈ L∞(Ω)
and that f ∈ L2(Ω) is given. Assume that u ∈ H1

0 (Ω) is a variational solution
of P (x,D)u = f , u|∂Ω = 0. Then u ∈ H2(Ω) and there exists a constant C
such that

‖u‖H2(Ω) ≤ C
[
‖u‖L2(Ω) + ‖f‖L2(Ω)

]
.

Idea of proof. First consider the case when Ω is half-ball included in the
half space Rn

+ = {xn > 0}∩Rn, ΩR = {x | |x| < R, xn > 0}. We assume that
u is a variational solution that belongs to H1(ΩR) and whose trace vanishes
at {xn = 0}. We use difference quotients δih with i < n, in the same way
as in the interior regularity case, carefully, and discover that ∂i∇u are all
controlled (by the right hand side of the desired inequality). Then use the
equation to deduce that ∂n∂nu is controlled by the same thing.

The general domain case is the attacked by a partition of unity and flat-
tening the boundary. Changing variables changes the coefficients in the sec-
ond order operator, but the uniform ellipticity is preserved. If y = Φ(x)
is a diffeomorphism with inverse Φ−1, and if ũ(y) = (u ◦ Φ−1) (y), then the
principal part A(x,D)u =

∑
ij aij(x)∂2

iju of the operator P (x,D)u becomes

Ã(y,D)ũ =
∑

kl ãkl∂
2
klũ where ãkl(y) =

∑
i,j aij(x)(∂xiΦ

k(x))(∂xjΦ
l(x)) at

x = Φ−1(y). Therefore
∑

kl ãkl(y)ηkηl =
∑

ij aij(x)ξiξj with ξ = (∇Φ(x))Tη,

and the uniform ellipticity is preserved as long as ∇Φ−1 and ∇Φ have uni-
formly bounded norms. The bilinear form associated to P is defined in the
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new variables according to the change of variables formula, i.e. B̃ is defined
by

B̃(ũ, ṽ) = B(ũ ◦ Φ, ṽ ◦ Φ).

The full operator P̃ (y,D)ũ becomes in the new variables y = Φ(x)

P̃ (y,D)ũ)(y) = − 1

Det(∇Φ−1)
∂k
(
Det(∇Φ−1)ãkl(∂lũ)

)
+ b̃k∂kũ+ c̃ũ

where ãkl are defined above, and b̃k(y) =
[
(∇Φ)T ◦ (Φ−1)

]
(bj ◦ Φ−1), c̃ =

c ◦ Φ−1. Let Ω be a bounded domain with C2 boundary. For each x0 ∈ ∂Ω
there exists r > 0 and a C2 function h(x′) defined in Rn−1 such that (after a
rotation)

Ω ∩B(x0, r) = {x ∈ B(x0, r) | xn > h(x′)}.

Then a diffeomorphism Φ : Rn → Rn so that x ∈ Ω ∩ B(x0, r) if and only if
x ∈ B(x0, r) and Φ(x) = y satisfies yn > 0 and x ∈ ∂Ω∩B(x0, r) if and only
if yn = 0, is obtained by setting

Φi(x) = xi, for i = 1, . . . , n− 1,
Φn(x) = xn − h(x′).

Note that
(Φ−1)i(y) = yi, for i = 1, . . . , n− 1,

(Φ−1)n(y)− yn + h(y′)

and Det∇Φ−1 = 1. We say that Φ flattens the boundary.
If u ∈ H1

0 (Ω) is a variational solution of P (x,D)u = f then, restricting to
B(x0, r)∩Ω and changing variables, ũ(y) = u(Φ−1(y)) we obtain a variational

solution of P̃ (y,D)ũ = f̃ in a half-ball, vanishing on the flat boundary of the
half-ball. We obtain therefore H2 estimates for it. Because the boundary is
compact, we can cover it with finitely many balls B(x0, r), and summing the
estimates, together with the interior regularity estimates we finish the proof
of the theorem.
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