
Euler Equations: derivation, basic invariants
and formulae

Mat 529, Lesson 1.

1 Derivation

The incompressible Euler equations are

∂tu+ u · ∇u+∇p = 0, (1)

coupled with
∇ · u = 0. (2)

The unknown variable is the velocity vector u = (u1, u2, u3) = u(x, t), a
function of x ∈ R3 (or x ∈ T3) and t ∈ R. The pressure p(x, t) is also an
unknown. The notation u · ∇u stands for

(u · ∇u)i =
∑
j

uj∂jui

and u ·∇u is the same as (∇u)u, the product of the square matrix (∇u) and
the column vector u. We use summation convention unless explicitly stating
the contrary. We also use the mechanics notation

ui,j = ∂jui,

sometimes even without the comma. The material derivative is denoted

Dt = ∂t + u · ∇

when it is clear which u we are referring to. We use the notation ∇ for the
gradient, ∇f = (∂1f, ∂2f, ∂3f), sometimes indicating the variable ∇x or ∇a.
The maps

X(·, t) : R3 → R3, a 7→ X(a, t)
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with
X(a, 0) = a

obeying the ODEs
d

dt
X(a, t) = u(X(a, t), t) (3)

are the Lagrangian flow maps, and the map t 7→ X(a, t), for a fixed, is
a Lagrangian trajectory, or path. We refer to a as a “label”. When we
consider X(·, t) as a change of variables, we have the following elementary
but fundamental transport lemma:

Lemma 1. Let u(x, t) ∈ L∞([0, T ], C1(R3)). Let f ∈ L∞([0, T ], L1(R3)) be
given and smooth enough, f ∈ C1(R3 × R). Let Ω0 ⊂ R3, and let Ωt =
{x | ∃a ∈ Ω0, x = X(a, t)}. Then

d

dt

�
Ωt

f(x, t)dx =

�
Ωt

(∂tf +∇ · (uf))(x, t)dx

Proof. We start by recalling that X(a, t) is well defined for each a, differen-
tiable in a, and that

d

dt
(∇aX) = (∇xu(X(a, t), t)))(∇aX) (4)

holds for any a. Consequently

d

dt
det(∇aX) = (Tr(∇u)) det(∇aX). (5)

From now on we will often drop arguments; Tr(∇u) is in fact Tr(∇xu) ◦X,
i.e. it is the trace of the matrix ∇u computed at X(a, t). We also denote by

Tr(∇u) = div u

Because the initial data for ∇aX is the identity matrix I, and 1 = det I, we
have that

det(∇aX)(a, t) = exp

(� t

0

(div u)(X(a, s), s)ds

)
, (6)

and so the determinant is positive for all time. Wee start by changing vari-
ables in the integral �

Ωt

fdx =

�
Ω0

(f ◦X) det(∇aX)da
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and then we differentiate in time:

d
dt

�
Ωt
fdx =

�
Ω0

[∂tf(X(a, t), t) + ∂tX(a, t) · ∇xf(X(a, t))] det∇aX(a, t)da

+
�

Ω0
f d
dt

det(∇aX)da =
�

Ω0
[(∂tf + u · ∇f + (∇ · u)f) ◦X] det(∇aX)da

=
�

Ωt
[∂tf +∇ · (uf)] dx,

and this ends the proof of the lemma.
We note from (6) that if div u = 0, then

det(∇aX) = 1, (7)

and the flow map does not change volumes: it is incompressible. We derive
now the incompressible Euler equations formally from an action principle.
We consider two fixed time instants t1, t2 and the action

A[X] =
1

2

� t2

t1

�
R3

∣∣∂tX ◦X−1
∣∣2 dxdt

Until now we have not concerned ourselves with X−1; it is time we do,
because it will play a major role in these notes. Because a 7→ X(a, t) is a
map from Lagrangian coordinates called labels to Eulerian coordinates x, it
is convenient to denote, when no confusion can arise,

X−1(x, t) = A(x, t),

and call it the “back-to-labels” map. (Although I gave this name a bit
tongue-in-cheek, it caught on, just as the “active” scalars name did. I gave
the active scalars name in order to contrast them with passive scalars, which
are tracers. More about active scalars later in the course.)
Let us remark that the flow map a 7→ X(a, t) is globally invertible under
general conditions.

Lemma 2. If u ∈ L1([0, T ], L∞(R3) ∩ C2(R3)) then X(a, t) is invertible for
t ∈ [0, T ].

Note that we do not need div u = 0.
Proof. First of all, clearly, from the implicit function theorem, because
∇aX is invertible, it follows that the flow map is locally injective. Now
consider R >

� T
0
‖u‖L∞(R3)dt. Let Kb be the closed ball of radius R around

b. Notice that if a /∈ Kb, then the equation X(a, t) = b does not have any
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solution for 0 ≤ t ≤ T , simply because X(a, t) starts at a and travels at most� T
0
‖u‖L∞(R3)dt far from a. It follows that the number

#{a | X(a, t) = b} = #{a ∈ Kb | X(a, t) = b} = nb(t)

is finite, continuous in t and locally constant in t. Indeed, the finiteness
follows at fixed t from the implicit function theorem, because the set of
solutions is discrete. In order to show continuity, we consider any fixed time
t0 and a fixed solution X(a0, t0) = b. We define now a path α(t) by the ODE

d

dt
α(t) = −(∇aX)−1(α(t), t)(∂tX)(α(t), t)

with initial data α(t0) = a0. By ODE theory this α(t) exists and is unique
for t− t0 small. It follows that

d

dt
X(α(t), t) = 0

and thus X(α(t), t) = b. This shows that nb(t) is continuous and locally
constant. It always takes therefore the value it takes at t = 0, i.e. nb(t) = 1
for any b.
We consider now variations of X, i.e. we take a family Xε of flow maps. It is
possible and mathematically more satisfactory to take these to be incompress-
ible, but we will use a general deformation, so we consider given invertible
flow maps a 7→ Xε(a, t) for small ε with only X0 volume-preserving. We use
the notation Aε for the inverse. We assume that the end points are fixed
Xε(a, ti) = X0(a, ti), i = 1, 2. This so that we do not incur boundary terms
when we integrate by parts in t. We denote

uε = ∂tXε ◦X−1
ε , Yε =

d

dε
Xε, ηε = Yε ◦X−1

ε , Dε
t = ∂t + uε · ∇

Denote

Aε =
1

2

� t2

t1

�
R3

|uε|2dxdt

We start by computing d
dε
X−1
ε . Differentiating a = X−1

ε (Xε(a)) we obtain

(
d

dε
X−1
ε )(Xε(a)) + (∇xX

−1
ε )(Xε(a))Yε(a) = 0,
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and reading at a = X−1
ε (x) we have

d

dε
X−1
ε = −ηε · ∇X−1

ε .

Armed with this we compute d
dε
uε:

d
dε
uε = d

dε
(∂tXε(X

−1
ε ))

= ∂tYε(X
−1
ε ) + (∇a(∂tXε(X

−1
ε ))) d

dε
X−1
ε

= ∂tYε(X
−1
ε )− (∇a(∂tXε(X

−1
ε )))ηε · ∇X−1

ε

= ∂tYε(X
−1
ε )− ηε · ∇uε

Now we note that
∂tYε(X

−1
ε ) = (∂t + uε · ∇)ηε

Indeed, this follows because

(∂t + uε · ∇)Yε(X
−1
ε ) = ∂tYε(X

−1
ε ) +∇aYε(X

−1
ε ) (∂t + uε · ∇) (X−1

ε )

and the fact that
(∂t + uε · ∇)X−1

ε = 0

which is just the time derivative of a = X−1
ε (Xε(a)) read at a = X−1

ε (x). In
our notation we have thus

d

dε
Aε = −ηε · ∇Aε

and
d

dε
uε = Dε

tηε − ηε · ∇uε
The action principle states that the Euler equations are obtained by seek-

ing least action among all volume preserving diffeomorphisms. We treat “vol-
ume preserving” as a side constraint in a variational principle. Note that
div u = 0 is also necessary not only sufficient for det(∇aX) = 1 , in view of
(5). We use a Lagrange multiplier q that is independent of ε and compute

d

dε

� t2

t1

�
R3

1

2
|uε|2 + q(div uε)dxdt

and require it to vanish at ε = 0. Stationarity with respect to q simply means
divuε| ε=0 = 0. The calculation gives thus

d
dε

� t2
t1

�
R3

1
2
|uε|2 + q(div uε)dxdt

=
� t2
t1

�
R3

(
uε · ddεuε −∇q ·

d
dε
uε
)
dxdt

=
� t2
t1

�
R3(uε −∇q)(Dε

tηε − ηε · ∇uε)dxdt
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Now

−
� t2
t1

�
R3∇q(Dε

tηε − ηε · ∇uε)dxdt
=
� t2
t1

�
R3(∇q(ηε · ∇uε) + ηε · ∇Dε

tq − ηε · (∇uε)∗∇q)dxdt
+
� t2
t1

�
R3(div uε)(ηε · ∇q)dxdt

=
� t2
t1

�
R3 [ηε · ∇Dε

tq + (div uε)(ηε · ∇q)] dxdt

and therefore

d
dε

� t2
t1

�
R3

1
2
|uε|2 + q(div uε)dxdt

=
� t2
t1

�
R3 [uε · (Dε

tηε − ηε · ∇uε) + ηε · ∇Dε
tq + (div uε)(ηε · ∇q)]dxdt

=
� t2
t1

�
R3 [ηε · (−Dε

tuε − (∇uε)∗uε +∇Dε
tq) + (div uε)(ηε · (∇q − uε))] dxdt

= −
� t2
t1

�
R3 ηε · [(Dε

tuε +∇pε) + (div uε)(ηε · (uε −∇q)))] dxdt

where

pε =
1

2
|uε|2 −Dε

tq

Now we can set ε = 0, use div u0 = 0, let η0 be arbitrary and deduce by
setting the derivative to zero for all η0 that u must obey the Euler equations
(1).

Note that
d

dε
(∇aXε) = (∇xηε ◦Xε)(∇aXε)

(which follows by differentiating in a the tautology Yε(a) = ηε(Xε(a))) implies
that

d

dε
det(∇aXε) = (div ηε) det(∇aXε)

and therefore Xε is incompressible if and only if ηε is divergence-free. Thus, if
we would have used deformations Xε which are themselves incompressible, we
wouldn’t have needed the Lagrange multiplier q, and div uε = 0 would have

been true for nonzero ε, but we would have deduced only that Dtu +∇ |u|
2

2

is perpendicular on all divergence-free vectors, and then that would imply it
is a gradient.

2 Basic invariants and formulae

Classical solutions of the Euler equations conserve energy

d

2dt

�
R3

|u(x, t)|2dx = 0.
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The vorticity
ω(x, t) = ∇× u(x, t)

is an important field associated with the velocity. The gradient of velocity
can be decomposed in its symmetric and anti-symmetric parts,

∇u = S + J

where

S =
1

2
((∇u) + (∇u)∗)

is the rate of strain, and

J =
1

2
((∇u)− (∇u)∗)

is given by the vorticity, i.e., for any vector v, the matrix J applied to v
yields

2Jv = ω × v.

Taking the gradient of (1) we obtain the equation for the gradient matrix

(∂t + u · ∇) (∇u) + (∇u)2 + (∇∇p) = 0. (8)

The rate of strain obeys

(∂t + u · ∇)S + S2 + J2 + (∇∇p) = 0, (9)

where we can find that

J2 = −1

4
|ω|2P⊥bω (10)

with ω̂ = ω
|ω| and where

P⊥ξ v = v − (v · ξ)ξ

for ξ ∈ S2 and v ∈ R3. The equation obeyed by J is

(∂t + u · ∇) J + SJ + JS = 0, (11)

and, in terms of ω this is

(∂t + u · ∇)ω − ω · ∇u = 0. (12)
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This equation is equivalent with the commutator equation

[∂t + u · ∇, ω · ∇] = 0. (13)

The fact that the commutator vanishes is the essence of a basic hydrodynamic
fact, Ertel’s theorem. Ertel’s theorem says that if k is a constant of motion,
i.e.

Dtk = 0

then ω · ∇k is also a constant of motion,

Dt(ω · ∇k) = 0,

a fact that follows immediately from the commutation. A consequence of
this is the fact that

ω3 = u2,1 − u1,2

is conserved under two-dimensional flow, i.e. flow for which

Dtx3 = 0.

One of the most important conservation laws in fluid mechanis is the conser-
vation of circulation. This says that

�
γt

u · dx (14)

is constant in time, where γt = X(γ0, t) is a closed loop transported by the
flow. The proof of this fact is easy in Lagrangian coordinates. If γ0 is given
by a parameterization a = α(s) with s ∈ [0, 1], with α(0) = α(1), then γt is
given by x = X(α(s), t). Then integral is

�
γt

u · dx =

� 1

0

∂tXj(α(s), t)(∇aXj(α(s), t))
dα

ds
ds

The Euler equations in Lagrangian form are just

d2

dt2
X(a, t) = −∇xp(X(a, t), t) (15)

where ∇x is Eulerian gradient. Differentiating

d

dt
(∂tX · ∂ak

X) = −∇xp · ∂ak
X +

1

2
∂ak
|∂tX|2 = ∂ak

q
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with

q = −p ◦X +
1

2
|∂tX|2 .

Therefore
d

dt

�
γt

u · dx =

� 1

0

d

ds
q(X(α(s)), t)ds = 0

because the end points coincide.
The Cauchy formula is

ω(X(a, t), t) = (∇aX(a, t))ω0(a). (16)

This is easily verified by checking that

ω̃(a, t) = ω(X(a, t), t)

and
ζ(a, t) = ∇aX(a, t)ω0(a)

obey the same ODE (in view of (4) and (12)) and have the same initial
data, so they must coincide. An immediate and important consequence of
Cauchy’s formula is the Helmholtz theorem that states that vortex lines are
material. Vortex lines are integral curves of the vector field ω(·, t) at fixed
time, that is, they are curves in space, such that the tangent at each point on
the curve is parallel to the direction ω̂ at that point. The fact that they are
material means that they are transported by the flow X(·, t), i.e., the image
of a vortex line under X is again a vortex line. This is clear from Cauchy’s
formula because if γ0 is curve a = α(s) parameterized by some parameter
s ∈ [0, 1] and if it is a vortex line, then dα

ds
= c(s)ω0(α(s)) with some constant

c(s). At later time γt is given by x = X(α(s), t) and therefore its tangent is
given by τ(s) = (∇aX)dα

ds
. This is then τ(s) = c(s)(∇aX)ω0(α(s)) and by

the Cauchy formula τ(s) = c(s)ω(X(α(s), t), t). The Cauchy invariants are

εijkẊ l
kX

l
k = ωi0, i = 1, 2, 3. (17)

where εijk is the signature of the permutation (1, 2, 3) 7→ (i, j, k), taken to be
zero if two indices are the same, and we denoted for graphical ease

Ẋ l
k = ∂t∂ak

Xl(a, t), X l
k = ∂ak

Xl(a, t), ω0 = ω0(a, t).
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The Cauchy invariants are a direct consequence of Cauchy’s formula. Here
is the very short proof. We start with the useful formula

Xp
k =

1

2
εpmnεkrsA

r
mA

s
n (18)

where we denote Aim the matrix elements of (∇xX
−1)◦X which is the inverse

of the matrix ∇aX. The identity above uses the fact that the determinat
equals one. From this we obtain the formula

εmnpA
i
mA

j
n = εijkX

p
k . (19)

Indeed this is true by index orgy:

εijkX
p
k = 1

2
εpmnεijkεkrsA

r
mA

s
n

= 1
2
εpmn (δirδjs − δisδjr)ArmAsn

= εpmnA
i
mA

j
n.

Now, after applying the inverse matrix Aim to both sides of the Cauchy for-
mula we have

ωi0 = Aimω
m = Aimεmnp∂n(up) = AimεmnpẊ

p
jA

j
n

= εijkẊ
p
jX

p
k

by (19), and that gives the Cauchy invariant.
The helicity is the integral �

R3

(u · ω)dx.

This is constant in time. Indeed, using the transport lemma, (1) and (12)
we have

d

dt

�
R3

(u · ω)dx =

�
R3

div

(
ω

(
−p+

|u|2

2

))
dx = 0.

There exist local versions of this (on vortex tubes, i.e. on regions whose
boundaries are foliated by vortex lines). A magnetization variable is a vector
w that obeys

∂tw + u · ∇w + (∇u)∗w = 0.

For any such variable, the scalar k = w · ω is conserved

(∂t + u · ∇)(w · ω) = 0.

10



The Weber formula is
u = P((∇A)∗u0(A)) (20)

Here the Leray-Hodge matrix of operators P is given by

Pjl = δjl − ∂j∆−1∂l = δjl +RjRl, (21)

with
Rj = ∂j(−∆)−

1
2

the Riesz operators. Note that P satisfies the basic property that

Pjl∂lf = 0.

The derivation of the Weber formula is as follows: we start with (15) and
apply (∇aX)∗:

∂2X(a, t)

∂t2
(∇aX(a, t))∗ = −(∇ap̃)(a, t) (22)

or, on components

∂2Xj(a, t)

∂t2
∂Xj(a, t)

∂ai
= −∂p̃(a, t)

∂ai
. (23)

where
p̃(a, t) = p(X(a, t), t). (24)

Pulling out a time derivative in the left-hand side we obtain

∂

∂t

[
∂Xj(a, t)

∂t

∂Xj(a, t)

∂ai

]
= −∂q̃(a, t)

∂ai
(25)

where

q̃(a, t) = p̃(a, t)− 1

2

∣∣∣∣∂X(a, t)

∂t

∣∣∣∣2 . (26)

We integrate (25) in time, fixing the label a:

∂Xj(a, t)

∂t

∂Xj(a, t)

∂ai
= ui(0)(a)− ∂ñ(a, t)

∂ai
, (27)

where

ñ(a, t) =

� t

0

q̃(a, s)ds (28)
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and

u(0)(a) =
∂X(a, 0)

∂t
(29)

is the initial velocity. Note that ñ has dimensions of circulation or of kine-
matic viscosity (length squared per time). The conservation of circulation

�
γ

∂X(γ, t)

∂t
· dγ =

�
γ

∂X(γ, 0)

∂t
· dγ

follows directly from the form (27). Applying [(∇aX)∗]
−1

to (27), and reading
at a = A(x, t), we obtain the formula

ui(x, t) =
(
uj(0)(A(x, t))

) ∂Aj(x, t)
∂xi

− ∂n(x, t)

∂xi
(30)

where
n(x, t) = ñ(A(x, t)). (31)

Because u is divergence-free, the Weber formula follows.
The equation (30) shows that the general Eulerian velocity can be written

in a form that generalizes the Clebsch variable representation:

u = (∇A)∗B −∇n (32)

where B = u(0)(A(x, t)) and, consequently

DtB = 0,

because of the basic
(∂t + u · ∇)A = 0. (33)

Conversely, and somewhat more generally, if one is given a pair of M -uples of
active scalars A = (A1(x, t), · · · , AM(x, t)) and B = (B1(x, t), · · · , BM(x, t))
of arbitrary dimension M , such that the active scalar equations DtAi =
DtBi = 0 hold, and if u is given by

u(x, t) =
M∑
k=1

Bk(x, t)∇xA
k(x, t)−∇xn (34)

with some function n, then it follows that u solves the Euler equations

∂u

∂t
+ u · ∇u+∇π = 0
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where

π = Dtn+
1

2
|u|2

Indeed, the only thing one needs is the kinematic commutation relation

Dt∇f = ∇Dtf − (∇u)∗∇f (35)

that holds for any scalar function f . The kinematic commutation relation
(35) is a consequence of the chain rule, so it requires no assumption other
than smoothness. Differentiating (34) and using the active scalar equations
it follows that

Dt(u) = −
M∑
k=1

((∇xu)∗∇xA
k)Bk −∇x(Dtn) + (∇xu)∗∇n =

−∇x(Dtn)− (∇xu)∗

[
M∑
k=1

(∇xA
k)Bk −∇xn

]
=

−∇x(Dtn)− (∇xu)∗u = −∇x(π).

Clebsch variables are obtained for M = 1. Note that for Clebsch variables
(B1, A1) the vorticity is given by

ω = ∇B1 ×∇A1

and thus the helicity vanishes. Not all flows have zero helicity, and thus
Clebsch variables do not represent all flows.
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