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Abstract. In this paper we derive a probabilistic representation of the de-
terministic 3-dimensional Navier-Stokes equations in the presence of spatial

boundaries. The formulation in the absence of spatial boundaries was done by

the authors in CPAM, 2008. While the formulation in the presence of bound-
aries is similar in spirit, the proof is somewhat different. One notable feature

of the formulation in the presence of boundaries is the non-local, implicit in-

fluence of the boundary vorticity on the interior fluid velocity.

1. Introduction

The (unforced) incompressible Navier-Stokes equations

∂tu+ (u · ∇)u− ν4u+∇p = 0(1.1)

∇ · u = 0(1.2)

describe the evolution of the velocity field u of an incompressible fluid with kine-
matic viscosity ν > 0. Here p is the pressure, which, for incompressible fluids,
can be treated as a Lagrange multiplier that ensures incompressibility is preserved.
When ν = 0, (1.1)–(1.2) is known as the Euler equations, and describes the evo-
lution of the velocity field of an (ideal) inviscid incompressible fluid. Formally the
difference between the Euler and Navier-Stokes equations is only the dissipative
Laplacian term. Since the Laplacian is exactly the generator a Brownian motion,
one would expect to have an exact stochastic representation of (1.1)–(1.2) which
is physically meaningful, i.e. can be thought of as an appropriate average of the
inviscid dynamics and Brownian motion.

The difficulty, however, in obtaining such a representation is because of both the
nonlinearity, and the nonlocality of equation (1.1)–(1.2). In 2D, an exact stochastic
representation of (1.1)–(1.2) dates back to Chorin [12] in 1973, and was obtained
using vorticity transport and the Feynman-Kac formula. In three dimensions how-
ever, this method fails to provide an exact representation because of the vortex
stretching term.

In 3D, a variety of techniques have been used to provide exact stochastic rep-
resentations of (1.1)–(1.2). One such technique (Le Jan and Sznitman [25]) uses
a backward branching process in Fourier space. This approach has been was ex-
tensively studied and generalized [2, 3, 29, 32, 33] by many authors. A different,
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and more recent, technique due to Busnello, Flandoli and Romito [5] (see also [4]),
uses noisy flow paths and a Girsanov transformation. A related approach in [9]
is the stochastic-Lagrangian formulation, exact stochastic representation of solu-
tions to (1.1)–(1.2) which is essentially the averaging of noisy particle trajecto-
ries and the inviscid dynamics. Stochastic variational approaches (generalizing
Arnold’s [1] deterministic variational formulation for the Euler equations) have
been used by [11,14], and a related approach using stochastic differential geometry
can be found in [17].

One common setback in all the above methods is the inability to deal with
boundary conditions. The main contribution of this paper adapts the stochastic-
Lagrangian formulation in [9] (where the authors only considered periodic boundary
conditions, or decay at infinity), to the situation with boundaries. The usual proba-
bilistic techniques used to transition to domains with boundary involve stopping the
processes at the boundary. This introduces two major problems with the techniques
in [9]. First, stopping introduces spatial discontinuities making the proof used in [9]
fail, and a different approach is required. Secondly, and more interestingly, is the
fact that merely stopping does not give the no-slip (0-Dirichlet) boundary condition
as one would expect. One needs to also create trajectories at the boundary, which
essentially propagate the influence of the vorticity at the boundary to the interior
fluid velocity.

1.1. The stochastic-Lagrangian formulation without boundaries. We begin
by providing a brief description of the stochastic-Lagrangian formulation in the
absence of boundaries. For motivation, let us first study a Lagrangian description
of the Euler equations (equations (1.1)–(1.2), with ν = 0; we will usually use a
superscript of 0 to denote quantities relating to the Euler equations). Let d = 2, 3
denote the spatial dimension, and X0

t be the flow defined by

(1.3) Ẋ0
t = u0

t (X
0
t ),

with initial data X0
0 (a) = a, for all a ∈ Rd. We clarify that we always use a subscript

of t to denote the restriction of a function at time t; we use a dot, or ∂t to denote the
derivative in time. One can immediately check (see for instance [6]) that u satisfies

the incompressible Euler equations if and only if Ẍ0 is a gradient composed with
X. By Newton’s second law, this admits the physical interpretation that the Euler
equations are equivalent to assuming that the force on individual particles is a
gradient.

One would naturally expect that solutions to the Navier-Stokes equations can
be obtained similarly, by adding noise to particle trajectories, and averaging. How-
ever for noisy trajectories, an assumption on Ẍ0 will be problematic. In the in-
compressible case, we can circumvent this difficultly using the Weber formula [34]
(equation (1.4) below). Indeed, a direct computation (see for instance [6]) shows

that for divergence free u, the assumption that Ẍ0 is a gradient is equivalent to

(1.4) u0
t = P

[
(∇∗A0

t ) (u0
0 ◦A0

t )
]
,

where P denotes the Leray-Hodge projection [8,13,26] onto divergence free vector
fields, the notation ∇∗ denotes the transpose of the Jacobian, and for any t > 0,
A0
t = (X0

t )−1 is the spatial inverse of the map X0
t (i.e. A0

t (X
0
t (a)) = a for all a ∈ Rd

and X0
t (A0

t (x)) = x for all x ∈ Rd).
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The above shows that the Euler equations are formally equivalent to equa-
tions (1.3) and (1.4). Notice that this formulation no longer involves second (time)
derivatives of the flow X0, and thus does not present any difficulties when we add
noise to particle trajectories. Indeed, the authors exploit this fact in [9] and show
that adding noise to (1.3), and averaging out the noise in (1.4) gives an equivalent
formulation of the Navier-Stokes equations.

Theorem 1.1 (Constantin, Iyer [9]). Let d ∈ {2, 3} be the spatial dimension, ν > 0
represent the kinematic viscosity, and u0 be a divergence free, periodic, Hölder 2+α
function, and W be a d-dimensional Wiener process. Consider the system

dXt = ut(Xt) dt+
√

2ν dWt,(1.5)

X0(a) = a, ∀a ∈ Rd(1.6)

ut = EP [(∇∗At) (u0 ◦At)] ,(1.7)

where as before, for any t > 0, At = X−1
t denotes the spatial inverse1 of Xt.

Then u is a classical solution of the Navier-Stokes equations (1.1)–(1.2) with initial
data u0 and periodic boundary conditions if and only if u is a fixed point of the
system (1.5)–(1.7).

We now explain briefly the idea behind the proof of Theorem 1.1 given in [9], and
explain why this methods can not be used in the presence of spatial boundaries.
Consider first the solution of the SDE (1.5) with initial data (1.6). We know that
any (spatially regular) process θ that is constant along trajectories of X satisfies
the SPDE

(1.8) dθt + (ut · ∇)θt dt− ν4θt dt+
√

2ν∇θt dWt.

Since the process A (which as before is defined to be the spatial inverse of X) is
constant along trajectories of X, the process θ is defined by

(1.9) θt = θ0 ◦At
is constant along trajectories of X. Thus if θ0 is regular enough (C2), then θ
satisfies SPDE (1.8). If u is deterministic, taking expected values gives a “method
of random characteristics” [9, 18, 22, 30], an elegant generalization2 of the method
of characteristics for parabolic equations. Namely θ̄t = Eθ0 ◦At satisfies

(1.10) ∂tθ̄t + (ut · ∇)θ̄t − ν4θ̄t = 0

with initial condition θ̄|t=0 = θ0.
Once explicit equations for A, and u0◦A have been established, a direct computa-

tion using Itô’s formula shows that u given by (1.7) satisfies the Navier-Stokes equa-
tions (1.1)–(1.2). This was the proof used in [9]. We remark that this point of view
also yields a natural understanding of generalized relative entropies [7, 10, 27, 28].
Eyink’s recent work [15] adapted this framework to magnetohydrodynamics and
related equations by using the analogous Weber formula [23, 31]. We also mention
that Zhang [35] considered a backward analogue, and provided short elegant proofs
to classical existence results to (1.1)–(1.2).

1It is well known (see for instance Kunita [24]) that the solution to (1.5)–(1.6) gives a stochastic
flow of diffeomorphisms, and, in particular guarantee the existence of the spatial inverse of X.

2Note that when ν = 0, A is deterministic, so θ̄ = θ. Further, equation (1.8) reduces to the
transport equation, for which the procedure described above is exactly the usual (deterministic)
method of characteristics.
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2. The formulation for domains with boundary.

In this section we describe how (1.5)–(1.7) can be reformulated in the presence
of boundaries. We begin by describing the difficulty in using the techniques from [9]
described in Section 1.1.

Let D ⊂ Rd be a domain with Lipschitz boundary. Even if we insist u = 0 on
the boundary of D, we note that the noise in (1.5) is independent of space, and
thus insensitive to the presence of the boundary. Consequently, some trajectories
of the stochastic flow X will leave the domain D, and for any t > 0, the map Xt

will (surely) not be spatially invertible. This renders (1.9) meaningless.

Figure 1. Three sample realizations of A without boundaries
(left), and with boundaries (right).

In the absence of spatial boundaries, equation (1.9) dictates that θ̄(x, t) is deter-
mined by averaging the initial temperature of all trajectories of X which reach x at
time t. In the presence of boundaries, one must additionally average the boundary
value of all trajectories reaching (x, t), starting on ∂D at any intermediate time
(Figure 1). As we will see later, this means the analogue of (1.9) in the presence
of spatial boundaries is a spatially discontinuous process. This renders (1.8) mean-
ingless, giving a second obstruction to using the methods of [9] in the presence of
boundaries.

While the method of random characteristics has the above inherent difficulties in
the presence of spatial boundaries, the well known Feynman-Kac [16, 19] formula,
at least for linear equations, has been successfully used in this situation. A certain
version of the Feynman-Kac formula, when stated with without making the usual
time reversal substitution, is essentially the same as the method of random charac-
teristics. It is this version that will yield the natural generalization of (1.5)–(1.7)
in domains with boundary. Before turning to the Navier-Stokes equations, we pro-
vide a brief discussion on the relation between the Feynman-Kac formula and the
method of random characteristics.

2.1. Feynman-Kac and the method of random characteristics. Both the
Feynman-Kac formula, and the method of random characteristics have their own
advantages and disadvantages: The method of random characteristics only involves
forward SDE’s and obtains the solution of (1.10) at time t with only the knowledge
of the initial data and “X at time t” (or more precisely, the solution, at time t,
of the equation (1.5), with initial data specified at time 0). However, this method
involves computing the spatial inverse of X, which analytically, and numerically,
involves an additional step.
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On the other hand, to compute the solution of (1.10) at time t via the Feynman-
Kac formula when u is time dependent, involves backward SDE’s, and further re-
quires the knowledge of the solution to (1.5) with initial conditions specified at
all times s 6 t. However, this does not require computation of spatial inverses,
and, more importantly, yields the correct formulation in the presence of spatial
boundaries.

Now to see the relation between the method of random characteristics and the
Feynman-Kac formula, we rewrite (1.5) in integral form, and keep track of solutions
starting at all times s > 0. For any s > 0, we define the process {Xs,t}t>s to be
the flow defined by

(2.1) Xs,t(x) = x+

∫ t

s

ur ◦Xs,r(x) dr +
√

2ν (Wt −Ws)

Now, as always, we let As,t = X−1
s,t . Then formally composing (2.1) with As,t,

and using the semigroup property Xs,t ◦Xr,s = Xr,t gives the self-contained back-
ward equation for As,t

(2.2) As,t(x) = x−
∫ t

s

ur ◦Ar,t(x) dr −
√

2ν (Wt −Ws) .

Now (1.9) can be written as

(2.3) θt = θ0 ◦A0,t,

and using the semigroup property Ar,s ◦As,t = Ar,t we see that

(2.4) θt = θs ◦As,t.

This formal calculation leads to a natural generalization of (1.9) in the presence
of boundaries. As before, let D ⊂ Rd be a domain with Lipschitz boundary, and
assume, for now, that u is a Lipschitz function defined on all of Rd. Let As,t be the
flow defined by (2.2), and for x ∈ D, we define the backward exit time σt(x) by

(2.5) σt(x) = inf
{
s
∣∣ s ∈ [0, t] and ∀r ∈ (s, t], Ar,t(x) ∈ D

}
Let g : ∂D × [0,∞)→ R and θ0 : D → R be two given (regular enough) functions,
and define the process θt by

(2.6) θt(x) =

{
gσt(x) ◦Aσt(x),t(x) if σt(x) > 0

θ0 ◦A0,t(x) if σt(x) = 0.

Note that when σt(x) > 0, equation (2.6) is consistent with (2.4). Thus (2.6) is the
natural generalization of (1.9) in the presence of spatial boundaries, and we expect
θ̄t = Eθt satisfies the PDE (1.10) with initial data θ̄0 = θ0 and boundary conditions
θ = g on ∂D × [0,∞). Indeed, this is essentially the Feynman-Kac formula.

Note that the backward exit time σ is usually discontinuous in the spatial vari-
able. Thus, even with smooth g, θ0, the process θ need not be spatially continuous.
As mentioned earlier, equation (1.8) will now become meaningless, and we will not
be able to obtain a SPDE for θ. However equation (1.10) describing the evolution of
the expected value θ̄ = Eθ and can be directly derived using the backward Markov
property and Itô’s formula (see for instance [16]). We will not provide this proof
here, but will instead provide a proof for the more complicated analogue for the
Navier-Stokes equations. This is described in the next section.
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2.2. Application to the Navier-Stokes equations in domains with bound-
ary. Note first that if g = 0 in (2.6), then the solution to (1.10) with initial data θ0,
and 0-Dirichlet boundary conditions will be given by

(2.7) θ̄t = Eχ{σt=0}θ0 ◦A0,t.
[
i.e. θ̄t(x) = Eχ{σt(x)=0}θ0 ◦A0,t(x)

]
.

Recall the no-slip boundary condition for the Navier-Stokes equations is exactly
a 0-Dirichlet boundary condition on the velocity field. Let u be a solution to the
Navier-Stokes equations in D with initial data u0, and no slip boundary conditions.
Now following (2.7), we would expect that analogous to (1.7), the velocity field u
can be recovered from the flow As,t (equation (2.2)), the backward exit time σt
(equation (2.5)), and the initial data u0 by

(2.8) ut = PEχ{σt=0}(∇
∗A0,t)u0 ◦A0,t

This however is false and a non-local effect is observed. It turns out that what is
missing from (2.8) is exactly the vorticity created at the boundary. What we prove
instead is the following result.

Theorem 2.1. Let u ∈ C1([0, T );C2(D)) ∩ C([0, T ];C1(D̄)) be a solution of the
Navier-Stokes equations (1.1)–(1.2) with initial data u0 and no-slip boundary con-
ditions. Let A be the solution to the backward SDE (2.2) and σ be the backward
exit time defined by (2.5). There exists a function w̃ : ∂D × [0, T ] → R3 such that
for

(2.9) wt(x) =

{
(∇∗A0,t(x))u0 ◦A0,t(x) when σt = 0,

(∇∗Aσt(x),t(x)) w̃σt ◦Aσt,t(x) when σt > 0,

we have

(2.10) ut = PEwt.

Conversely, given a function w̃ : ∂D × [0, T ] → Rd, suppose there exists a
solution to the system (2.2), (2.9), (2.10). If further u ∈ C1([0, T );C2(D)) ∩
C([0, T ];C1(D̄)), then u satisfies the Navier-Stokes equations (1.1) with initial
data u0 and vorticity boundary conditions

(2.11) ∇× u = ∇× Ew on ∂D × [0, T ].

Remark 2.2. We remark that by ∇∗Aσt(x),t(x) in (2.9) we mean [∇∗As,t(x)]s=σt(x).
That is, ∇∗Aσt(x),t(x) refers to the transpose of the Jacobian of A, evaluated at
initial time σt(x), final time t and position x (see [20, 21, 24] for existence). This
is different from the transpose of the Jacobian of the function Aσt(·),t(·), which
doesn’t exist as the function is certainly not differentiable in space.

Remark 2.3 (Regularity assumptions). In order to simply presentation, the regu-
larity assumptions on u are somewhat generous. Our assumptions on u will im-
mediately guarantee that u has a Lipschitz extension to Rd. Now the process A,
defined to be a solution to (2.2) with this Lipschitz extension of u, can be chosen to
be a (backward) stochastic flow of diffeomorphisms [24]. Thus ∇A is well defined,
and further defining σ by (2.5) is valid. Finally, since the statement of Theorem 2.1
only uses values of As,t for s > σt, the choice of the Lipschitz extension of u will
not matter.

A weaker assumption on the regularity of u can be made in terms of the domain of
the backward generator of the process A (see Lemma 4.1 below). While the formal
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calculus remains essentially unchanged, there are a couple of technical points that
require attention. First, when assumptions on smoothness of u up to the boundary
is relaxed (or when ∂D is irregular), a Lipschitz extension of u need not exist. In
this case, we can no longer use (2.5) to define σ. Further, we can not regard the
process A as a stochastic flow of diffeomorphisms, and some care has to be taken
when differentiating it. To avoid unnecessary technicalities, these issues are briefly
mentioned in Section 3. Once these issues are sorted out, the proof of Theorem 2.1
remains unchanged.

Remark 2.4. Note that our statement of the converse above does not explicitly
give any information on the Dirichlet boundary values of u. Of course, the normal
component of u must vanish at the boundary of D, since u is the Leray-Hodge
projection of a function. But an explicit local relation between w̃ and the boundary
values of the tangential component of u cannot be established. We remark, however,
that while the vorticity boundary condition (2.11) is somewhat artificial, it is enough
to to guarantee uniqueness of solutions to the initial value problem for the Navier-
Stokes equations.

Remark 2.5 (Choice of w̃). We explain how w̃ can be chosen to obtain the no-slip
boundary conditions. We will show (Lemma 4.1) that for w defined by (2.9), the

expected value w̄
def
= Ew solves the PDE

(2.12) ∂tw̄t + (ut · ∇)w̄t − ν4w̄t + (∇∗ut)w̄t = 0

with initial data

(2.13) w̄|t=0 = u0.

As before, ∇∗ut in (2.12) denotes the transpose of the Jacobian of ut. Now, if
u = P w̄, then we will have ∇×u = ∇×w̄ in D, and by continuity, on the boundary
of D. Thus, to prove existence of the function w̃, we solve the PDE (2.12) with
initial conditions (2.13) and vorticity boundary conditions

(2.14) ∇× w̄t = ∇× ut on ∂D.

We chose w̃ to be the Dirichlet boundary values of this solution.

To elaborate on Remark 2.5, we trace through the influence of the vorticity on
the boundary on the velocity in the interior. First the vorticity at the boundary
influences w̄ by entering as a boundary condition on the first derivatives for the
PDE (2.12). Now to obtain u, we need to find w̃, the (Dirichlet) boundary values
of (2.12), and use this to weight trajectories that start on the boundary of D. The
process of finding w̃ is essentially passing from Neumann boundary values of a PDE
to the Dirichlet boundary values, which is usually a nonlocal pseudo-differential op-
erator. Thus, while the procedure above is explicit enough, the boundary vorticity
influences the interior velocity in a highly implicit, nonlocal manner.

Remark 2.6 (Uniqueness of w̃.). Our choice of w̃ is not unique. Indeed, if w̄1

and w̄2 are two solutions of (2.12)–(2.14), then we must have w̄1− w̄2 = ∇q, where
q satisfies the equation

(2.15) ∇ (∂tq + (u · ∇)q − ν4q) = 0

with initial data ∇q0 = 0. Since we don’t have boundary conditions on q, we can
certainly have non-trivial solutions to this equation. Thus our choice of w̃ is only
unique up to boundary values of a gradient of a solution to (2.15).
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This now raises numerous interesting questions. A fundamental open question in
fluid dynamics is about boundary layer separation in the inviscid limit. It is known
that in some situations the boundary layer can ‘detach’ and produce vorticity in
the interior [13]. The above probabilistic representation allows a new direction of
approach to this problem. One can now quantify boundary separation in terms of
the chance that the backward exit time σt is strictly positive. Our hope is that
this framework will allow the use of probabilistic techniques, especially those with
no deterministic analogues (e.g. large deviations), to provide new insight into the
study of the inviscid limit.

3. Backward Itô integrals

While the formulation of Theorem 2.1 involves only regular (forward) Itô in-
tegrals, the proof requires backward Itô integrals and processes adapted to a two
parameter filtration. The need for backward Itô integrals stems from equation (2.2),
which, as mentioned earlier, is the evolution of A backward in time. This is how-
ever obscured because our diffusion coefficient is constant making the martingale
term exactly the increment of the Wiener process, and can be explicitly computed
without any backward (or even forward) Itô integrals.

To elucidate matters, consider the flow X ′ given by

(3.1) X ′s,t(a) = a+

∫ t

s

ur ◦X ′s,r(a) dr +

∫ t

s

σr ◦X ′s,r(a) dWr.

If, as usual, A′s,t = (X ′s,t)
−1, then substituting formally3 a = A′s,t(x) and assuming

the semigroup property gives the equation

(3.2) A′s,t(x) = x−
∫ t

s

ur ◦A′r,t(x) dr −
∫ t

s

σr ◦A′r,t(x) dWr.

for the process A′s,t. The need for backward Itô integrals is now evident; the
last term above does not make sense as a forward Itô integral since A′r,t is not
Fr measurable. This term however is well defined as a backward Itô integral; an
integral with respect to a decreasing filtration where processes are sampled at the
right end point. Since forward Itô integrals are more predominant in the literature,
we recollect a few standard facts about backward Itô integrals in this section. A
more detailed account, with proofs, can be found in [16,24] for instance.

Let (Ω,F , P ) be a probability space, {Wt}t>0 be a d-dimensional Wiener process
on Ω, and let Fs,t be the σ-algebra generated by the increments Wt′ −Ws′ for all
s 6 s′ 6 t′ 6 t, augmented so that the filtration {Fs,t}06s6t satisfies the usual
conditions.4 Note that for s 6 s′ 6 t′ 6 t, we have Fs′,t′ ⊂ Fs,t. Also Wt −Ws is
Fs,t-measurable, and is independent of both the past F0,s, and the future Ft,∞.

We define a (two parameter) family of random variables {ξs,t}06s6t to be a (two
parameter) process adapted to the (two parameter) filtration {Fs,t}06s6t, if for all
0 6 s 6 t, the random variable ξs,t is Fs,t-measurable. For example, ξs,t = Wt−Ws

is an adapted process. More generally, if b and σ are regular enough deterministic

3The formal substitution does not give the correct answer when σ is not spatially constant.
This is explained subsequently, and the correct equation is (3.3) below.

4By ‘usual conditions’ in this context, we mean that for all s > 0, Fs,s contains all F0,∞-null
sets. Further, Fs,t is right continuous in t, and left continuous in s. See [19, Definition 2.25] for

instance.
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functions, then the solution {X ′s,t}06s6t of the (forward) SDE (3.1) is an adapted
process.

Given an adapted (two parameter) process ξ and any t > 0, we define the

backward Itô integral
∫ t
· ξr,t dWr by∫ t

s

ξr,t dWr = lim
‖P‖→0

∑
i

ξti+1,t(Wti+1 −Wti)

where P = (r = t0 < t1 · · · < tN = t), is a partition of [r, t] and ‖P‖ is the length
of the largest subinterval of P . The limit is taken in the L2 sense, exactly as with
forward Itô integrals.

The standard properties (existence, Itô isometry, martingale properties) of the
backward Itô integral are of course identical to those of the forward integral. The
only difference is in the sign of the Itô correction. Explicitly, consider the process
{A′s,t}06s6t satisfying the backward Itô differential equation (3.2). If {fs,t}06s6t
is adapted, C2 in space, and continuously differentiable with respect to s, then the
process Bs,t = fs,t ◦As,t satisfies the backward Itô differential equation

Bt,t −Bs,t =

∫ t

s

[
∂rfr,t + (ur · ∇)fr,t −

1

2
aijr ∂ijfr,t

]
◦Ar,t dr+

+

∫ t

s

[∇fr,t σr] ◦Ar,t dWr.

where aijr = σikr σ
jk
r with the Einstein sum convention.

Though we only consider solutions to (3.1) for constant diffusion coefficient,
we briefly address one issue when σ is not constant. Our motivation for the equa-
tion (3.2) was to make the substitution x = A′s,t(x), and formally use the semigroup
property. This, however, does not yield the correct equation when σ is not con-
stant, and the equation for A′s,t = (X ′s,t)

−1 involves an additional correction term.
To see this, we discretize the forward integral in (3.1) (in time), and substitute
a = A′s,t(x). This yields a sum sampled at the left end point of each time step.
While this causes no difficulty for the bounded variation terms, the martingale term
is a discrete approximation to a backward integral, and hence must be sampled at
the right endpoint of each time step. Converting this to sum sampled at the right
endpoint via a Taylor expansion of σ is what gives this extra correction. Carrying
through this computation (see for instance [24, §4.2]) yields the equation

(3.3) A′s,t(x) = x−
∫ t

s

ur ◦A′r,t(x) dr −
∫ t

s

σr ◦A′r,t(x) dWr +

+

∫ t

s

(
∂jσ

i,k
r ◦A′r,t(x)

) (
σj,kr ◦A′r,t(x)

)
ei dr

where {ei}16i6d are the elementary basis vectors, and σi,j denotes the i, jth entry
in the d× d matrix σ.

We recall that the proof of the (forward) Itô formula involves approximating f
by it’s Taylor polynomial about the left endpoint of the partition intervals. Anal-
ogously the backward Itô formula involves approximating f by Taylor polynomial
about the right endpoint of partition intervals, which accounts for the reversed sign
in the Itô correction.
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Finally we remark that for any fixed t > 0, the solution {As,t}06s6t of the
backward SDE (2.2) is a backward strong Markov process (the same is true for
solutions to (3.3)). The backward Markov property states that r < s < t then

EFs,tf ◦Ar,t(x) = EAs,t(x)f ◦Ar,t(x) = [Ef ◦Ar,s(y)] y=As,t(x)

where EFs,t denotes the conditional expectation with respect to the σ-algebra Fs,t,
and EAs,t(x) the conditional expectation with respect to the σ-algebra generated
by the process As,t(x).

For the strong Markov property, and we define σ to be a backward t-stopping
time5 if almost surely σ 6 t, and for all s 6 t, the event {σ > s} is Fs,t-measurable.
Now if σ is any backward t-stopping time with r 6 σ 6 t almost surely, the
backward strong Markov property states

EFσ,tf ◦Ar,t(x) = EAσ,tf ◦Ar,t(x) = [Ef ◦Ar,s(y)] s=σ,
y=Aσ,t(x)

The proofs of the backward Markov properties is analogous to the proof of the
forward Markov properties, and we refer the reader to [16] for instance.

3.1. A reformulation without Lipschitz extensions. We conclude this sec-
tion by outlining how Theorem 2.1 can be reformulated without using Lipschitz
extensions of u. This is mainly of interest when ∇u blows up near ∂D.

Let D ⊂ Rd be a domain, not necessarily Lipschitz, T > 0, and assume u :
D × [0, T ] → Rd is bounded and locally Lipschitz. Now we can always write D =
∪k∈ND(k), where the D(k)’s are an increasing sequence of locally compact open
sets with Lipschitz boundary. Now the function u restricted to D(k) must have
a Lipschitz extension to Rd, which we denote by u(k). Let A(k) be the solution
to (2.2) with u replaced by u(k). Now we can define σ(k) to be the backward exit
time of A(k) from the domain D(k). That is, we define σ(k) by (2.5), with A replaced
with A(k), and D replaced with D(k). Note that by pathwise uniqueness, we must
have

σ
(k+1)
t (x) < σ

(k)
t (x) and A

(k)

s∨σ(k)
t ,t

(x) = A
(k+1)

s∨σ(k)
t ,t

(x)

for all x ∈ D(k), t 6 T , almost surely. Thus we define

(3.4) σt(x) =

{
lim
k→∞

σ
(k)
t (x) for x ∈ D,

t for x ∈ ∂D.

For x ∈ D and any realization where s > σt(x), the sequence
(
A

(k)

s∨σ(k)
t ,t

(x)
)
k

is

eventually constant. So on the event {s ∈ (σt(x), t]}, we define

(3.5) As,t(x) = lim
k→∞

A
(k)

s∨σ(k)
t (x),t

(x) for s ∈ (σt(x), t].

Now, A must satisfy (2.2) almost surely on the event {s ∈ (σt(x), t]}. Since u
is bounded, equation (2.2) and Lévy’s almost sure, modulus of continuity [19,
§2.9F] for Brownian motion will guarantee that for almost every realization the
function f(r) = Ar,t(x) is uniformly continuous on (σt(x), t]. Thus the limit
lims→σt(x)+ As,t(x) exists almost surely, and we denote it by Aσt(x),t(x).6 Note that
by definition of σ, we must have Aσt(x),t(x) ∈ ∂D. Finally, we remark that the

5Our use of the term backward t-stopping time is analogous to s-stopping time in [16, p24].
6Though unnecessary for our purposes, we point out that this argument can be made to show

that the event where lims→σt(x)+
As,t(x) exists is in fact independent of x.



STOCHASTIC-LAGRANGIAN NAVIER-STOKES IN DOMAINS WITH BOUNDARY 11

above definition of A is independent of the sequence of domains D(k). This, again,
is an immediate consequence of pathwise uniqueness.

Now we can reformulate Theorem 2.1 using σ and A defined by (3.4) and (3.5)
respectively. Provided we have enough control on ∇u to guarantee that the limit
lims→σt(x)+ ∇As,t(x) exists, Theorem 2.1 and it’s proof will remain unchanged in
this context.

4. The no-slip boundary condition.

In this section we prove Theorem 2.1. First, we know from [20, 21], that spatial
derivatives of A can be interpreted as the limit (in probability) of the usual differ-
ence quotient.7 Further, the Jacobian of A is a process which, almost surely, satisfies
the equation

(4.1) ∇As,t(x) = x−
∫ t

s

∇ur|Ar,t(x) ∇Ar,t(x) dr,

obtained by formally differentiating (2.2) in space. We reiterate that equation (4.1)
is an ODE, as the Wiener process is independent of the spatial parameter.

Lemma 4.1. Let D,u, T be as in Theorem 2.1, σ be the minimal existence time
of (2.2), and A be the solution to (2.2) with respect to the backward stopping time σ.

(1) Let w̄ ∈ C1([0, T );C2(D)) ∩ C([0, T ];C1(D̄)) be solution of (2.12) with
initial data (2.13), and boundary conditions

(4.2) w̄ = w̃ on ∂D.

Then, for w defined by (2.9), we have w̄ = Ew.
(2) Let w be defined by (2.9), and w̄ = Ew as above. If for all t ∈ (0, T ],

w̄t ∈ D(A·,t), and w̄ is C1 in time, then w̄ satisfies

(4.3) ∂tw̄ + Ltw̄ + (∇∗u)w̄ = 0

where Lt is defined by

(4.4) Ltφ(x) = lim
s→t−

φ(x)− Eφ
(
As∨σt(x),t(x)

)
t− s

,

and D(A·,t) is the set of all φ for which the limit on the right exists. Further,
w̄ has initial data u0 and boundary conditions (4.2).

Before proceeding any further, we first address the relationship between the
two assertions of the lemma. We claim that if w̄ ∈ C1((0, T );C2(D)), then equa-
tion (4.3) reduces to equation (2.12). This follows immediately from the next
proposition.

Proposition 4.2. If φ ∈ C2(D), then Ltφ = (ut · ∇)φ− ν4φ.

Proof. Omitting the spatial variable for notational convenience, the backward Itô
formula gives

φ− φ ◦As∨σt,t = φ ◦At,t − φ ◦As∨σt,t

=

∫ t

s∨σt

[
(ur · ∇)φ|Ar,t − ν 4φ|Ar,t

]
dr +

√
2ν

∫ t

s∨σt
∇φ|Ar,t dWr

7For regular enough velocity fields u (extended to all of Rd), the process A can in fact be
chosen to be a flow of diffeomorphisms of Rd (see for instance [24]), in which case A is surely

differentiable in space.
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Since s ∨ σt is a backward t-stopping time, the second term above is a martingale.
Thus

Ltφ = lim
s→t−

E
1

t− s

∫ t

s

χ{r>σt}

[
(ur · ∇)φ|Ar,t − ν 4φ|Ar,t

]
dr

= (ut · ∇)φ− ν4φ

since the process A has continuous paths, and σt < t on the interior of D. �

Now we prove each assertion of Lemma 4.1 separately.

Proof of the first assertion in Lemma 4.1. Recall that ∇∗As,t is differentiable in s.
Differentiating (4.1) in s, and transposing the matrices gives

(4.5) ∂s∇As,t(x) = ∇∗As,t(x) ∇∗us|As,t(x) .

Let t ∈ (0, T ], x ∈ D, and σ′ be any backward t-stopping time with σ′ > σt(x)
almost surely. Omitting the spatial variable for convenience, the backward Itô
formula and equations (2.12) and (4.5) give

w̄t −∇∗Aσ′,t w̄σ′ ◦Aσ′,t =

= ∇∗At,t w̄t ◦At,t −∇∗Aσ′,t w̄σ′ ◦Aσ′,t

=

∫ t

σ′
∂r∇∗Ar,t w̄r ◦Ar,t +

+

∫ t

σ′
∇∗Ar,t (∂rw̄r + (ur · ∇)w̄r − ν4w̄r) ◦Ar,t dr +

+
√

2ν

∫ t

σ′
(∇∗Ar,t)(∇∗w̄r) ◦Ar,t dWr

=

∫ t

σ′
∇∗Ar,t

(
(∇∗ur) w̄r + ∂rw̄r + (ur · ∇)w̄r − ν4w̄r

)
◦Ar,t dr +

+
√

2ν

∫ t

σ′
(∇∗Ar,t)(∇∗w̄r) ◦Ar,t dWr

=
√

2ν

∫ t

σ′
(∇∗Ar,t)wr ◦Ar,t dWr.

Thus, taking expected values gives

(4.6) w̄t(x) = E∇∗Aσ′,t(x) w̄σ′ ◦Aσ′,t(x)

Recall that when σt(x) > 0, Aσt(x),t(x) ∈ ∂D. Thus choosing σ′ = σt(x), and using
the boundary conditions (4.2) and initial data (2.13), we have

(4.7) w̄σt(x) ◦Aσt(x),t =

{
w̃σt(x) ◦Aσt(x),t if σt(x) > 0,

u0 ◦Aσt(x),t if σt(x) = 0.

Substutituing this in (4.6) completes the proof. �

Proof of the second assertion in Lemma 4.1. Let w be defined by (2.9), and w̄ =
Ew as in the statement of the second assertion. We will directly deduce (4.6) using
the backward strong Markov property.
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Given x ∈ Rd, and a d× d matrix M , define the process {Bs,t(x,M)}σt(x)6s6t6T

to be the solution of the ODE

Bs,t(x,M) = M −
∫ t

s

∇ur|Ar,t(x) Br,t(x,M) dr.

If I denotes the d× d identity matrix, then by (4.1) we have Bs,t(x, I) = ∇As,t(x)
for any σt(x) 6 s 6 t 6 T . Further since the evolution equation for B is linear, we
see

(4.8) Bs,t(x,M) = Bs,t(x, I)M = ∇As,t(x)M.

Note that for any fixed t ∈ (0, T ], the process {∇As,t}06s6t is not a backward
Markov process. Indeed, the evolution of ∇As,t at any time s 6 t depends on the
time s through the process As,t appearing on the right in (4.1). However, process
(As,t,∇As,t) (or equivalently the process (As,t, Bs,t)) is a backward Markov process,
since the evolution of this system now only depends on the state.

As in the statement of the second assertion, let w̄ = Ew, where w is defined
by (2.9). By our assumption on u and ∂D, the boundary conditions (4.2) and
initial data (2.13) are satisfied. For convenience, when y ∈ ∂D, t > 0, we define
wt(y) = w̃(y), and when t = 0, y ∈ D̄, we define w0(y) = u0(y).

Now, let x ∈ D, t ∈ (0, T ]. Since, the point (Aσt(x),t, t) belongs to the parabolic

boundary ∂p(D× [0, T ])
def
= (∂D× [0, T ])∪ (D×{0}), our boundary conditions and

initial data will guarantee (4.6) is satisfied for σ′ = σt(x).
To prove (4.6) for arbitrary σ′, we choose any backward t-stopping time σ′ with

σ′ > σt(x) almost surely. We claim

(4.9) EFσ′,tB
∗
σt(x),t(x, I) w̄σt(x) ◦Aσt(x),t(x)

=
[
EB∗σr(y),r(y,M) w̄σr(y) ◦Aσr(y),r(y)

]
r=σ′, y=Aσ′,t(x),

M=Bσ′,t(x,I),

holds almost surely. This follows from an appropriate application of the backward
strong Markov property. While this is easily believed, checking that the strong
Markov property applies in this situation requires a little work, and will distract
from the heart of the matter. Thus we postpone the proof of (4.9) momentarily.
Now, using the identity (4.9) gives

w̄t(x) = E∇∗Aσt(x),t(x) w̄σt(x) ◦Aσt(x),t

= EEFσ′,tB
∗
σt(x),t(x, I) w̄σt(x) ◦Aσt(x),t(x)

= E

([
EB∗σr(y),r(y,M) w̄σr(y) ◦Aσr(y),r(y)

]
r=σ′, y=Aσ′,t(x),

M=Bσ′,t(x,I)

)

= E

([
M∗EB∗σr(y),r(y, I) w̄σr(y) ◦Aσr(y),r(y)

]
r=σ′, y=Aσ′,t(x),

M=Bσ′,t(x,I)

)
= E∇∗Aσ′,t(x) w̄σ′ ◦Aσ′,t(x),

proving that (4.6) holds.
Now, choose σ′ = s ∨ σt(x) for s < t. Note that for any x ∈ D, we must have

σt(x) < t almost surely. Thus, omitting the spatial coordinate for convenience, we



14 PETER CONSTANTIN AND GAUTAM IYER

have

0 = lim
s→t−

w̄t − w̄t
t− s

= lim
s→t−

1

t− s

(
w̄t − E∇∗As∨σt,t w̄s∨σt ◦As∨σt,t

)
= lim
s→t−

(
1

t− s
[w̄t − Ew̄t ◦As∨σt,t] +

+
1

t− s
E (w̄t − w̄s∨σt) ◦As∨σt,t +

+
1

t− s
E (I −∇∗As∨σt,t) w̄s∨σt ◦As∨σt,t

)
= Ltw̄t + ∂tw̄t + (∇∗ut)w̄t,

on the interior of D. This finishes the proof. �

It remains to prove the identity (4.9).

Proof of equation (4.9). Define the stopped processes A′s,t(x) = Aσt(x)∨s,t(x), and
B′s,t(x,M) = Bσt(x)∨s,t(x,M). Define the process C by

Cs,t(x,M, τ) = (A′s,t(x), B′s,t(x,M), τ + t− σt(x) ∨ s).

Note that for any given s 6 t, we know that σt(x) need not be Fs,t measurable.
However, σt(x) ∨ s is an Fs,t measurable backward t-stopping time. Thus A′s,t,
B′s,t, and consequently Cs,t, are all Fs,t measurable.

Now we claim that almost surely, for 0 6 r 6 s 6 t 6 T , we have the backward
semigroup identity

(4.10) Cr,s ◦ Cs,t = Cr,t.

To prove this, consider first the third component of the left hand side of (4.10)

(4.11) C(3)
r,s ◦ Cs,t(x,M, τ) = (τ + t− σt(x) ∨ s) + s− σs(A′s,t(x)) ∨ s.

Consider the event {s > σt(x)}. By the semigroup property for A, and strong
existence and uniqueness of solutions to (2.2), we have σs(As,t(x)) = σt(x) almost
surely. Thus, almost surely on {s > σt(x)}, we have

C(3)
r,s ◦ Cs,t(x,M, τ) = (τ + t− s) + s− σt(x) ∨ s

= τ + t− σt(x) ∨ r = C
(3)
r,t (x,M, τ).

Now consider the event {s 6 σt}. We know A′s,t(x) ∈ ∂D, and so σs(A
′
s,t(x)) = s.

This gives

C(3)
r,s ◦ Cs,t(x,M, τ) = (τ + t− σt(x)) + s− s = τ + t− σt(x) ∨ r = C

(3)
r,t (x)

almost surely on {s 6 σt(x)}. Therefore we have proved almost sure equality of
the third components in equation (4.10).

For the first component C
(1)
s,t = A′s,t, consider as before the case s > σt(x). In

this case A′s,t = As,t, and the semigroup property of A gives equality of the first
components in (4.10) almost surely on {s > σt(x)}. When s 6 σt(x), as before,
A′s,t ∈ ∂D, and σs(A

′
s,t(x)) = s. Thus

A′r,s ◦A′s,t(x) = As,s ◦Aσt(x),t(x) = Aσt(x),t(x) = A′r,t(x)
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almost surely on s 6 σt(x). This shows almost sure equality of the first components
in equation (4.10). Almost sure equality of the second components follows similarly,
completing the proof of (4.10).

Now, for 0 6 r 6 s 6 t 6 T , the random variable Cs,t is Fs,t measurable, and so
must be independent of Fr,s. This, along with (4.10), will immediately guarantee
the Markov property for C. Since the filtration F·,· satisfies the usual conditions,
and for any fixed t, the function s 7→ Cs,t is continuous, C satisfies the strong
Markov property (see for instance [16, Theorem 2.4]).

Thus, for any fixed t ∈ [0, T ], and any Borel function ϕ, the strong Markov
property gives

EFσ′,tϕ(C0,t(x, I, 0)) = [Eϕ(Cr,t(y,M, τ)]r=σ′,
(y,M,τ)=C0,σ′ (x,I,0)

= [Eϕ(Cr,t(y,M, τ)]r=σ′, y=Aσ′,t(x),

M=Bσ′,t(x,I), τ=σr(x),

almost surely for any x ∈ Rd, M ∈ Rd2, τ > 0. Choosing ϕ(x,M, τ) = M∗w̄t−τ (x)
proves (4.9). �

Now a direct computation shows that if w̄ satisfies (2.12), then u = P w̄ sat-
isfies (1.1), regardless of our choice of w̃. Of course, we will only get the no-slip
boundary conditions with the correct choice of w̃. We first obtain the PDE for u.

Lemma 4.3. If w̄ satisfies (2.12), and u = P w̄, then u satisfies (1.1)–(1.2).

Proof. By definition of the Leray-Hodge projection, u = w+∇q for some function q,
and equation (1.2) is automatically satisfied. Thus using equation (2.12) we have

(4.12) ∂tut + (ut · ∇)ut − ν4ut + (∇∗ut)ut+
+ ∂t∇qt + (ut · ∇)∇qt + (∇∗ut)∇qt − ν4∇qt = 0.

Defining p by

∇p = ∇
(

1

2
|u|2 + ∂tqt + (ut · ∇)qt − ν4qt

)
equation (4.12) becomes (1.1). �

Now to address the no-slip boundary condition. The curl of w̄ satisfies the
vorticity equation, which is how the vorticity enters our boundary condition.

Lemma 4.4. Let w̄ be a solution of (2.12). Then ξ = ∇× w̄ satisfies the vorticity
equation

(4.13) ∂tξ + (u · ∇)ξ − ν4ξ =

{
0 if d = 2,

(ξ · ∇)u if d = 3.

Proof. We only provide the proof for d = 3. For this proof we will use subscripts
to indicate the component, instead of time as we usually do. If i, j, k ∈ {1, 2, 3}
are all distinct, let εijk denote the signature of the permutation (1, 2, 3) 7→ (i, j, k).
For convenience we let εijk = 0 if i, j, k are not all distinct. Using the Einstein
sumation convention, ξ = ∇× w̄ translates to ξi = εijk∂jw̄k on components. Thus,
taking the curl of (2.12) gives

(4.14) ∂tξi + (u · ∇)ξi − ν4ξi + εijk∂jum∂mw̄k + εijk∂kum∂jw̄m = 0
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because εijk∂j∂kum w̄m = 0. Making the substitutions j 7→ k and k 7→ j in the last
sum above we have

εijk∂jum∂mw̄k + εijk∂kum∂jw̄m = εijk∂jum (∂mw̄k − ∂kw̄m)

= εijk∂jum εnmkξn

= (δinδjm − δimδjn) ∂jumξn

= −∂juiξj
where δij denotes the Kronecker delta function, and the last equality follows because
∂juj = 0. Thus (4.14) reduces to (4.13). �

Theorem 2.1 now follows from the above lemmas.

Proof of Theorem 2.1. First suppose u is a solution of the Navier-Stokes equations,
as in the statement of the Theorem. We choose w̃ as explained in Remark 2.5.
Notice that our assumptions on u and D will guarantee a classical solution to (2.12)–
(2.14) exists on the interval [0, T ], and thus such a choice is possible.

By Lemma 4.1, we see that for w defined by (2.9), the expected value w̄ = Ew
satisfies (2.12) with initial data (2.13), and boundary conditions (4.2). By our
choice of w̃, and uniqueness to the Dirichlet problem (2.12), (2.13) and (4.2), we
must have the vorticity boundary condition (2.14).

Now, let ξ = ∇ × w̄, and ω = ∇ × u. By Lemma 4.4, we see that ξ satisfies
the vorticity equation (4.13). Since u satisfies (1.1)–(1.2), it is well known (see for
instance [13,26], or the proof of Lemma 4.4) that ω also satisfies

(4.15) ∂tωt + (ut · ∇)ωt − ν4ωt =

{
0 if d = 2,

(ωt · ∇)ut if d = 3.

From (2.14) we know ξ = ω on ∂D×[0, T ]. By (2.13), we see that ξ0 = ∇×u0 = ω0,
and hence ξ = ω on the parabolic boundary ∂p(D × [0, T ]).

The above shows that ω and ξ both satisfy the same PDE (equations (4.13)
or (4.15)), with the same initial data, and boundary conditions, and so we must
have ξ = ω on D× [0, T ]. Thus ∇× w̄ = ∇×u in D× [0, T ], showing u and w̄ differ
by a gradient. Since ∇ · u = 0, and u = 0 on ∂D × [0, T ], we must have u = P w̄
proving (2.10).

Conversely, assume we have a solution to the system (2.2), (2.9) and (2.10).
As above, Lemma 4.1 shows w̄ = Ew satisfies (2.12) with initial data (2.13). By
Lemma 4.3, we know u satisfies the equation (1.1)–(1.2) with initial data u0. Finally,
since equation (2.10) shows ∇ × u = ∇ × w̄ in D × [0, T ], and by continuity, we
have the boundary condition (2.11). �

5. Vorticity transport, and ideally conserved quantities.

For the Euler equations, certain conservation laws (e.g. circulation) and ex-
act identities (e.g. vorticity transport) are well known. In the absence of spatial
boundaries, inviscid identities usually remain true in expectation. With bound-
aries, however, we run into regularity issues which, at present, can not always be
resolved.

In this section we illustrate the issues involved by considering three inviscid iden-
tities. The first identity (vorticity transport) generalizes perfectly to the viscous
scenario with boundaries. The second one (Ertel’s Theorem) generalizes perfectly
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to the viscous scenario without boundaries, and has a somewhat unsatisfactory gen-
eralization in the presence of boundaries. The last one (conservation of circulation),
again generalizes perfectly to the viscous scenario without boundaries, but has a
completely unsatisfactory generalization to the situation with boundaries.

5.1. Vorticity transport. Let u0 be a solution to the Euler equations with initial
data u0. Let X0 the inviscid flow map defined by (1.3), and for any t > 0, let A0

t =
(X0

t )−1 be the spatial inverse of the diffeomorphism X0
t . The vorticity transport

(or Cauchy formula) states

(5.1) ω0
t =

{
ω0

0 ◦A0
t if d = 2,[

(∇X0
t )ω0

0

]
◦A0

t if d = 3.

where, we recall that the vorticity ω0 is defined by ω0 = ∇× u0, and where ω0
0 =

∇× u0 is the initial vorticity.
In [9], the authors obtained a natural generalization of (5.1) for the Navier-Stokes

equations, in the absence of spatial boundaries. If u solves (1.1)–(1.2) with initial
data u0, and X is the noisy flow map defied by (1.5)–(1.6), then ω = ∇×u is given
by

(5.2) ωt =

{
Eω0 ◦At if d = 2,

E ((∇Xt)ω0) ◦At if d = 3.

We now provide the generalization of this in the presence of boundaries. Note
that for any t > 0, (∇Xt) ◦ At = (∇At)−1, so we can rewrite (5.2) completely in
terms of the process A. Now, as usual, we replace A = X−1 with the solution
of (2.2), with respect to the minimal existence time σ. We recall that in Theo-
rem 2.1, in addition to “starting trajectories at the boundary”, we had to correct
the expression for the velocity by the boundary values of a related quantity (the
vorticity). For the vorticity, however, we need no additional correction, and the
interior vorticity is completely determined given A, σ and the vorticity on the
parabolic boundary8 ∂p(D × [0, T ]).

Proposition 5.1. Let u be a solution to (1.1)–(1.2) in D, with initial data u0, and
suppose ω = ∇ × u ∈ C1([0, T );C2(D)) ∩ C([0, T ] × D̄). Let ω̃ denote the values
of ω on the parabolic boundary ∂p(D × [0, T ]). Explicitly, ω̃ is defined by

ω̃(x, t) =

{
ω0(x) if x ∈ D and t = 0,

ωt(x) if x ∈ ∂D.

Then,

(5.3) ωt(x) =

{
E
[
ω̃σt(x)

(
Aσt(x),t(x)

)]
if d = 2,

E
[(
∇Aσt(x),t(x)

)−1
ω̃σt(x)

(
Aσt(x),t(x)

)]
if d = 3.

Remark 5.2. More generally, suppose ω̃ is any function defined on the parabolic
boundary of D × [0, T ], and let ω be defined by (5.3). If for all t ∈ (0, T ], ωt ∈
D(A·,t), and ω is C1 in time, then ω satisfies

∂tωt + Ltωt =

{
0 if d = 2,

(ωt · ∇)ut if d = 3,

8Recall, the parabolic boundary ∂p(D × [0, T ]) is defined to be (D × {0}) ∪ (∂D × [0, T ))
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with ω = ω̃ on the parabolic boundary. Here Lt is the generator of A·,t, D(A·,t) is
the domain of Lt. These are defined in the statement of Lemma 4.1.

Of course, Remark (5.2) along with Proposition 4.2 and uniqueness of (strong)
solutions to (4.15) will prove Proposition 5.1. However, direct proofs of both Re-
mark 5.2 and Proposition 5.1 are short and instructive, and we provide independent
proofs of each.

Proof of Proposition 5.1. We only provide the proof when d = 3. As before, differ-
entiating (4.1) in space, and taking the matrix inverse of both sides gives

(5.4) ∂r (∇Ar,t(x))
−1

= − (∇Ar,t(x))
−1 ∇ur|Ar,t(x)

almost surely. Now choose any x ∈ D, t > 0 and any backward t-stopping time σ′ >
σt(x). Omitting the spatial parameter for notational convenience, the backward Itô
formula gives

ωt − (∇Aσ′,t)−1
ωσ′ ◦Aσ′,t =

= (∇At,t)−1
ωt ◦At,t − (∇Aσ′,t)−1

ωσ′ ◦Aσ′,t

=

∫ t

σ′
∂r (∇Ar,t)−1

ωr ◦Ar,t dr +

+

∫ t

σ′
(∇Ar,t)−1

(∂rωr + (ur · ∇)ωr − ν4ωr) ◦Ar,t dr +

+
√

2ν

∫ t

σ′
(∇Ar,t)−1

(∇ωr) ◦Ar,t dWr

=

∫ t

σ′
− (∇Ar,t)−1 ∇ur|Ar,t ωr ◦Ar,t dr +

+

∫ t

σ′
(∇Ar,t)−1

((ωr · ∇)ur) ◦Ar,t dr +

+
√

2ν

∫ t

σ′
(∇Ar,t)−1

(∇ωr) ◦Ar,t dWr

=
√

2ν

∫ t

σ′
(∇Ar,t)−1

(∇ωr) ◦Ar,t dWr

Thus taking expected values gives

(5.5) ωt = E
[
(∇Aσ′,t)−1ωσ′ ◦Aσ′,t

]
Choosing σ′ = σt(x), using the fact that Aσt(x),t(x) always belongs to the parabolic
boundary finishes the proof. �

Proof of Remark 5.2. Again, we only consider the case d = 3. We will prove (5.5)
directly, and then deduce (4.15). Let the process B be as in the proof of the second
assertion of Lemma 4.1, and use B−1 to denote the process consisting of matrix
inverses of the process B. Pick x ∈ D, t ∈ (0, T ] and a backward t-stopping time
σ′ > σt(x). Using (4.9) we have

ωt(x) = E
[(
∇Aσt(x),t(x)

)−1
ω̃σt(x)

(
Aσt(x),t(x)

)]
= EEFσ′,t

[
B−1
σt(x),t(x, I) ω̃σt(x) ◦Aσt(x),t(x)

]
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= E

[EB−1
σr(y),r(y,M) ω̃σr(y) ◦Aσr(y),r(y)

]
r=σ′,y=Aσ′,t(x),

M=Bσ′,t(x,I)


= E

[M−1EB−1
σr(y),r(y, I) ω̃σr(y) ◦Aσr(y),r(y)

]
r=σ′,y=Aσ′,t(x),

M=Bσ′,t(x,I)


= E

[
(∇Aσ′,t(x))

−1
ωσ′ ◦Aσ′,t(x)

]
.

proving (5.5).
As before, choose s 6 t and σ′ = σt(x) ∨ s. Omitting the spatial parameter for

notational convenience gives

0 = lim
s→t−

ωt − ωt
t− s

= lim
s→t−

1

t− s

[
ωt − E (∇Aσt∨s,t)

−1
ωσt∨s ◦Aσt∨s,t

]
= lim
s→t−

(
1

t− s
[ωt − Eωt ◦Aσt∨s,t] +

+
1

t− s
E [ωt − ωσt∨s] ◦Aσt∨s,t +

+
1

t− s
E
[
I − (∇Aσt∨s,t)

−1
]
ωσt∨s ◦Aσt∨s,t

)
= Ltωt + ∂tωt − (∇ut)ωt �

We remark that the vorticity transport in Proposition 5.1, or Remark 5.2 can be
used to provide a stochastic representation of the Navier-Stokes equations. Indeed,
since u is divergence free, taking the curl twice gives the negative laplacian. Thus,
provided boundary conditions on u are specified, we can obtain u from ω by

(5.6) ut = (−4)−1∇× ωt.

Therefore, in Theorem 2.1, we can replace (2.10) by (5.3) and (5.6), where ω̃ is the
vorticity on the parabolic boundary, and we impose 0-Dirichlet boundary conditions
on (5.6).

5.2. Ertel’s Theorem. As above, we use a superscript of 0 to denote the appro-
priate quantities related to the Euler equations. For this section we also assume
d = 3. Ertel’s theorem says that if θ0 is constant along trajectories of X0, then so
is (ω0 · ∇)θ0. Hence φ0 = (ω0 · ∇)θ0 satisfies the PDE

∂tφ
0 + (u · ∇)φ0 = 0.

For the Navier-Stokes equations, we first consider the situation without bound-
aries. Let u solve (1.1)–(1.2), X be defined by (1.5), A be the spatial inverse of X,
and define ξ by

ξt(x) = (∇At(x))−1ω0 ◦At(x).

where ω0 = ∇×u0 is the initial vorticity. From (5.2), we know that ω = ∇×u = Eξ.
Now we can generalize Ertel’s theorem as follows.

Proposition 5.3. Let θ be a C1(Rd) valued process. If θ is constant along trajec-
tories of the (stochastic) flow X, then so is (ξ · ∇)θ. Hence φ = E(ξ · ∇)θ satisfies
the PDE

(5.7) ∂tφt + (ut · ∇)φt − ν4φt = 0,
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with initial data (ω0 · ∇)θ0.

Proof. If θ is constant along trajectories of X, we must have θt = θ0 ◦ At almost
surely. Thus,

(ξt · ∇)θt = (∇θt)ξt = ∇θ0|At (∇At)(∇At)−1ω0 ◦At = (ξ0 · ∇θ0) ◦At,
which is certainly constant along trajectories of X. The PDE for φ now follows
immediately. �

Now in the presence of boundaries this further modification. Let A be a solution
to (2.2) with minimal existence time σ. The notion of “constant along trajectories”
now corresponds to processes θ defined by

(5.8) θt(x) = θ̃σt(x)(Aσt(x),t),

for some function θ̃ defined on the parabolic boundary of D.
Unfortunately, irrespective of the regularity of D and θ̃, the process θ will not be

continuous in space, let alone differentiable. The problem arises because while A is
regular enough in the spatial variable, the existence time σt is not. To work around
this, we avoid derivatives on σ in the statement of the theorem.

Proposition 5.4. Let θ̃ be a C1 function defined on the parabolic boundary of
D × [0, T ], and let θ̃′ be any C1 extension of θ̃, defined in a neighborhood of the
parabolic boundary of D × [0, T ]. If θ is defined by (5.8), then

φt(x) = E
[
(ξt · ∇)(θ̃′s ◦As,t)(x)

]
s=σt(x)

satisfies the PDE (5.7) with initial data (ω0 ·∇)θ̃0, and boundary conditions φt(x) =

(ωt · ∇)θ̃′(x) for x ∈ ∂D.

Note that when D = Rd, then σt ≡ 0, and hence φt = E(ξt · ∇)θt. In this case
Proposition 5.4 reduces to Proposition 5.3. The proof of Proposition 5.3 is identical
to that of Proposition 5.3, and the same argument obtains[

(ξt · ∇)(θ̃′s ◦As,t)(x)
]
s=σt(x)

=
[
(ξs · ∇)θ̃′s(y)

]
s=σt(x),
y=Aσt(x),t(x),

which immediately implies (5.7).
In the scenario with boundaries, it would be interesting to know if one can make

sense of E(ξt · ∇)θt, and reformulate Proposition 5.4 accordingly, even though θ is
not differentiable with respect to space. At present, we are unable to do this.

5.3. Circulation. The circulation is the line integral of the velocity field along a
closed curve. For the Euler equations, the circulation along a closed curve that is
transported by the flow is constant in time. Explicitly, let u0, X0, A0, u0 be as in
the previous subsection. Let Γ be a rectifiable closed curve, then for any t > 0,

(5.9)

∮
X0
t (Γ)

u0
t · dl =

∮
Γ

u0
0 · dl.

For the Navier-Stokes equations, without boundaries, a generalization of (5.9) was
considered in [9]. Let u solve (1.1)–(1.2), X be defined by (1.5)–(1.6), and A be
the spatial inverse of X. Then

(5.10)

∮
Γ

ut · dl = E

∮
At(Γ)

u0 · dl.
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A proof of this (in the absence of boundaries) follows immediately from Theo-
rem 1.1. Indeed,

(5.11) E

∮
At(Γ)

u0 · dl = E

∮
Γ

(∇∗At) u0 ◦At · dl =

= E

∮
Γ

P [(∇∗At) u0 ◦At] · dl =

∮
Γ

ut · dl,

where the first equality follows by definition of line integrals, the second because the
line integral of gradients along closed curves is 0, and the last by Fubini and (1.7).

In the presence of boundaries, there are certain obstructions to making this work.
Let A, σ, w̃ be as in the statement of Theorem 2.1. We extend w̃ to the parabolic
boundary ∂p(D × [0, T ]) by defining w̃(x, 0) = u0(x) for x ∈ D. Now we would
expect the natural generalization of (5.10) to be

(5.12)

∮
Γ

ut · dl = E

∮
Aσt,t(Γ)

w̃0 · dl.

We remark again, that though u = 0 on ∂D, we must have a non-zero contribution
from trajectories starting on the side of the cylinder D×[0, T ]. However, the integral
on the right is not well defined, as the curve Aσt,t(Γ) is not necessarily rectifiable!

Now, as with Ertel’s theorem, we can try and avoid irregularities from σ when
we transport Γ. Indeed, almost tautologically we have

(5.13)

∮
Γ

ut · dl = E

∮
Γ

[
∇∗Aσt(x),t(x)wt ◦Aσt(x),t(x)

]
· dl(x).

Further, if σt ≡ 0, the right hand side of equation (5.13) is exactly the right hand
side of (5.10).

However (5.13) is essentially a tautological rephrasing of (1.7), and does not
capture the essence of (5.10). It would be interesting indeed if one can give meaning
to the right hand side of (5.12), and then prove (5.12). At present, we are unable
to carry out this construction.
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tions, Stochastic analysis and related topics (Oslo, 1992), Stochastics Monogr., vol. 8, Gordon

and Breach, Montreux, 1993, pp. 1–44. MR1268004 (95e:60057)
[21] N. V. Krylov, Quasiderivatives and interior smoothness of harmonic functions associated

with degenerate diffusion processes, Electron. J. Probab. 9 (2004), no. 21, 615–633 (elec-

tronic). MR2082053 (2005j:60148)
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