
Euler Equations: local existence

Mat 529, Lesson 2.

1 Active scalars formulation

We start with a lemma.

Lemma 1. Assume that w is a magnetization variable, i.e.

∂tw + u · ∇w + (∇u)∗w = 0.

If u = Pw then u solves the incompressible Euler equations.

Proof. Indeed, if ū = w +∇q then

Dtū = Dtw +Dt∇q = Dtw +∇Dtq − (∇u)∗∇q
= −(∇u)∗(w +∇q) +∇Dtq = −(∇u)∗ū+∇Dtq,

and if ū = u then (∇u)∗ū is a gradient. This proves the lemma.
This implies

Theorem 1. If u ∈ C1,µ is given by

u = (P)((∇A)∗v)

with A ∈ C1,µ, v ∈ C1,µ solving

DtA = 0 (1)

and
Dtv = 0,

then u solves the incompressible Euler equations.
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Proof. Clearly
w = (∇A)∗v

is a magnetization variable because

Dt(∇A)∗ + (∇u)∗(∇A)∗ = 0.

Because of the Weber formula, we have

Lemma 2. A function u(x, t) solves the incompressible Euler equations if
and only if it can be represented in the form u = uA with

uiA(x, t) = φm (A(x, t))
∂Am(x, t)

∂xi
− ∂nA(x, t)

∂xi
(2)

and
∇ · uA = 0 (3)

where A(x, t) solves the active scalars equation

(∂t + uA · ∇)A = 0, (4)

with initial data
A(x, 0) = x.

The function φ represents the initial velocity and the function nA(x, t) is
determined up to additive constants by the requirement of incompressibility,
∇ · uA = 0:

∆nA(x, t) =
∂

∂xi

{
φm(A(x, t))

∂Am(x, t)

∂xi

}
.

The periodic boundary conditions are

A(x+ Lej, t) = A(x, t) + Lej; nA(x+ Lej, t) = nA(x, t) (5)

with ej the standard basis in R3. In this case

δA(x, t) = x− A(x, t) (6)

nA(x, t), and uA(x, t) are periodic functions in each spatial direction. One
may consider also the case of decay at infinity, requiring that δA, uA and nA
vanish sufficiently fast at infinity. The equation of state (2, 3) can be written
as

uA = P {φm (A(·, t))∇Am(·, t)} = P {(∇A)∗ φ(A)} , (7)
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which is the Weber formula. The Eulerian pressure is determined, up to
additive constants by

p(x, t) =
∂nA(x, t)

∂t
+ uA(x, t) · ∇nA(x, t) +

1

2
|uA(x, t)|2.

The Jacobian obeys
det (∇A(x, t)) = 1.

The vorticity
ωA(x, t) = ∇× uA

satisfies the Helmholtz equation

DA
t ωA = ωA · ∇uA (8)

and is given by the Cauchy formula

ωA(x, t) = [∇A(x, t)]−1 ζ(A(x, t)) (9)

where ζ = ∇× φ is the initial vorticity.

2 Local existence

The proof of local existence of solutions to the Euler equations in the active
scalars formulation is relatively simple and the result can be stated econom-
ically.

Theorem 2. Let φ be a divergence free C1,µ periodic vector valued function of
three variables. There exists a time interval [0, T ] and a unique C([0, T ];C1,µ)
spatially periodic vector valued function δ(x, t) such that

A(x, t) = x+ δ(x, t)

solves the active scalars formulation of the Euler equations, :

∂A

∂t
+ u · ∇A = 0,

u = P {(∇A(x, t))∗φ(A(x, t))}

with initial datum A(x, 0) = x.
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The same result holds if one replaces periodic with decaying at infinity.
Differentiating the active scalars equation (4) we obtain the equation obeyed
by the gradients

DA
t

(
∂Am

∂xi

)
+
∂ujA
∂xi

∂Am

∂xj
= 0. (10)

It is useful to denote
Pjl = δjl − ∂j∆−1∂l (11)

Differentiating in the representation (7) and using the fundamental property

Pjl
∂f

∂xl
= 0

we obtain
∂ujA
∂xi

= Pjl
(
Det

[
ζ(A);

∂A

∂xi
;
∂A

∂xl

])
. (12)

Recall that the function ζ is te curl of φ. This relation shows that the gradient
of velocity can be expressed without use of second order derivatives of A and
is the key to local existence: the equation (10) can be seen as a cubic quasi-
local equation on characteristics. Let us make these ideas more precise. We
will consider the periodic case first. We write Cj,µ, j = 0, 1 to denote the
Hölder spaces of real valued functions that are defined for all x ∈ R3 and
are periodic with period L in each direction. We denote by ‖f‖0,µ the C0,µ

norm:

‖f‖0,µ = sup
x
|f(x)|+ sup

x 6=y

{
|f(x)− f(y)|

(
L

|x− y|

)µ}
(13)

and by ‖f‖1,µ the C1,µ norm:

‖f‖1,µ = ‖f‖0,µ + L‖∇f‖0,µ (14)

where the notation | · · · | refers to modulus, Euclidean norm, and Euclidean
norm for matrices, as appropriate.

We break the solution of the problem in two parts, the map δ → u and
the map u→ δ. We denote the first one W .

W [δ, φ](x, t) = P {(I +∇δ(x, t))∗φ(x+ δ(x, t))} (15)

This map is linear in φ but nonlinear in δ.
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Proposition 1. The map W [δ, φ] maps

W : (C1,µ)3 × (C1,µ)3 → (C1,µ)3

continuously. There exist constants C depending on µ alone so that

‖W [δ, φ]‖0,µ ≤ C‖φ‖0,µ {1 + ‖∇δ‖0,µ}2

and
‖∇W [δ, φ]‖0,µ ≤ C‖∇ × φ‖0,µ {1 + ‖∇δ‖0,µ}3 .

hold for any δ ∈ (C1,µ)
3
, φ ∈ (C1,µ)

3
.

Proof. We note that W is made up from a number of operations. The first
operation is the composition φ(x) 7→ φ(x + δ(x)). For a fixed δ ∈ (C1,µ)3

the map x 7→ x + δ is Lipschitz. Composition with a Lipschitz change of
variables maps C0,µ into itself continuously (we say that it is a continuous
endomorphism). The joint continuity of [φ, δ] 7→ φ(x + δ) in C1,µ follows
naturally. The second operation is a sum of products of functions (a matrix
applied to a vector). This is a continuous operation because the Hölder spaces
Cj,µ, j = 0, 1 we chose are Banach algebras. The third and last operation
is the linear operator P, which is bounded in Hölder spaces. We need to
consider also derivatives of W . We use the formula (12) and note that the
expression for the gradient is made of similar operations as above and apply
the same kind of reasoning. This finishes the proof.

Time does not play any role in this proposition because the equation of
state (δ, φ) 7→ W [δ, φ] is time independent. The second half of the procedure
does depend on time. Let us denote by Θ the map that associates to two
continuous paths t 7→ δ(·, t) and t 7→ φ(·, t) the path t 7→ θ = Θ[δ, φ] obtained
by solving the partial differential equation

∂θ

∂t
+ u · ∇θ + u = 0 (16)

where
u = W [δ(·, t), φ(·, t)],

periodic boundary conditions are imposed on θ and zero initial data

θ(x, 0) = 0
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are required. The Euler equation requires only the use of a time independent
φ, but allowing time dependent φ is very useful: one can then treat more
equations, in particular the Navier-Stokes equation. Let us consider the space

PT = C([0, T ], (C1,µ)3)

of continuous (C1,µ)3 -valued paths defined on a time interval [0, T ], endowed
with the natural norm

‖θ‖1,P = sup
t
‖θ(·, t)‖1,µ.

We will consider also the weaker norm

‖θ‖0,P = sup
t
‖θ(·, t)‖0,µ.

Θ is nonlinear in both arguments.

Proposition 2. The map Θ[δ, φ] maps

Θ : PT × PT → PT

and is continuous when the topology of the source space PT×PT is the natural
product C1,µ topology and the topology of the target space PT is the weaker
C0,µ topology. Moreover, there exists a constant C depending on µ alone so
that

‖∇θ(·, t)‖0,µ ≤
(� t

0

‖∇u(·, s)‖0,µds
){

exp{C
� t

0

‖∇u(·, s)‖0,µds}
}

holds for each t ≤ T with u = W [δ, φ] and θ = Θ[δ, φ].

Proposition 2 states that the map Θ is bounded but not that it is con-
tinuous in the strong C1,µ topology. The proof follows naturally from the
idea to use the classical method of characteristics and ODE Gronwall type
arguments. Similar ideas are needed below in the the slightly more difficult
proof of Proposition 3 and we will sketch them there.

Let us take now a fixed φ, take a small number ε > 0 and associate to it
the set

I ⊂ PT
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defined by

I = {δ(x, t); δ(x, 0) = 0, ‖∇δ(·, t)‖0,µ ≤ ε,∀t ≤ T}.

Combining the bounds in the two previous propositions one can choose, for
fixed φ, a T small enough so that

δ 7→ Θ[δ, φ] = S[δ]

maps
S : I → I.

Inspecting the bounds it is clear that it is sufficient to require

T‖∇ × φ‖0,µ ≤ cε

with an appropriate c depending on µ alone. Leaving φ, ε and T fixed as
above, the map S is Lipschitz in the weaker norm C0,µ:

Proposition 3. There exists a constant C, depending on µ alone, such that,
for every δ1, δ2 ∈ I, the Lipschitz bound

‖S[δ1]− S[δ1]‖0,P ≤ C‖δ1 − δ2‖0,P

holds.

It is essential that δj ∈ I, so that they are smooth and their gradients
are small, but nevertheless this is a nontrivial statement. An inequality of
the type

‖S[δ1]− S[δ1]‖0,P ≤ C‖δ1 − δ2‖1,P
is easier to obtain, but loses one derivative. This kind of loss of one deriva-
tive is a well-known difficulty in general compressible hyperbolic conservation
laws. The situation is complicated in addition by the fact that the consti-
tutive law W depends on gradients. As we shall see, incompressibility saves
one derivative. The heart of the matter is

Proposition 4. Let φ ∈ (C1,µ)3 be fixed. There exists a constant depending
on µ alone so that

‖W [δ1, φ]−W [δ2, φ]‖0µ ≤ C‖δ1 − δ2‖0,µ‖φ‖1,µ

holds for any δj ∈ C1,µ with ‖δj‖1,µ ≤ 1.
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One could use the condition δj ∈ C1,µ with ‖δj‖1,µ ≤ M but then C
would depend on M also.
Proof of Proposition 4. Denoting

u = W [δ1, φ]−W [δ2, φ],

δ = δ1 − δ2,

ψ(x) =
1

2
(φ(x+ δ1(x)) + φ(x+ δ2(x))) ,

v(x) = φ(x+ δ1(x))− φ(x+ δ2(x)),

γ =
1

2
(δ1 + δ2)

we write
u = u1 + u2

with
u1 = P {(∇δ)∗ψ}

and
u2 = P {(I +∇γ)∗v}

Now the bound
‖u2‖0,µ ≤ C‖δ‖0,µ‖φ‖1,µ

is obtained in the same way as the bound in Proposition 1. (Actually φ
Lipschitz is enough here.)

The dangerous term is u1 because it contains ∇δ. But here we can “in-
tegrate by parts” and write

u1 = −P {(∇ψ)∗δ}

because of incompressibility. The matrix ∇ψ is bounded in C0,µ and the
bound follows again easily, as the bounds in Proposition 1. This ends the
proof of Proposition 4.

We draw the attention to the fact that the presence of the ∗ (transpose)
operation is essential for the “integration by parts” to be allowed.
Proof of Proposition 3. We denote θj = Sδj, uj = W (δj, φ), u = u1 − u2,
θ = θ1 − θ2 and write

∂θ

∂t
+
u1 + u2

2
· ∇θ + u · ∇

(
θ1 + θ2

2

)
+ u = 0
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We consider the characteristics X(a, t) defined by

dX

dt
=
u1 + u2

2
(X, t), X((a, 0) = a

and note that in view of Proposition 1 and the assumption δj ∈ I, the char-
acteristics are well defined for 0 ≤ t ≤ T , their inverse A(x, t) = X−1(x, t)
(the “back-to-labels” map) is defined too. Moreover,

sup
t,a

∣∣∣∣∂X∂a
∣∣∣∣ ≤ C

and

sup
t,x

∣∣∣∣∂A∂x
∣∣∣∣ ≤ C

holds with a constant C depending on µ alone. Consider now the function

F (x, t) = u · ∇
(
θ1 + θ2

2

)
+ u.

Solving by the method of characteristics we obtain

θ(x, t) = −
� t

0

F (X(A(x, t), s), s)ds.

Using Proposition 4 in conjunction with the bounds in Propositions 1 and 2
we see that F (x, t) is bounded (uniformly in time) in C0,µ:

sup
t
‖F (·, t)‖0,µ ≤ C‖φ‖1,µ‖δ‖0,P

Compositions with the uniformly Lipschitz X and A are harmless and we
obtain the desired result

‖θ‖0,P ≤ C‖δ‖0,P .
This ends the proof of Proposition 3.
Proof of Theorem 2. The proof follows now using successive approxima-
tions. Starting with a first guess δ1 ∈ I we define inductively

δn+1 = Sδn ∈ I.

Proposition 3 mplies that the sequence δn converges rapidly in the C0,µ topol-
ogy to a limit δ. Because I is convex it contains this weaker limit point, δ ∈ I.
This is done for instance using The Littlewood-Paley characterization of Cs

spaces.
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Lemma 3. Let 0 < s < 1, and fn be a sequence of functions uniformly
bounded in C1,s,

‖fn‖1,s ≤ C

and converging to f in Cs. Then f ∈ C1,s and

‖f‖C1,s ≤ C.

The proof of the lemma is easy if one knows the fact that

‖f‖1,s = sup
j

2(1+s)j‖∆jf‖L∞

where f ∼
∑

∆jf is a Littlewood-Paley decomposition. Returning to the
proof, because S has the weak Lipschitz property of Proposition 3 it follows
that Sδ = δ. This actually means that A = x + δ(x, t) solves the active
scalars formulation of the Euler equations and that u = W [δ, φ] solves the
usual Eulerian formulation.

Now let us consider the case of decay at infinity. It actually is instructive
to look at this case because it illuminates the difference between φ, u,W on
the one hand and x, δ,Θ on the other hand; the function spaces need to be
modified in a natural fashion to accommodate this difference. The issue of
decay at infinity is both a physical one – the total kinetic energy must be
defined, and a mathematical one – P must be defined. But apart from this,
the decay at infinity requirement does not hinder the proof in any respect.

Theorem 3. Let φ be a C1,µ velocity that is square integrable�
|φ(x)|2dx <∞

and whose curl is integrable to some power 1 < q <∞,�
|∇ × φ(x)|qdx <∞.

Then for ε sufficiently small there exists a time interval [0, T ] and a C1,µ

function δ(x, t) such that

sup
t
‖∇δ(·, t)‖0,µ ≤ ε

and such that x + δ(x, t) solves the active scalars formulation of the Euler
equation. The velocity corresponding to this solution belongs to C1,µ, is square
integrable and the vorticity is integrable to power q.
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The proof follows along the same lines as above. Because φ enters linearly
in the expression for W and because we control ∇δ uniformly, issues of decay
at infinity of do not arise. In other words the function space for velocities
does not need to be a Banach algebra, rather a module over the Banach
algebra of the δ variables, which variables need not decay at infinity.

Remark. The fact that u ∈ C1,µ implies that the lagrangian flow map
X(a, t) exists and it is C1,µ. The proof of the theorem assures that A(·, t) ∈
C1,µ. The fact that A = X−1 follows by the chain rule. Thus, we do not
need u ∈ C2, X ∈ C2 for invertibility of the Lagrangian map.
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