
Hamilton Jacobi equations

Intoduction to PDE

The rigorous stuff from Evans, mostly.
We discuss first

∂tu+H(∇u) = 0, (1)

where H(p) is convex, and superlinear at infinity,

lim
|p|→∞

H(p)

|p|
= +∞

This by comes by integration from special hyperbolic systems of the form
(n = m)

∂tv + Fj(v)∂jv = 0

when there exists a pontental for Fj, i.e. Fj = ∂jH(v), and when we seek
solutions as gradients v = ∇u. Typical example (n = 1) is Burgers equation

vt + vvx = 0

which by integration v = ux gives, omitting constants,

ut +
1

2
u2x = 0.

We know solutions of Burgers or conservation laws conserve L∞ norms and
produce shocks. So we expect solutions of HJ equations to be Lipschitz,
and loose second derivatives. That they do. We recall that the Legendre
transform of a convex superlinear-at-infinity function L is

L∗(p) = sup
q∈Rn

[p · q − L(q)]

Note that L∗ is convex and superlinear at infinity and

(L∗)∗ = L.
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Let H = L∗. Note that, if L is smooth (and it is, if H is strictly convex),
then at a maximum (they are attained becuse of superlinearity)

∇qL(q) = p,

so, solving for q gives a function of p. (This is unique if L is strictly convex).
So,

H(p) = p · q(p)− L(q(p))

Differentiating this, we have

∇pH(p) = q(p) + p · ∇pq −∇qL(q(p))∇pq = q(p)

This can be understood: the Legendre transform of L is given by

H(p) = p · q(p)− L(q(p))

where q solves ∇qL = p, or by the equation

H(p) = p · ∇pH − L(∇pH(p))

which looks complicated, and itself it is a steady Hamilton-Jacobi equation.
Similarly, H∗(q) = L(q) is computed by solving ∇pH(p) = q and setting
L(q) = p(q) · q − H(p(q)). Of course, if L is not strictly convex we do not
have necessarily a unique solution, and the minimization is necessary.

Now we have a magical solution of (1),

u(x, t) = min
y

{
tL

(
x− y
t

)
+ u0(y)

}
(2)

where u0 is the value of u at t = 0. This is termed the Hopf-Lax formula in
Evans. The magic is then enveloped in mystery:

u(x, t) = min
A

{ˆ t

0

L(ẇ(s))ds+ u0(w(0))

}
where

A = {w ∈ C1([0, t],Rn)|w(t) = x}

and ẇ(s) = dw
ds

. This is easier to prove than it looks (see Evans), and makes
contact with minimum action principles, or control, but does not illuminate
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the Hopf Lax formula by even a single lumen. By what divination process
could somebody arrive at such an amazing formula?

Let us differentiate our equation (1), motivated by where it came from.
We obtain

∂tv + (∇pH(v))∇v = 0

where v = ∇u. So, let us introduce characteristics,

dx

dt
= ∇pH(v(x, t)), x(0) = x0.

Denote for a second x(t, x0) the characteristic issued from x0. On it, v is
constant, v(x(t, x0), t) = v(x0, 0). But v = ∇u , which is the sole argument
of ∇pH. So the characteristics are straight lines

x(t, x0) = x0 + tq, q = ∇pH(p)

and
∇u(x, t) = p, for x = x0 + t∇pH(p).

Now let us look at u on the characteristic. We differentiate

d

ds
u(x0 + sq, s) = ∂su(x0 + sq, s) + q · ∇u(x0 + sq, s)

But we are on the characteristic, so ∇u = p, and q = ∇pH(p). Using the
equation (1) we also have ∂su(x0 + sq, s) = −H(p). The right-hand side is a
constant, p · q −H(p). That we know how to integrate in time:

u(x, t)− u(x0, 0) = t (p · q −H(p))

We recall that q = ∇pH(p). Wait a minute, that means that p · q −H(p) =
L(q). So

u(x, t) = tL(q) + u0(x0)

Now we express q in terms of x and x0: From x = x0 + tq, it follows that
q = x−x0

t
. So, without magic, we arrived at

u(x, t) = tL

(
x− x0
t

)
+ u0(x0).

Now, we assumed strict convexity, and smooth initial data, and this would
work only for short time. Remarkably, the variational formula is true for all
time and gives the good weak solution even after ∇u develops shocks. When
they do, x0 is not uniquely determined on characteristics by ∇u(x, t), x an
t. We start with a semigroup property:
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Lemma 1. If H is convex and superlinear at infinity and if u is given by
(2), then

u(x, t) = min
y

{
(t− s)L

(
x− y
t− s

)
+ u(y, s)

}
(3)

for 0 ≤ s < t.

Proof. Take z so that u(y, s) = sL
(
y−z
s

)
+ u0(z) and use convexity of L

to show

L

(
x− z
t

)
≤

(
1− s

t

)
L

(
x− y
t− s

)
+
s

t
L

(
y − z
s

)
Then

u(x, t) ≤ tL
(
x−z
t

)
+ u0(z) ≤ (t− s)L

(
x−y
t−s

)
+ sL

(
y−z
s

)
+ u0(z)

= (t− s)L
(
x−y
t−s

)
+ u(y, s).

On the other hand, pick w so that u(x, t) = tL
(
x−w
t

)
+ u0(w) and take

y = s
t
x+ (1− s

t
)w. Then

x− y
t− s

=
x− w
t

=
y − w
s

and consequently

(t− s)L
(
x−y
t−s

)
+ u(y, s) ≤ (t− s)L

(
x−w
t

)
+ sL

(
y−w
s

)
+ u0(w)

= tL
(
x−w
t

)
+ u0(w) = u(x, t).

Proposition 1. If u0 is Lipschitz, then the function u(x, t) given in (2) is
Lipschitz continuous and continuous up to t = 0.

Proof. Fix t > 0. Pick x, x1. Find y so that

u(x, t) = tL

(
x− y
t

)
+ u0(y)

Then

u(x1, t)− u(x, t) = minz
{
tL

(
x1−z
t

)
+ u0(z)

}
− tL

(
x−y
t

)
− u0(y)

≤ u0(x1 − x+ y)− u0(y) ≤ C|x− x1|.

Then we switch the roles of x1 and x. For the continuity at t = 0, on one
hand we have

u(x, t) ≤ tL(0) + u0(x)
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directly from (2) by taking y = x. On the other hand, using u0(y) ≥ u0(x)−
C|x− y| in the definition (2) we have

u(x, t) ≥ u0(x) + miny
{
−C|x− y|+ tL

(
x−y
t

)}
= u0(x)− tmaxw{C|w| − L(w)}
= u0(x)− tmax|z|≤C maxw{z · w − L(w)}
= u0(x)− tmax|z|≤C H(z)

We also have |u(x, t)− u(x, s)| ≤ C|t− s| using the semigroup property and
the bounds above.

Proposition 2. Let u0 be Lipschitz and take a point (x, t) where the function
u(x, t) defined by (2) is differentiable. (This happens a.e. by Rademacher’s
theorem and the result above). Then

∂tu(x, t) +H(∇u(x, t)) = 0.

Proof. let q ∈ Rn, h > 0. By the semigroup property

u(x+ hq, t+ h) = miny
{
hL

(
x+hq−y

h

)
+ u(y, t)

}
≤ hL(q) + u(x, t),

which implies
q · ∇u(x, t) + ∂tu(x, t) ≤ L(q)

This is valid for all q, so

∂tu(x, t) +H(∇u(x, t)) = ∂tu(x, t) + min
q
{q · ∇u(x, t)− L(q)} ≤ 0.

On the other hand, choose z so that u(x, t) = tL
(
x−z
t

)
+ u0(z). Take h > 0,

put s = t− h, y = s
t
x+ (1− s

t
)z. Then x−z

t
= y−z

s
and so,

u(x, t)− u(y, s) ≥ tL
(
x−z
t

)
+ u0(z)−

{
sL

(
y−z
s

)
+ u0(z)

}
= (t− s)L

(
x−z
t

)
.

This means

1

h

(
u(x, t)− u

((
1− h

t

)
x+

h

t
z, t− h

))
≥ L

(
x− z
t

)
Letting h→ 0

∂tu(x, t) +
x− z
t
· ∇u(x, t) ≥ L

(
x− z
t

)
5



Then

∂tu(x, t) +H(∇u(x, t)) = ∂tu(x, t) + maxw {q · ∇u(x, t)− L(q)}
≥ ∂tu(x, t) + x−z

t
∇u(x, t)− L

(
x−z
t

)
≥ 0.

This concludes this verification. Now it turns out that an additional property
holds, semi-concavity.

Lemma 2. If there exists a constant such that

u0(x+ z) + u0(x− z)− 2u0(x) ≤ C|z|2

holds for all x, z, then the solution (2) satisfies, with the same C

u(x+ z, t) + u(x− z, t)− 2u(x, t) ≤ C|z|2

Proof. Let y so that u(x, t) = tL
(
x−y
t

)
+ u0(y) and use this y + z and

y− z in the definitions of u(x+ z, t), u(x− z, t). This will cancel the L terms
and give the result.

Semi-concavity of u implies that uε = φε∗u where φε is a standard mollifier
satisfies

∇∇uε ≤ CI

It turns out that if H is strictly convex, then for t > 0 solutions become
semiconcave, even if u0 was not, with bounds that explode at t = 0.

Lemma 3. If H is strictly convex

H

(
p1 + p2

2

)
≤ 1

2
H(p1) +

1

2
H(p2)− c|p1 − p2|2

then the solution (2) satisfies

u(x+ z, t) + u(x− z, t)− 2u(x, t) ≤ C

t
|z|2.

Proof. Using definitions, it turns out that

1

2
L(q1) +

1

2
L(q2) ≤ L

(
q1 + q2

2

)
+ C|q − 1− q2|2

Then, choosing y to have u(x, t) = tL
(
x−y
t

)
+u0(y) and using the same y for

u(x+ z, t) and u(x− z, t) the u0 terms cancel out, and the result emerges.
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Theorem 1. Let H ∈ C2, strictly convex, superlinear at infinity. Assume u0
is Lipschitz. Then there is only one Lipschitz continuous function u satisfying

u(x, 0) = u0(x)

∂tu+H(∇u(x, t)) = 0, a.e.

and

u(x+ z, t) + u(x− z, t)− 2u(x) ≤ C(1 +
1

t
)|z|2

Proof. Taking the difference u of two solutions u1, u2 we arrive at

∂tu+ v · ∇u = 0

where v is bounded, and given by

v(x, t) =

ˆ 1

0

∇pH(λ∇u1(x, t) + (1− λ)u2(x, t))dλ

We mollify the solutions u1 u2 and define

vε(x, t) =

ˆ 1

0

∇pH(λ∇u1ε(x, t) + (1− λ)u2ε(x, t))dλ

where ujε = uj ∗ φε. The divergence satisfies a one-sided bound

divvε ≤ C(1 +
1

t
).

This used the semiconcavity of both solutions. Now because both solutions
are Lipschitz

|u(x, t)| ≤ ct, |∇u| ≤ C.

We write
∂tu+ vε · ∇u = (vε − v) · ∇u

We take a function w = f(u) with f smooth and nonnegative. This still
solves

∂tw + vε · ∇w = (vε − v) · ∇w
We integrate on a fastly shrinking ball

e(t) =

ˆ
|x−x0|≤V (t0−t)

wdx
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with V > ‖b‖L∞ . Then

de

dt
≤ C(1 +

1

t
)e+

ˆ
|x−x0|≤V (t0−t)

(v − vε)∇w

We let ε→ 0:
de

dt
≤ C(1 +

1

t
)e

Now we select f to vanish for |u| ≤ cε, positive otherwise. Then e = 0 for
t ≤ ε and from then on, by Gronwall e(t) = 0. It follows that |u| ≤ cε, but ε
was arbitrary.
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