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Abstract. Euler equations of incompressible fluids use and en-
rich many branches of mathematics, from integrable systems to
geometric analysis. They present important open physical and
mathematical problems. Examples include the stable statistical
behavior of ill-posed free surface problems such as the Rayleigh-
Taylor and Kelvin-Helmholtz instabilities. The paper describes
some of the open problems related to the incompressible Euler
equations, with emphasis on the blowup problem, the inviscid limit
and anomalous dissipation. Some of the recent results on the quasi-
geostrophic model are also mentioned.

1. Introduction

Euler’s equations for incompressible fluids, like number theory, are
the wellspring of many mathematical streams. Linear partial differen-
tial equations (PDEs, henceforth), spectral theory, dynamical systems,
nonlinear PDEs, geometric PDEs, harmonic analysis, completely in-
tegrable systems, find in the Euler equations source, challenge and
inspiration.

Euler had been involved in acoustics, hydrostatics and hydraulics
research for many years by the time he wrote his treatises on fluids
([77]). After the efforts of the Bernoullis and D’Alembert, Euler’s work
represented a crowning manifestation of the eighteenth century’s con-
fidence in the mathematical foundations of the laws of nature. The
equations are concise and capture in an idealized fashion the essence
of fluid behavior.

No full account of the mathematical activity surrounding the Euler
equations since their inception to this day can be attempted in few
pages. A complete description of their impact outside mathematics,
from weather prediction to exploding supernovae, would fill volumes.
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There are books ([6], [28], [33], [105], [107]) and expository articles
([10], [42], [80]) on the subject, too numerous to be listed all here. My
own biases notwithstanding, I would like to be able to give a glimpse
of some of the current activities surrounding the Euler equations and
of the major directions needing further progress.

I start by casting a very wide net and describing concisely some of
the areas of current research. The Euler equations cannot be sepa-
rated from the surrounding scientific topics. Exposure to the broader
physical context provides the mathematical researcher with both vision
and power. Vision, because it directs research towards fertile ground,
and power because it gives the opportunity of invention of new tech-
nical tools. Therefore, in the next few pages I will present the Euler
equations in connection with physical problems surrounding them.

Waves and jets and drops come to mind when thinking of fluids.
These objects turn out to be mathematically the most challenging,
because they involve one or two different fluids separated by an un-
known (“free”) surface. In the PDE community these problems go
by the name of “free boundary problems”. Examples include water
waves, Hele-Shaw cells (oil/water interfaces in nearly two-dimensional
settings), drop formation, thin films, flame fronts and more. The sub-
ject of hydrodynamic free boundary problems is vast: it includes sys-
tems that are completely integrable, nonlinear dispersive equations and
stochastic models of front propagation. Imagine for instance that a very
idealized description of the surface of a body of water is given by one
function, h, the height of the water. No matter how simple, this func-
tion will have to depend at least on two variables, a position variable x
and a time variable t. The evolution in time of the function h will be
dictated by the Euler equations for the fluids coupled with boundary
conditions for the interface. It is sometimes possible to reduce all this
to an equation for h, expressed in terms of h alone. Insisting upon
such economy of the unknown comes at a price, and this equation is
complicated: it is nonlinear and integro-differential (it involves simul-
taneously derivatives and integrals of h). Simplifications (neglecting
some terms, approximating some others) lead to famous equations of
water waves, such as the Korteweg de Vries equation. Murky modeling
yields a pure mathematical treasure: completely integrable PDEs. In-
tegrable PDEs are a source of significant mathematical developments
that are not limited to fluid mechanics, nor to PDE theory ([131]), but
are outside the scope of this presentation.

Integrability in PDEs requires the ability to produce solution formu-
las depending on infinitely many parameters, providing the “general”
solution. The well-posedness of a PDE requires the ability to solve the
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equation and prove the continuity of the solution with respect to initial
conditions in an appropriate functional setting. It might seem that in-
tegrability would imply well-posedness, but it does not in general, and
important examples of integrable free surface equations (Hele-Shaw)
are ill-posed. Integrability of two dimensional Euler equations with
free surface is a current subject of research ([132]). The modern well-
posedness theory for free surfaces uses harmonic analysis and geometric
PDEs ([3], [4], [35], [63], [65], [66], [102], [126], [127]), and is a subject
in full swing.

Problems of hydrodynamic stability ([9], [83], [124], [129]) are of
classical importance. The classical work concerns the study of the evo-
lution of small perturbations of special, time independent solutions,
usually by linearization. The linear equations obtained produce exam-
ples of non-normal operators. The more modern theory studies the
growth in time of the distance between solutions of the nonlinear equa-
tions, i.e. nonlinear instability. Instability of the solution is different
from ill-posedness; actually it does not make much sense to speak of
nonlinear instability of a solution, without having a well-posed evolu-
tion. Ill-posedness usually means that the small scale features of the
perturbation grow faster than the large scale features, and there is no
cutoff in the time scales as we go to finer and finer spatial scales. This
catastrophic growth prevents the continuity of the solution map in all
spaces but spaces of analytic functions. Unfortunately, the distinction
between well-posed instability and ill-posed catastrophic growth is not
made in the classical physics literature, and the meanings of “instabil-
ity” are multiple, including ill-posedness (in the Rayleigh-Taylor and
Kelvin-Helmholtz instabilities).

Solutions of Euler equations might seem more unstable than they
really are, or to be more precise, the notion of stability appropriate for
them is a more generous one, that of orbital stability. An example of
this nuance is the case of Kirchhoff ellipses, which are special solutions
of two dimensional Euler equations. These are ellipses that rotate at
constant angular velocity, proportional to the area of the ellipse. If
two ellipses have close but unequal areas they will become, at some
point in time, very different from each other. This should not imply
automatically that the evolution is unstable, it just means that one
should “mod-out” by the constant rotation and stay on the “leaf” de-
fined by a fixed value of the area (which happens to be an invariant of
the equation).

In the context of free surface flows, the main puzzle is a sort of
“stability of instability”: characteristic, predictable features arise in
the physical realization of ill-posed classical instabilities such as the
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Rayleigh-Taylor and Kelvin-Helmholtz instabilities. For instance, char-
acteristic plumes appear and grow in the Rayleigh-Taylor instability
(heavy fluid on top of light fluid) and generate a mixing layer that grows
at a predictable rate. Also, the eye easily discerns the typical roll-up
that occurs in wind driven interfaces in the Kelvin-Helmholtz instabil-
ity in clouds and waves (Think of the famous Hokusai wave.) Modern
research established recently the elliptic nature of these ill-posed prob-
lems ([90], [97]): if solutions have a certain minimal regularity, then
they are actually analytic. The “stability of instability” has yet to find
a good mathematical explanation. Scaling ([11]) is the key aspect in
this problem. Perhaps generalized relative entropies ([49], [110]) might
be relevant for this.

Mixing and transport are subjects of great practical significance, as
they relate to the diffusion of passive and active tracers, for instance
pollutants in the atmosphere, or plankton in the oceans. The mathe-
matical issue is to understand the relationship between the underlying
particle trajectory dynamics and macroscopic mixing properties of the
flow. Classical methods of dynamical systems are relevant for the long
time effects ([118]). Strong rapid effects are studied using PDE meth-
ods ([17], [50], [55]).

When mixing and transport are studied for small scale particles it is
necessary to consider the dissipation of kinetic energy due to internal
molecular processes. The Newtonian stress balance gives rise to the
Navier-Stokes equations in which the dissipation of kinetic energy is
represented macroscopically by the addition to the Euler equation of
a Laplacian term multiplied by a positive coefficient, the kinematic
viscosity. Complex fluids are fluids in which microscopic particles are
suspended, altering the Newtonian stress balance, and conferring new
physical properties to the fluid.

The applications of complex fluids range from biology to materials
science. PDE models include non-Newtonian viscoelastic models like
the Oldroyd-B equations, tensor models, and kinetic models, in which
Navier-Stokes equations are coupled to linear or nonlinear Fokker-
Planck equations. The well-posedness theory is difficult even in two
space dimensions and consequently the mathematical theory of com-
plex fluids is in its developing stages ([43], [48], [52], [76], [89], [98],
[100], [101], [103], [115]). Some of the models of complex fluids involve
stochastic PDEs, or hybrid systems, in which PDEs are coupled to sto-
chastic differential equations. These are nonlinear systems with many
degrees of freedom subjected to thermal noise. The mathematical the-
ory here is also developing. The numerical analysis of these models
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leads naturally to questions of dimension reduction and effective algo-
rithms that are very much in the forefront of current applied mathe-
matical research. Stochastic models also have applications to modeling
based on information theoretical ideas in geophysics and atmospheric
science ([106]).

In this paper I will concentrate on a few specific problems related to
the incompressible Euler equations,

(1) ∂tu + u · ∇u +∇p = 0,

with

(2) ∇ · u = 0.

A few words about notation: u = (uj) is the velocity vector with n com-
ponents; u · ∇ =

∑n
j=1 uj∂j is a first order differential operator with

coefficients uj. The velocity components are functions uj = uj(x, t)
where x ∈ Rn and t ∈ R. The notations ∂t = ∂

∂t
, ∂j = ∂

∂xj
represent

partial derivatives. The equation (2) is the condition of incompress-
ibility: the divergence ∇ · u =

∑n
j=1 ∂juj vanishes. The scalar function

p = p(x, t) whose gradient ∇p appears in (1) is called the pressure. The
pressure is determined up to the addition of a term that is constant in
space, but not necessarily in time. The equations are nonlinear, which
is to say, they look nonlinear to the naked eye, with quadratic nonlin-
earity. (Some completely integrable equations look the same, and even
more, are derived from them.) The Euler equations are also nonlocal.
That means that one cannot compute the time derivative of the solu-
tion u at (x, t) only from knowledge of the function u in a neighborhood
of x at time t. Taking the divergence of (1) we see that

(3) −∆p = ∇ · (u · ∇u) .

This is the reason for the nonlocality: the Laplacian ∆p is determined
by local information about u, and ∇p is not.

The equations are covariant under Galilean transformations: if the
coordinates move at constant speed y = x+vt, then the velocity in the
y reference frame is u(x, t)+v. If the coordinates are rotated by a fixed
angle, then the velocities are rotated by the same angle. The equation
(1) is the Eulerian description of the flow. The equations are in a sense
hyperbolic: information is carried by the flow, to some extent. This
is seen in the Lagrangian description (due also to Euler). We consider
time dependent maps X : Rn → Rn

a 7→ X(a, t), X(a, 0) = a.
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These maps represent marked fluid particle trajectories; a is the label
of the particle. It is customary to take this label to be the position of
the particle at the beginning of the observation (t = 0). The fact that
particles travel with velocity u is expressed in the system of ordinary
differential equations

(4) ∂tX = u(X, t).

The Lagrangian formulation of (1) is Newton’s second law

(5) ∂2
t X + (∇xp)(X, t) = 0

and the Lagrangian form of (2) is

(6) det (∇aX) = 1

Incompressibility refers to the fact that the maps a 7→ X(a, t) are
volume preserving (in view of (6)). The divergence-free condition (2) is
the Eulerian equivalent counterpart. (As it is easily seen, if everything
is smooth, by differentiating (4)). The Lagrangian formulation involves
the Eulerian gradient of the pressure ∇xp which could be computed
using (3).

The system describes with great simplification the time evolution
of an incompressible fluid of constant density, in the absence of any
forces other than those arising from the incompressibility constraint.
Considering internal processes that lead to energy dissipation leads to
the Navier-Stokes equations,

(7) ∂tu + u · ∇u− ν∆u +∇p = 0

with the same incompressibility constraint (2). Here ν > 0 represents
the kinematic viscosity, which is a constant (at constant temperature).
The introduction of a second order operator requires (and permits)
boundary conditions; these are the essential physical ingredient intro-
duced by the presence of the Laplacian. The Navier-Stokes equations,
in the presence of forces and boundary conditions are a good descrip-
tion of Newtonian fluids, and when additional stresses are introduced,
of non-Newtonian fluids.

2. The Blowup Problem

2.1. Dimension and Geometry. The blowup problem is: Can sin-
gularities arise in finite time from smooth initial velocities with finite
kinetic energy?

The blowup problem for the Euler equations is a major open prob-
lem of PDE theory, of far greater physical importance than the blowup
problem for the Navier-Stokes equation, which of course is known to
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non-specialists because it is a Clay Millennium Problem. There is a
deep connection between the two problems but there are major differ-
ences as well. The blowup problem for the Euler equation concerns
growth of velocity gradients of solutions and is not tamed by putting
an upper bound on the velocity itself: an Euler equation singularity
does not require infinite momentum, whereas a Navier-Stokes blow up
does. (Interesting criteria for absence of inviscid hydrodynamic blow
up based on momentum do exist, but they are for limited configurations
([64]).) The occurrence of an infinite momentum, from finite smooth
initial data, without external forcing, with zero or periodic boundary
conditions and with positive kinematic viscosity has no physical justi-
fication. Obviously, continuum mechanics breaks down at very small
scales, so there is no doubt that the equations do not hold at all scales.
While this might be the case, it is not the question. The question, not
to put too fine a point on it, is: do we need Schrödinger’s equations
to calculate the flow around a moving car? Or to predict tomorrow’s
weather? So far, no calculation of the purely decaying Navier-Stokes
equation suggested the need for a cutoff at fixed viscosity. There are
many ways one can regularize the Euler equations, and the kinematic
viscosity might not be the only regularizing mechanism. On the other
hand, if regularity for Navier-Stokes equations is to be proven, then the
proof cannot be perturbative and new ideas are needed. Indeed, writ-
ing the Navier-Stokes equations as a perturbed heat equation is useful
for small data arguments, but when the nonlinear term dominates,
this approach ceases to be sufficient. New methods that are nonlinear,
solution-dependent, need to be invented. They are to be sought in the
study of the Euler equations. In fact, growth of gradients in Euler
equation fashion might lead to vortex reconnection and regularity in
Navier-Stokes equation ([37]). Contrary to infinite momentum singu-
larities, production of very large gradients is physically important as
it is related to the anomalous dissipation of energy, a well documented
experimental fact. It is known that if there are no singularities in the
solution of the Euler equations with initial data u0 on the time interval
[0, T ], then there can be no singularities in the Navier-Stokes solution
with the same initial data and small enough viscosity ([36]). The reg-
ularity for large enough viscosities is also known. Unfortunately, there
is a gap between the two ranges of viscosities, and it is not clear how
to close it.

The solutions of Euler equations do not blow up from smooth, finite
kinetic energy initial data when the dimension of space n = 2 ([8]).
When n = 3, the problem is open. The easiest way to see the difference
between the two situations is to look at the vorticity, curl of velocity
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ω = ∇×u in three dimensions. In two dimensions, ω = ∇⊥ ·u. Taking
the curl of (1) we obtain the vorticity evolution equation

(8) ∂tω + u · ∇ω − ω · ∇u = 0.

In n = 2 term ω · ∇u vanishes identically and the vorticity equation is
a transport equation

(9) ∂tω + u · ∇ω = 0

In two dimensions it follows then that

(10) ω(x, t) = ω0(A(x, t))

where ω0 is the curl of the initial data and A(x, t) = X−1(x, t) is the
“back-to-labels” map: the inverse of the Lagrangian path trajectory
a 7→ X(a, t). Because the back-to-labels map preserves volume, it fol-
lows that ‖ω(x, t)‖Lp(dx) = ‖ω0‖Lp(dx) holds for any 1 ≤ p ≤ ∞ in
n = 2. (Lp(dx) is the usual Lebesgue space). This quantitative infor-
mation was extracted from the system because of a cancellation, with-
out using quantitative information about A(x, t). It is a free gift. Once
the magnitude of the vorticity is controlled, persistence of smoothness
follows, with a little analysis.

The analogue of (10) in three dimensions is

(11) ω(x, t) = (∇aX) (A(x, t), t)ω0(A(x, t))

which expresses the fact that the integral curves of the vorticity, the
vortex lines, are carried by the flow. The two dimensional vorticity is
carried along by particle paths, its magnitude unchanged. The three
dimensional vorticity is carried as well, but its magnitude is amplified
or diminished by the gradient of the flow map. If one allows for infinite
kinetic energy solutions then one can find blowup ([32], [39], [85], [86],
[113], [122]). If one considers complex solutions, then again one can find
blowup ([22]). Unfortunately, the infinite energy blowup also occurs in
2D, where in fact finite energy solutions do not blow up.

The Beale-Kato-Majda ([15]) criterion (see also ([94]) for an exten-
sion) says that the time integral of the maximum magnitude of the
vorticity ∫ T

0

‖ω(t)‖L∞(dx)dt

controls blow up or its absence. If the integral is finite and if the
initial velocity is in a Sobolev space Hs with large enough exponent
(s > 5/2) or in a Cs space with s > 1 (and some decay in physical
space, for instance ω0 ∈ Lp with p > 1) then the solution remains
smooth on the time interval [0, T ]. Of course, if the integral is infinite,
then there is finite time blowup.
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The Euler equations possess local-in-time (i.e. for small T ) unique
smooth solutions, if the initial velocity is in the spaces described above.
These function spaces are Banach algebras for the gradients.

Because the magnitude of vorticity controls the blowup, it is useful
to look more closely at its evolution:

(12) (∂t + u · ∇) |ω| = α|ω|

The scalar quantity α(x, t) is the vortex stretching factor, and obvi-

ously, by Gronwall’s lemma, when
∫ T

0
‖α(t)‖L∞dt is finite then the

Beale-Kato-Majda criterion implies that no singularities are generated
spontaneously in the time interval [0, T ]. If α ≥ c|ω| holds for a long
enough period of time, with c > 0 then blowup ensues. It turns out
([37]) that α has a representation

(13) α(x, t) =
3

4π
P.V.

∫
R3

D(ŷ, ξ(x + y, t)ξ(x, t))|ω(x + y, t)| dy

|y|3

where

D(e1, e2, e3) = (e1 · e3) det(e1, e2, e3)

and ξ(x, t) = ω(x,t)
|ω(x,t)| . The integral representing α is a principal value

type integral, and consequently the dimensional analysis of the equa-
tion would predict blowup along characteristics. But the representation
leads to criteria for absence of blowup ([46], [47]) that are based on the
observation that if the direction field ξ is regular, then the integral in
(13) is not of principal value type any more, and in the case of the
Navier-Stokes equations that is enough to rule out blow up. The reg-
ularity of ξ in two dimensions is clear, ξ = (0, 0, 1) in some system of
coordinates. The fact ξ has to have some roughness in order for blowup
to be possible indicates some necessary complexity of the underlying
geometric support of blowup. Moreover, single-scale selfsimilar behav-
ior is impossible ([25]).

The criteria based on ξ have been extended and refined ([19], [69])
and validated numerically ([87]). There exists an extensive numeri-
cal literature on the subject of finite time singularities in the Euler
equations but the problem remains undecided numerically as well.

2.2. Conserved Quantities. From past experience with nonlinear
PDE of physical origin, it is imperative to take advantage of conserved
quantities, the “free gifts”. The smooth solutions of the Euler equations
conserve kinetic energy,∫

R3

|u(x, t)|2dx =

∫
|u0(x)|2dx,
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helicity ([111])∫
R3

u(x, t) · ω(x, t)dx =

∫
R3

u0(x) · ω0(x)dx,

and circulation ∮
X(γ,t)

u(x, t) · dx =

∮
γ

u0(a) · da.

In two space dimensions, additional conservation laws are integrals of
arbitrary functions of the vorticity. The circulation is the integral of
the form u · dx on arbitrary closed loops transported by the flow. The
helicity and circulation conservation laws have not been sufficiently
exploited for analysis. The helicity encodes topological information
about the average linking number between vortex lines. The circula-
tion provides a connection between particle path length elements and
momentum.

The conservation of energy follows easily from the form (1) of the
equations. The conservation of circulation follows from the Weber for-
mula (see ([40], [42]) and references therein)

(14) u(x, t) = P [(∇A)∗(u0 ◦ A)]

Here P is the Leray-Hodge projector on divergence-free functions and
(∇A)∗ is the transposed matrix. Conservation of helicity follows also
from the Weber formula. The Euler equations are expressed succinctly
as a system of active scalars

(15) ∂tA + u · ∇A = 0

with u given from A by (14). In this formulation, the conservation of
circulation and of helicity are transparent. The Navier-Stokes equa-
tions have a deterministic parabolic formulation ([41]) that resembles
(14, 15). A stochastic formulation based on (14, 15) and on seminal
ideas of ([34]) was obtained as well ([88]).

2.3. Weak Solutions. Because singularities cannot be ruled out, and
because sometimes it makes physical sense to admit solutions with
singularities in them, the notion of solution can be extended to that of
weak solution. These solve a weak form of the equation in distribution
sense, placing the equations in large spaces, using duality. The Euler
and Navier-Stokes equations are in divergence-form, and integration by
parts moves derivatives on test functions. The notions of weak solution
depend on the equation, and need to be handled with care.
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The Navier-Stokes equations posses global weak solutions in 3D ([99])
and their singularities, if any, are confined to a space-time set of di-
mension less than 1 ([20]). Their uniqueness is not known.

There is no similar notion of weak solution of Euler equations in 3D.
Nonuniqueness of putative weak solutions of the 3D Euler equations has
been demonstrated ([67], [119], [121]). For 2D Euler there exist unique
weak solutions ([130]) if the vorticity is bounded. The existence (but
not the uniqueness) of weak solutions is established for ω ∈ Lp(R2) for
1 < p < ∞ and a framework for measure-valued solutions exists ([71],
[72]). The existence of weak solutions in the limit case when the initial
vorticity is a positive Radon measure with velocity locally uniformly in
L2, (positive vortex sheet data) was established in ([68]). The vortex
sheet problem itself is the problem of keeping track of the evolution
of the support of the measure, if initially this was a smooth curve.
Although there is a simple equation for the evolution of such a curve,
the Birkhoff-Rott equation, the problem is ill-posed ([128]).

Among the two–dimensional problems that attracted recently re-
newed interest is the the surface quasi-geostrophic active scalar (QG)
([37], [53]). This is a model of geophysical origin, but it has been
studied mathematically for more than a decade mainly because of its
similarity to the 3D Euler equations, and because, as a scalar model
in 2D, it is more amenable to numerical simulations then the full 3D
Euler equation. The equation is deceptively simple

(16) ∂tθ + u · ∇θ = 0

with

(17) u = R⊥θ

where R = ∇Λ−1 are Riesz transforms, Λ = (−∆)
1
2 the Zygmund

operator. The analogy to the Euler equations is in the fact that the
level sets of θ are like vortex lines. The analogue of the 3D vortex
equation is the equation for ∇⊥θ, a vector field that is tangent to the
level sets. This vector field obeys (8) with ω replaced by ∇⊥θ. Because
θ is carried by the flow it creates, it is expressed in terms of the back-
to-labels map as θ(x, t) = θ0(A(x, t)). The analogue of (11) for ∇⊥θ
holds in the same form,

(∇⊥θ)(x, t) = (∇aX) (A(x, t), t)(∇⊥θ0)(A(x, t)).

There is a BKM theorem that establishes that finiteness of∫ T

0

‖∇⊥θ(t)‖L∞(dx)dt
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controls absence of blowup. The magnitude |∇⊥θ| obeys the same
equation as (12) and the stretching factor α, has a principal value
representation like (13) that reveals the same geometric depletion if
the direction field ξ = ∇⊥θ/|∇⊥θ| is locally regular. Remarkably,
there exist weak solutions in L2 ([116]). There is numerical ([114])
and theoretical ([61]) evidence that no blowup occurs, but the problem
is still open.

Recent new developments have been achieved in dissipative forms of
the equation

(18) ∂tθ + u · ∇θ + κΛsθ = 0,

with κ > 0, 0 < s. If s > 1 we say that the equation is subcritical, if s <
1 the equation is supercritical, and if s = 1, critical. When s = 1 the
model is physical: the dissipation represents friction with boundaries.
The subcritical equations have smooth solutions ([27], [58]). In the
critical case, it was known for some time that if the initial data are
small in L∞ they remain small and the solution is regular ([44], [62]).
Recently, two remarkable and quite different proofs of global existence
in the critical case have been obtained. In one ([92]) the result is one of
global persistence of regularity, based on a new and promising idea, a
maximum modulus of continuity principle. The other proof ([21]) uses
harmonic extension to prove a gain of regularity of weak solutions,
in the spirit of the De Giorgi, from L2 to L∞, from L∞ to Hölder
continuous, and beyond. Work on the supercritical case along similar
lines is in progress ([59], [60]).

3. The Vanishing Viscosity Limit And Anomalous
Dissipation

3.1. Singular Limits and Boundary Layers. The vanishing viscos-
ity limit of solutions of Navier-Stokes equations is a singular limit (that
means that the type of the equation threatens to change in the limit:
the highest order derivative is multiplied by a vanishing coefficient).
Singular limits are ubiquitous in applied mathematics and correspond
to physical reality. In bounded domains Ω, the fact that the vanishing
viscosity limit is a singular limit is most vividly manifested in bound-
ary layers. The Navier-Stokes equations are second–order differential
equations and require boundary conditions, for instance homogeneous
Dirichlet boundary conditions,

u|∂Ω = 0.
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For the Euler equation the only requirement is that the particle paths
be tangent to the boundary

u ·N|∂Ω = 0

where N is the normal to the boundary. In the limit of zero viscos-
ity there are thin layers near the boundary where the change from a
viscosity-dominated behavior to a non-viscous behavior takes place,
or at least, that is the physical picture in quiescent situations, near
flat boundaries. Boundary layers are very real, but difficult to study
rigorously, especially if the domains are curved and the flows are time-
dependent. ([23], [24], [74], [75]). At present the problem of the van-
ishing viscosity limit is open even in two space dimensions, in bounded
domains. The physical problem of boundary layers, for instance in
wall bounded flow, has a long history ([120]), but the classical Prandtl
boundary layer theory has been challenged ([12], [13]).

More progress has been made in the study of the limit when bound-
aries are absent (flow in Rn or Tn). Even in this restricted situa-
tion, there are two distinct concepts of vanishing viscosity limit. The
finite–time, zero–viscosity limit is the limit limν→0 Sν(t)(ω0) of solu-
tions Sν(t)(ω0) of the Navier-Stokes equations with a fixed initial da-
tum ω0 and with time t in some finite interval [0, T ]. By contrast, in the
infinite–time, zero–viscosity limit, long–time averages of functionals of
the solutions

lim
t→∞

1

t

∫ t

0

Φ(Sν(s)ω0)ds =

∫
Φ(ω)dµν(ω)

are considered first, at fixed ν. These are represented by measures µν in
function space. The long–time, zero–viscosity limit is then limν→0 µν ,

lim
ν→0

(
lim
t→∞

1

t

∫ t

0

Φ(Sν(s)ω0)ds

)
.

The two kinds of limits are not the same. This is most clearly seen
in the situation of two–dimensional, unforced Navier-Stokes equations.
In this case, any smooth solution of the Euler equations is a finite–
time inviscid limit but the infinite–time inviscid limit is unique: it is
the function identically equal to zero. This simple example points out
the fact that the infinite–time, zero–viscosity limit is more selective. In
less simple situations, when the Navier-Stokes equations are forced, the
long–time inviscid limit is not well understood. The finite–time, zero–
viscosity limit is the limit that has been most studied. For smooth
solutions in R3, the zero–viscosity limit is given by solutions of the
Euler equations, for short time, in classical ([123]), and Sobolev ([91])
spaces; the limit holds for as long as the Euler solution is smooth ([36]).
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The convergence occurs in the Sobolev space Hs as long as the solution
remains in the same space ([108]). The rates of convergence are optimal
in the smooth regime, O(ν). In some nonsmooth regimes (smooth
vortex patches), the finite time inviscid limit exists and optimal rates
of convergence for the velocity can be obtained ([1], [108]) but the rates
(for the vorticity) deteriorate when the smoothness of the initial data
deteriorates – for nonsmooth vortex patches ([56], [57]).

3.2. Anomalous Dissipation. One of the most fundamental ques-
tions concerning the inviscid limit is: what happens to ideally conserved
quantities?

We start by discussing this problem for two dimensional flows where
the analysis is simpler. Two dimensional flows are relevant for at-
mospheric flow, which is nearly incompressible and nearly two dimen-
sional. In n = 2 one of the important conserved quantities for smooth
solutions of the Euler equations (one of the “free gifts”) is the enstro-
phy, ∫

R2

|ω(x, t)|2 dx.

When we solve the unforced Navier-Stokes equations and the initial
vorticity is in L2 then

d

2dt

∫
R2

|ω(x, t)|2 dx + ν

∫
R2

|∇ω(x, t)|2 dx = 0

and the quantity

ν

∫
R2

|∇ω(x, t)|2 dx

is the instantaneous rate of dissipation of enstrophy. If the gradients
are bounded in L2 then this quantity vanishes as ν → 0. But of course,
as ω depends on ν, and as the gradients of vorticity might be large, the
limit might be nonzero. The term “anomalous dissipation,” favored by
physicists with field-theoretical background, refers to the case when the
rate of dissipation has a nonzero limit, in the zero viscosity limit. The
existence of anomalous dissipation of enstrophy is essential in Kraich-
nan’s theory of two dimensional turbulence ([84], [95]). Bounds on the
dissipation of enstrophy in physical terms were given in ([2]). Anoma-
lous dissipation of enstrophy was studied in the framework of finite time
inviscid limits with rough initial data ([79], [104]). It was established
that, if the initial vorticity belongs to L2(R2) then weak solutions of
the Euler equations conserve enstrophy, and that implies absence of
anomalous dissipation of enstrophy for finite time.
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The physical context for anomalous dissipation is, however, turbu-
lence theory, and that refers to the long–time limit, in the presence of
forces.

For long–time behavior, in the case of forced two–dimensional Navier-
Stokes equations, there is a difficulty due to the inverse cascade of ki-
netic energy: the energy piles up at the largest scale and grows without
bound. In numerical simulations and in experimental studies, energy
injected at small scales is transferred to large scales (from high wave
numbers to low wave numbers). Physically, this corresponds to the
coalescence of small vortices into large ones. There cannot exist a
steady vanishing viscosity state when the forcing does not vanish with
viscosity ([96]).

Wave-number independent damping is used to model mechanisms
such friction with boundaries, and a variety of other physical mecha-
nisms responsible for attenuating large scale turbulent energy. For ex-
ample, a well-known model, the Charney-Stommel model of the Gulf
Stream ([7]) is a two–dimensional, damped and driven Euler system.
Numerical studies of two–dimensional turbulence employ devices to re-
move the energy that piles up at the large scales, and damping is the
most common such device. D. Bernard ([18]) suggested, on the basis
of field–theoretical computations, that there is no anomalous dissipa-
tion of enstrophy in damped and driven two–dimensional Navier-Stokes
equations.

This was recently proved rigorously in ([54]). A first result concerns
sequences of time–independent individual solutions. The sequences
have enough compactness to pass to convergent subsequences. The
resulting solution is a weak solution of the damped and driven Euler
equations. The existence of weak solutions of such equations in the case
of the Charney-Stommel model was first obtained in ([7]). The weak
solution of the damped and driven Euler equation is a renormalized so-
lution in the sense of ([70]). This implies that the weak solution obeys
an enstrophy balance and that is used to show that there is no anoma-
lous dissipation. The time–dependent situation is more complicated.
Stationary statistical solutions of the damped and driven Navier-Stokes
equations in the spirit of ([81],[82], [125]) need to be considered. In the
case of finite–dimensional dynamical systems

dω

dt
= N(ω),

invariant measures µ are Borel measures in the ω phase space such
that

∫
∇ωΨ(ω)N(ω)dµ(ω) = 0 for any test function Ψ. In infinite

dimensions, we need to restrict the test functions to a limited class T
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of admissible functions but the notion of a stationary statistical solution
of the damped and driven Navier-Stokes equation is a natural extension
of the notion of invariant measure for deterministic finite–dimensional
dynamical systems.

Weak limits of stationary statistical solutions of the damped and
driven Navier-Stokes equations are renormalized stationary statistical
solutions of the damped and driven Euler equations, in the spirit of
([70]). Stationary statistical solutions µν of the damped and driven
Navier-Stokes equations can be obtained by the Krylov-Bogoliubov
procedure of taking long–time averages. These solutions have good
enough properties so that their weak limits are renormalized stationary
statistical solutions µ0 of the damped and driven Euler equations that
obey the enstrophy balance law (expected formally from the damped
and driven Euler equation by taking long–time averages). This is the
central fact that allows one to prove that the zero viscosity limit of the
long time average enstrophy dissipation rate vanishes:

lim
ν→0

ν

(
lim sup

t→∞

1

t

∫ t

0

‖∇ω(s + t0)‖2
L2(R2)ds

)
= 0

holds for all solutions ω(t) = SNS,γ(t)(ω0) of the damped and driven
Navier-Stokes equation with fixed damping coefficient γ, all t0 > 0, and
all ω0 ∈ Lp(R2) ∩ L∞(R2). The convergence in this class of statistical
solutions is such that

lim
ν→0

∫
L2(R2)

‖ω‖2
L2(R2)dµν(ω) =

∫
L2(R2)

‖ω‖2
L2(R2)dµ0(ω).

The problems of anomalous dissipation in 3D are substantially more
difficult. The ideally conserved quantity under investigation is the ki-
netic energy, ∫

R3

|u(x, t)|2dx.

The kinetic energy is conserved by smooth solutions of the Euler equa-
tions. For smooth solutions of unforced Navier-Stokes equations, the
kinetic energy decays

d

2dt

∫
R3

|u(x, t)|2 dx + ν

∫
R3

|∇u(x, t)|2 dx = 0

and

ν

∫
R 3

|∇u(x, t)|2 dx

is the instantaneous rate of dissipation of kinetic energy. There is ex-
perimental and numerical evidence that the rate of dissipation of kinetic
energy in Navier-Stokes equations is bounded away from zero, even at
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very high Reynolds numbers (small viscosities). Turbulence theory and
practice is rather solidly anchored in this fact ([80], [84], [117]). The
famous Kolmogorov-Obukhov ([93]) power law for the energy spectrum
of turbulent fluctuations is

E(k) = Cε2/3k−5/3

where ε > 0 is the nonzero rate of dissipation of kinetic energy,

ε = ν〈|∇u|2〉
where 〈. . . 〉 is expected value with respect to an invariant measure sup-
ported on solutions of the Navier-Stokes equations at high Reynolds
number. The fact that ε is bounded below, independently of viscosity
is a fundamental part of the theory. The wave number magnitude k
belongs to a range of values called the inertial range, that extends to
positive infinity in the limit of infinite Reynolds number (the vanishing
viscosity limit). Independently of Kolmogorov, Onsager ([112]) sug-
gested that there exists (in modern language) anomalous dissipation of
energy, and that it is supported by weak solutions of the Euler equa-
tions. Onsager conjectured that weak solutions of the Euler equation
with Hölder continuity exponent h > 1/3 do conserve energy and that
turbulent or anomalous dissipation occurs when h ≤ 1/3. The Hölder
exponent 1/3 corresponds precisely to the Kolmogorov-Obukhov en-
ergy spectrum exponent −5/3. More specifically

〈((u(x + re)− u(x)) · e)p〉 ∼ (εr)
p
3

for p = 2 is the Kolomogorov 2/3 law ([93]); the Kolmogorov-Obukhov
energy spectrum was derived from it by dimensional analysis. In the
expression above e is a unit vector. Corrections to the Kolmogorov
scaling for high p are known in the turbulence community as “anoma-
lous scaling”. The 2/3 law was challenged ([16]) and defended ([14]).
Anomalous scaling has been extensively examined numerically and the-
oretically (but not rigorously) ([84]) but there are competing explana-
tions of the data ([5]).

One direction of the Onsager conjecture was addressed mathemati-
cally ([45], [73], [78]) and it was established that energy conservation
occurs for u in Besov spaces Bs

3,∞, s > 1/3. Besov spaces Bs
p,q are

interpolation spaces, the index s measures the number of derivatives,
the index p the Lp(dx) space and the index q is an interpolation in-
dex. Recently, the conservation of kinetic energy was proved ([29])

for velocities in B
1/3
3,c(N), a space that contains B

1/3
3,q for all 1 ≤ q < ∞

and it contains also Bs
3,∞ for s > 1/3. This is fairly close to optimal.

There exist divergence-free vector fields in B
1/3
3,∞ for which the energy
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flux is bounded away from zero. This implies that the instantaneous
time derivative of kinetic energy of the weak solution of the Euler equa-
tions is nonzero at these fields. The existence of weak solutions of the
Euler equations in B

1/3
3,∞ has not been proved, so the counter example

does not prove the second direction of the Onsager conjecture. The
proofs and examples employ the Littlewood-Paley decomposition and
the flux of the Littlewood-Paley spectrum ([38]), which is a mathemat-
ically convenient variant of the physical concept of flux from the tur-
bulence literature. For the helicity conservation, similar results apply,
but require more regularity (see [26] for previous sufficient conditions).

If the velocity is in B
2/3
3,c(N) then the helicity is conserved. There ex-

ist divergence-free velocity fields in B
2/3
3,∞ for which the helicity flux is

bounded away from zero.
Shell models are sequences of ODEs, resembling the form the Euler

equation takes when written in terms of the Littlewood-Paley decom-
position, but greatly simplified and truncated. A proof of one direction
of the Onsager conjecture near the exponent 1/3 was done in ([51]);
there are models that have anomalous dissipation ([30], [31]). This can
occur in linear systems as well ([109]).

It is not clear however how one would go about constructing weak

solutions of the initial value problem for 3D Euler equations in B
1/3
3,∞

that dissipate energy. It is possible however that the long–time, zero–
viscosity limit selects very particular stationary measures supported in
this space.

4. Conclusion

It is no exaggeration to say that the Euler equations are the very core
of fluid dynamics. They use and enrich several branches of mathematics
and provide important open problems. The “stability of instability” of
mixing layers in ill–posed problems such as the Rayleigh-Taylor and
Kelvin-Helmholtz instabilities is one such problem.

The mathematical question of blowup in the Euler equations is still
one of the most challenging and meaningful problems in nonlinear PDE.
The study of the vanishing viscosity limit (more properly: the infinite
Reynolds number limit) in domains with boundaries is very far from
completion. The problem in bounded domains is extremely challeng-
ing. The existence of weak solutions that dissipate energy by constant
flux of energy, in the whole space, in the correct functional space is
not known. The characterization of the zero-viscosity long-time limit
statistics, including Kolmogorov-Obukhov spectrum is open.
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[60] P. Constantin, J. Wu, Hölder continuity of solutions of supercritical dissipative
hydrodynamic transport equations. ArXiv: Math.AP/0701594 (2007)
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[62] A. Córdoba, D. Córdoba, A maximum principle applied to quasi-geostrophic
equations. Commun. Math. Phys. 249 (2004), 511-528.



22 PETER CONSTANTIN

[63] D. Cordoba, F. Gancedo, Contour dynamics of incompressible 3D fluids in
a porous medium with different densities. Commun. Math. Phys., to appear
(2007).

[64] D. Cordoba, C. Fefferman, R. de la Llave, On squirt singularities in hydrody-
namics. SIAM J. Math. Analysis, 36 (2004), 204-213.

[65] D. Coutaud, S. Shkoller, Well-posedness of the free surface incompressible Eu-
ler equations with or without surface tension. JAMS (2007).

[66] W. Craig, An existence theory for water waves in the Boussinesq and the
Korteweg-de-Vries scaling limits. Commun. PDE 10 (1985), 787-1003.

[67] C. De Lellis, L. Szekelyhidi, The Euler equations as differential inclusions.
preprint (2007).

[68] J-M Delort, Existence de nappes de tourbillon en dimension deux. JAMS 4
(1991), 553-586.

[69] J. Deng, T. Y. Hou, X. Yu, Geometric properties and non-blowup for 3-D
incompressible Euler flow. Commun. PDE 30 (2005), 225-243.

[70] R. DiPerna, P-L. Lions, Ordinary differential equations, transport theory and
Sobolev spaces. Invent. Math. 98 (1989) 511-547.

[71] R. DiPerna, A. Majda, Oscillations and concentrations in weak solutions of the
incompressible fluid equations. Commun. Math. Phys, 108 (1987), 667-689.

[72] R. DiPerna, A. Majda, Reduced Hausdorff dimension and concentration-
cancellation for two dimensional incompressible flow. JAMS 1 (1988), 59-95.

[73] J. Duchon, R. Robert, Inertial energy dissipation for weak solutions of incom-
pressible Euler and Navier-Stokes equations. Nonlinearity 13 (2000), 249–255.

[74] W. E. Boundary layer theory and the zero viscosity limit of the Navier-Stokes
equation. Acta Math. Sinica (engl. ser.) 16 (2000), 207-218.

[75] W. E., B. Enquist, Blow up of solutions to the unsteady Prandtl equation.
Comm. Pure Appl. Math. L (1997) 1287-1293.

[76] W. E, T. Li, P. Zhang. Well-posedness for the dumbbell model of polymeric
fluids. Comm. Math. Phys., 248(2) (2004) 409–427.
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