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I. INTRODUCTION

The incompressible Euler equations are

∂u

∂t
+ (u · ∇)u +∇p = 0, (1)

∇ · u = 0. (2)

We will discuss the case of x ∈ R3 and require that the
velocity decay at infinity fast enough. The curl of u,
ω = ∇× u obeys the quadratic vorticity equation,

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u. (3)

The right hand side of this equation equals Sω where S =
1
2

(
∇u + (∇u)T

)
and S can be expressed as a principal-

value singular integral

(S(x, t))ij = P.V.

∫
Kijk(ŷ)ωk(x− y, t)

dy

|y|3
(4)

with

Kijk(ŷ) =
3
8π

(εipkŷj + εjpkŷi) ŷp (5)

and ŷ = y
|y| . The integral operator ω 7→ S is of classical

Calderon-Zygmund type. This means that the equation
of evolution for ω is quadratic nonlinear nonlocal. There
exist equations of this type that exhibit blowup, the for-
mation of finite time singularities from smooth and lo-
calized initial data.

II. CONDITIONS FOR THE ABSENCE OF
BLOWUP

Assuming that the initial data u0 is smooth enough,
the Beale-Kato-Majda criterion [1] states that if the time
integral of the spatial maximum of vorticity is finite, i.e.
if ∫ T

0

(
sup

x
|ω(x, t)|

)
dt < ∞ (6)

then the solution is smooth on the time interval [0, T ].
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A. A necessary criterion based on the direction of
vorticity

The evolution of |ω| is given by

(∂t + u · ∇) |ω| = α|ω| (7)

with

α = (∇u)ξ · ξ = Sξ · ξ, (8)

ξ =
ω

|ω|
(9)

and it turns out [2] that

α(x, t) =
3
4π P.V.

∫
R3 D(ŷ, ξ(x− y, t), ξ(x, t))|ω(x− y, t)| dy

|y|3

(10)
with

D(e1, e2, e3) = (e1 · e3) det(e1, e2, e3). (11)

Clearly, if ξ does not vary in space then α = 0; this situ-
ation is encouneterd in two space dimensions. In general

|D(ŷ, ξ(x− y, t), ξ(x, t))| ≤
|ξ(x− y, t)× ξ(x, t)| = | sinφ| (12)

where φ is the angle between the unit vortex line tangent
vectors ξ(x−y, t) and ξ(x, t). Some degree of smoothness
of the bundle of vortex lines near a potential singularity
may result in averting blowup [3]. For simplicity, we’ll
discuss Lipschitz continuous cases, although Hölder con-
tinuous cases may be analyzed in a similar fashion. We
distinguish between the sine-Lipschitz case (i.e. sin φ is
locally Lipschitz), when the vortex lines are at worst lo-
cally osculating anti-parallel

|ξ(x− y, t)× ξ(x, t)| ≤ Ca|y|, for |y| ≤ r(t) (13)

and the Lipschitz case (i.e. ξ is locally Lipschitz) when
the vortex lines are at worst locally osculating parallel

|ξ(x− y, t)− ξ(x, t)| ≤ Cp|y|, for |y| ≤ r(t) (14)

Clearly, Lipschitz implies sine-Lipschitz because

|ξ(x− y, t)− ξ(x, t)| ≥ |ξ(x− y, t)× ξ(x, t)| . (15)
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but the other implication is not true in general. In order
to analyze the depletion effect due to organized vortex
line structure we take a fixed ρ > 0, consider r < ρ, we
take a smooth function 0 ≤ χ ≤ 1 compactly supported
in the unit ball in R3 and define an inner rate of strain
Sr as

(Sr(x, t))ij =
P.V.

∫
χ

(
y
r

)
Kijk(ŷ)ωk(x− y) dy

|y|3 .
(16)

Similarly, we define an outer rate of strain Sρ as

(Sρ(x, t))ij =
P.V.

∫ (
1− χ

(
y
ρ

))
Kijk(ŷ)ωk(x− y) dy

|y|3
(17)

and an intermediate rate of strain as

(Sρ
r (x, t))ij =

P.V.
∫ (

χ
(

y
ρ

)
− χ

(
y
r

))
Kijk(ŷ)ωk(x− y) dy

|y|3 .
(18)

This yields a decomposition

S = Sr + Sρ
r + Sρ (19)

Using (8) we have a corresponding decomposition of the
stretching factor:

α(x, t) = αr(x, t) + αρ
r(x, t) + αρ(x, t). (20)

For instance, the inner stretching factor is

αr(x, t) =
3
4π P.V.

∫
χ

(
y
r

)
D(ŷ, ξ(x− y, t) , ξ(x, t))|ω(x− y, t)| dy

|y|3 .

(21)
Now let us make some specific assumptions about the

blowup. These are not exhaustive, but exemplify the
method of [3] in sligtly different circumstances. Our
statements will be for the time interval [0, T ) and we
should think of this being a short time before the blowup,
by adjusting t = 0 to be just before the suspected blowup
time. We assume that there exists a point in space (with-
out loss of generality, this can be x = 0) so that the
vorticity is going to blow up at t = T somewhere in the
neighborhood Bt = {x||x| < r(t)} of this point. We do
not assume that the vorticity is small outside this region,
nor do we assume that the velocity is bounded.

Blowup assumption A: We assume that there exists
one vortex line that is sine-Lipschitz and stays in Bt,
that is,

(A)


∃q ∈ B0 such that x = X(q, t) ∈ Bt for t ∈ [0, T ),
(13) holds for x = X(q, t), |y| ≤ r(t),
∃c, 0 < c ≤ 1, such that
|ω(X(q, t), t)| ≥ c supz∈R3 |ω(z, t)|.

Here X(q, t) is the Lagrangian trajectory with initial la-
bel q. The assumption is thus that there exists one tra-
jectory carrying a fraction of the maximum vorticity and
which has a coherent sine-Lipschitz vortex line field near
it at each instance of time, short time before blowup.

From (13) and (21) we obtain with x = X(q, t), for
r ≤ r(t)

|αr(x, t)| ≤ rCa sup
z∈R3

|ω(z, t)|. (22)

For the intermediate stretching factor we obtain from
(18) and one integration by parts that

|αρ
r(x, t)| ≤ c

U(x, t)
r

(23)

with

U(x, t) = sup
|x−z|≤ρ

|u(z, t)|. (24)

The outer stretching factor is bounded

|αρ(x, t)| ≤ cρ−
3
2 ‖u0‖L2 . (25)

Denoting

U(t) = sup
x

U(x, t), Ω(t) = sup
z∈R3

|ω(z, t)| (26)

we can prove using only the Biot-Savart law [4] and the
conservation of kinetic energy that

U(t) ≤ c‖u0‖
2
5
L2Ω(t)

3
5 (27)

holds for t < T . This is done by splitting the Biot-Savart
integral in an inner integral, where we use Ω(t), and an
outer integral, where we integrate by parts and use ‖u‖L2 .
The inequality (27) then follows by choosing the optimal
splitting in order to minimize the bound. Putting to-
gether the inequalities (22), (23), (25) and using

|ω(X(q, t), t)| ≤ |ω0(q)| exp
∫ t

0

|α(X(q, s), s)|ds (28)

we see that if∫ T

0

inf
r≤r(t)

{
U(t)

r
+ rCaΩ(t)

}
dt < ∞ (29)

then no blowup occurs. For example, let us make the
assumption that

(T − t)Ω(t) ≤ C (30)

holds with some constant C. If r(t) ∼ (T − t)a, then
we have two possibilities. If a < 1

5 then we may choose

r =
√

U(t)
CΩ(t) for T −t small, optimizing in (29), and using

(27); we see then that no blowup may occur. If a ≥ 1
5 ,

then we have to take r = r(t) in (29) and in that case no
blow up occurs if a < 2

5 .
Thus, if the blow up assumption A holds and also (30)

is valid then a ≥ 2
5 is necessary for blowup. That means

that in order for blow up to occur, the vortex lines must
become incoherent at distances that are rapidly vanish-
ing.
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This kind of argument can yield more restrictive results
if more information about the geometry of the vortical
region is provided.

There are many results giving criteria for the absence
of blowup. In [5] it is shown that simple one-scale selfsim-
ilar blowup is impossible. Absence of squirt singularities
is proved in [6]. In [7] a detailed analysis was carried
out based on a number of assumptions concerning the
geometry of vortex lines and the magnitude of velocity.

B. A sufficient criterion based on the pressure
Hessian

Let

Π(x, t) =
(

∂2p

∂xi ∂xj

)
(31)

and consider

Q(t) = {x | Π(x, t) > 0} (32)

the region where Π is positive definite. (Note that non-
degenerate local minima of p(x, t) are in Q(t).) Then the
following is sufficient for blowup:

(B)


∃a ∈ Q(0), such that X(a, t) ∈ Q(t), ∀t ∈ [0, T ]
ω0(b) = 0, for |b− a| small enough,
Tρ(S0)(a) > 3
where ρ(S0) = is the spectral radius of S0.

The idea of the proof was used in [8] to prove blowup
for distorted Euler equations. We consider the equation
obeyed by the rate of strain matrix,

DtS + S2 + Π− |ω|2

4
P⊥

ω = 0 (33)

where Dt = ∂t +u ·∇ and P⊥
ω is the matrix that projects

a vector onto the plane perpendicular on the direction
of ω. The proof of the result is by contradiction. We
assume that the solution is smooth up to time T . Then
one can find a smooth function φ0 with small support so
that 

∫
R3 |φ0(a)|2da = 1,∫

R3 S0(a)φ0(a) · φ0(a)da < 0,
T

∣∣∫
R3 S0(a)φ0(a) · φ0(a)da

∣∣ > 1,
φ0|ω0|2 = 0,

(34)

and also, if we solve

Dtφ = 0, φ(a, 0) = φ0(a) (35)

then

suppφ(t) ⊂ Q(t) holds, for 0 ≤ t ≤ T. (36)

We take

y(t) =
∫

S(x, t)φ(x, t) · φ(x, t)dx (37)

This blows up before T :

d

dt
y + y2 ≤ 0 (38)

because

|ω(x, t)|2|φ(x, t)| = 0, (39)

∫
R3
|φ(x, t)|2dx = 1 (40)

and Cauchy-Schwarz∫
R3
|Sφ|2dx ≥ y2(t). (41)

III. WEAK SOLUTIONS

The Navier-Stokes equations have global weak solu-
tions in a natural space [9]. The same cannot be said
about the Euler equations, but can be said about the
surface quasi-geostrophic equations ([10], [11]). A general
methodology for the construction of useful weak solutions
does not exist, but the steps are usually: good approxi-
mation, integration by parts, weak continuity. Minimal
requirements for weak solutions for the Euler equations
are that they should be given by a weakly continuous
function of time u(t) with values in the space of locally
L2 functions (uniformly, a technical requirement)

u ∈ Cw[0, T ;L2
loc,u]

such that, for every divergence-free compactly supported
smooth function ϕ∫

u(t) · ϕdx−
∫

u0 · ϕdx =∫ t

0

∫
Trace [(u⊗ u) (∇ϕ)] dxds

holds. The surface quasi-geostrophic equation (QG
henceforth) {

∂tθ + u · ∇θ = 0,
u = R⊥θ

(42)

has served as a didactic model for 3D Euler equations
[2], [12]. Here R = (∇)Λ−1 are Riesz operators and
Λ = (−∆)1/2 is the Zygmund operator. The equations
are in two spatial dimensions and θ is a scalar. Analo-
gous to vortex lines, the iso-θ lines are material, and the
“vorticity” equation

∂t

(
∇⊥θ

)
+ u · ∇

(
∇⊥θ

)
=

(
∇⊥θ

)
· ∇u (43)

has the same stretching term as (3). A criterion like the
Beale-Kato-Majda criterion is valid, and the geometric
depletion of nonlinearity via the direction of “vorticity”
takes place as well. In order to understand why these
equations have weak solutions, the easiest route is via
Fourier series in the periodic case.
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A. Weak solutions for QG

For periodic θ =
∑

j∈Z2 θ̂(j)ei(j·x), the equation (42) is
equivalent to an infinite sequence of ordinary differential
equations:

d

dt
θ̂(l) =

∑
j+k=l

(
j⊥ · k

)
|j|−1θ̂(j)θ̂(k) (44)

Using the fact that j⊥ · k is antisymmetric in j, k while
the sum is over a symmetric set of vectorial indices and
θ̂(j)θ̂(k) is symmetric in j, k, it follows that

d

dt
θ̂(l) =

∑
j+k=l

γl
j,kθ̂(j)θ̂(k) (45)

where

γl
j,k =

1
2
(j⊥ · k)

(
1
|j|

− 1
|k|

)
(46)

Now clearly ∣∣γl
j,k

∣∣ ≤ |l|2

max{|j| , |k|}
(47)

Consequently

‖(−∆)−1 [B(θ1, θ1)−B(θ2, θ2)] ‖w ≤
C (‖θ1‖L2 + ‖θ2‖L2)×{

‖θ1 − θ2‖w

(
1 + log+ ‖θ1 − θ2‖w

)} (48)

where the weak norm ‖θ‖w = supj∈Z2 |θ̂(j)| We see that
the nonlinearity is weakly quasi-Lipschitz, with loss of
two derivatives. The loss of derivatives does not impede
existence theory for weak solutions. It does however pre-
vent a proof of uniqueness of these weak solutions, and
that is still open. The inequality allows a simple strategy
of proof of existence of weak solutions. Any approxima-
tion procedure that gives long lived solutions and respects
the conservation law θ ∈ L2 can be used. Then passing
to a weakly convergent subsequence we obtain the fact
that the weak limit solves weakly the equation, because
of the inequality (48) and the strong convergence in ‖ ‖w

that follows from weak L2 convergence. Although the
QG equation is two dimensional, the reason for the prop-
erty that allowed the global weak solutions is structural,
not dimensional.

B. Littlewood-Paley decomposition and Euler
equations

The Littlewood-Paley decomposition is a useful tool.
For functions that are sufficiently well behaved at infin-
ity it is enough to look at the so called inhomogeneous
decomposition:

u =
∞∑

j=−1

∆j(u) (49)

The operators ∆j are defined using the Fourier transform
F and have the properties

suppF(∆j(u)) ⊂ {ξ ; |ξ| ∈ 2j [ 12 , 5
4 ]}

∆j∆k 6= 0 ⇒ |j − k| ≤ 1,
(∆j + ∆j+1 + ∆j+2) ∆j+1 = ∆j+1

∆j (Sk−2(u)∆k(v)) 6= 0 ⇒ k ∈ [j − 2, j + 2]
where Sk(u) =

∑k
j=−1 ∆j(u).

Specifically,

∆j = Ψj(D) = Ψ0(2−jD), ∆−1u = Φ−1(D)u.

where Φ−1 is radial, nonincreasing, C∞ and Φ−1 = 1, 0 ≤ r ≤ a
Φ−1 = 0, r ≥ b
0 < a < b < 1

Ψ0(r) = Φ−1(r/2)− Φ−1(r), Ψj(r) = Ψ0(2−jr).

(Ψ(D)u)(x) = (2π)−n

∫
Rn

ei(x·ξ)Ψ(ξ)û(ξ)dξ

û(ξ) = F(u)(ξ) =
∫

Rn e−i(x·ξ)u(x)dx and a < b < 4
3a

(For instance a = 1/2, b = 5/8 works.)
The Littlewood decomposition can be used to define

inhomogeneous Besov spaces

‖u‖Bs
p,q

=
∥∥∥{

2sj‖∆j(u)‖Lp

}
j

∥∥∥
`q(N)

.

and the space Bs
p,c(N) which is the closed subspace of

Bs
p,∞ formed with functions such that

lim
j→∞

2sj‖∆j(u)‖Lp = 0.

In Bs
p,q, s counts the number of derivatives, p refers to

the Lp space and q is an interpolation index.

C. Euler weak solutions: main difficulty

The nonlinearity in the Euler equations is

B(u, v) = P (u · ∇v) = ΛH(u, v) (50)

with P the Leray-Hodge projection on divergence-free
functions and

[H(u, v)]i = Rj(ujvi) + Ri(RkRl(ukvl)), (51)

and Rk = ∂kΛ−1 Riesz transforms. Applying ∆q we have

∆q(B(u, v)) = Cq(u, v) + Iq(u, v) (52)

where

Cq(u, v) =
∑

p≥q−2, |p−p′|≤2

∆q(ΛH(∆pu, ∆p′v)) (53)
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and

Iq(u, v) =
∑2

j=−2 [∆qΛH(Sq+j−2u, ∆q+jv) +
∆qΛH(Sq+j−2v,∆q+ju) ]

(54)

is essentially the Bony paraproduct [13]. For L2 weak
solutions it would be desirable to have a bound of the
type

‖Λ−M (B(u1, u1)−B(u2, u2)) ‖w ≤
C‖u1 − u2‖a

w [‖u1‖L2 + ‖u2‖L2‖]2−a (55)

with a > 0 and ‖f‖w a weak enough norm so that weak
convergence in L2 implies, after localization, strong con-
vergence in the w norm. The number M could be as
large as needed. An inequality (55) is true for I(u, v) but
not for C(u, v). On the other hand, if one wishes weak
solutions with positive derivative exponents, for instance
weak solutions in B

1
3
3,q, then C(u, v) has good continuity

properties, and I(u, v) does not [14]. The terms Iq, if
retained alone, would produce a leaky Galerkin approxi-
mation

∂∆q(u)
∂t

= Iq(u, u),

and the terms Cq(u, u) an ill-formed shell model

∂∆q(u)
∂t

= Cq(u, u).

A description of the regularity of some shell models is
given in [15].

D. The Onsager Conjecture

Although weak solutions with positive smoothness
have not been proven to exist (see [16], [17] for examples
of weak solutions), the subject is important because of
the relation to turbulence. The Onsager conjecture [18],
[19] asserts that kinetic energy is conserved for solutions
in Cs with s > 1

3 and dissipated for rougher solutions,
in particular in C

1
3 . The paper [20] proves that if weak

solutions belong to L3[0, T ;Bs
3,∞] with s > 1

3 then they
conserve kinetic energy. The paper [21] extended this
to spaces in which the fractional derivative Ds (2js in
the Littlewood-Paley decomposition) is replaced with any
function of f(D) such that f(D)D− 1

3 → ∞ as D → ∞.

This actually follows also from the proof in [20]. More
recently, it was shown [14] that weak solutions of the 3D
Euler equations in u ∈ L3([0, T ], B1/3

3,c(N)) conserve ki-
netic energy. On the other hand, there exist functions in
B

1
3
3∞ that are divergence-free and do not conserve energy

in the sense to be made more precise below. Consider
the flux

ΠN :=
∫

R3
Trace [SN (u⊗ u)∇SN (u)] dx. (56)

This is the (formal) time derivative

ΠN =
1
2

d

dt

∫
R3
|SN (u(t))|2 dx

of the energy contained in SN (u) when u solves the Eu-
ler equation. There exist functions in B

1/3
3,∞ that are

divergence-free and obey lim infN→∞ |ΠN | > 0. On the

other hand, if u ∈ B
1
3
3,c(N) then lim supN→∞ |ΠN | = 0.

More specifically, if we let

K(j) =

{
2

2j
3 , j ≤ 0;

2−
4j
3 , j > 0,

and

dj = 2j/3‖∆j(u)‖3, for j ≥ −1, dj = 0 for j < −1
d2 = {d2

j}j

If u ∈ L2 then it can be shown that

|ΠN | ≤ C(K ∗ d2)3/2(N) (57)

where ∗ means convolution of sequences. Consequently,
of course

lim sup
N→∞

|ΠN | ≤ lim sup
N→∞

d3
N , (58)

but moreover, a strong localization of the flux results
from (57).
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