Boundedness, Harnack inequality and Hölder continuity for weak solutions

Intoduction to PDE

We describe results for weak solutions of elliptic equations with bounded coefficients in divergence-form. The ideas of proofs come from DeGiorgi, Nash and Moser. References abound; we mostly use Gilbarg and Trudinger. We discuss equations

$$
\begin{equation*}
L u=g+\partial_{i} f_{i} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
L u=-\partial_{i}\left(a_{i j} \partial_{j} u+b_{i} u\right)+c_{j} \partial_{j} u+d u \tag{2}
\end{equation*}
$$

We assume uniform ellipticity

$$
\begin{equation*}
a_{i j}(x) \xi_{i} \xi_{j} \geq \lambda|\xi|^{2} \tag{3}
\end{equation*}
$$

with $\lambda>0$ good for all x considered. We assume that $a_{i j}=a_{j i}$ are measurable and bounded,

$$
\begin{equation*}
\sum\left|a_{i j}(x)\right|^{2} \leq \Lambda^{2} . \tag{4}
\end{equation*}
$$

We assume that the coefficients b, c, d are bounded

$$
\begin{equation*}
\lambda^{-2}\left(\sum\left|b_{i}(x)\right|^{2}+\left|c^{i}(x)\right|^{2}\right)+\lambda^{-1}|d(x)| \leq \Gamma \tag{5}
\end{equation*}
$$

and that the right hand side $g \in L^{\frac{q}{2}}, f \in\left(L^{q}\right)^{n}$, for some $q>n$. Denoting by

$$
\begin{aligned}
& A_{i}(x, z, p)=a_{i j}(x) p_{j}+b_{i}(x) z+f_{i} \\
& B(x, z, p)=c_{j}(x) p_{j}+d(x) z-g(x)
\end{aligned}
$$

we say that u is a $W^{1,2}(\Omega)$ weak subsolution in Ω if

$$
\begin{equation*}
\int_{\Omega}\left(\partial_{i} v\right) A_{i}(x, u, \nabla u)+v B(x, u, \nabla u) d x \leq 0 \tag{6}
\end{equation*}
$$

holds for all $v \in C_{0}^{1}(\Omega), v \geq 0$. We say that u is a supersolution if the inequality is reversed

$$
\begin{equation*}
\int_{\Omega}\left(\partial_{i} v\right) A_{i}(x, u, \nabla u)+v B(x, u, \nabla u) d x \geq 0 \tag{7}
\end{equation*}
$$

We will quote theorems in full generality but we will present the ideas of proofs only, and for that purpose we will take $b=c=d=f=g=0$.

1 Local boundedness, Harnack inequality

We denote

$$
k(R)=\lambda^{-1}\left(R^{1-\frac{n}{q}}\|f\|_{L^{q}}+R^{2\left(1-\frac{n}{q}\right)}\|g\|_{L^{\frac{q}{2}}}\right)
$$

Theorem 1. If u is a $W^{1,2}(\Omega)$ subsolution of (1) then there exists a constant $C=C\left(n, \frac{\Lambda}{\lambda}, q, p, \Gamma R\right)$ such that, for all balls $B(y, 2 R) \subset \Omega$, and $p>1$ we have

$$
\begin{equation*}
\sup _{B(y, R)} u \leq C\left(R^{-\frac{n}{p}}\left\|u^{+}\right\|_{L^{p}(B(y, 2 R))}+k(R)\right) \tag{8}
\end{equation*}
$$

If u is a $W^{1,2}(\Omega)$ supersolution then

$$
\begin{equation*}
\sup _{B(y, R)}(-u) \leq C\left(R^{-\frac{n}{p}}\left\|u^{-}\right\|_{L^{p}(B(y, 2 R))}+k(R)\right) \tag{9}
\end{equation*}
$$

The idea of proof is to use $v=\eta^{2} u^{\beta}$ as test function, where η is a cutoff function, β is arbitrary, positive, and deduce bounds of the type

$$
\int|\nabla u|^{2} u^{\beta-1} \eta^{2} d x \leq C \int|\nabla \eta|^{2} u^{\beta+1} d x
$$

This, together with a Sobolev embedding produces bounds for higher L^{p} norms on the left hand side, depending on lower L^{p} norms on the right hand side on larger domains. An iteration, due to Moser, finishes the proof. Unfortunately, because u^{β} is not an admissible test function we have to trim it first. We consider $k>0$ a small positive constant, M a large positive constant. We take $\bar{u}=u^{+}+k$ and set $\bar{u}_{M}=\bar{u}$ if $u<M, \bar{u}_{M}=M+k$ if $u \geq M$. We take now

$$
v=\eta^{2}\left(\bar{u}_{M}^{\beta-1} \bar{u}-k^{\beta}\right) .
$$

where η is a nonnegative smooth cutoff function and $\beta>0$. We take without loss of generality $y=0, R=4$ and $\eta \in C_{0}^{1}\left(B_{4}\right)$. We denote $B_{R}=B(0, R)$. Now v is a legitimate test function and

$$
\nabla v=\eta^{2} \bar{u}_{M}^{\beta-1}\left[(\beta-1) \nabla \bar{u}_{M}+\nabla \bar{u}\right]+2 \eta \nabla \eta\left(\bar{u}_{M}^{\beta-1} \bar{u}-k^{\beta}\right)
$$

Here we used the fact that $\bar{u}=\bar{u}_{M}$ when the gradient of the latter is nonzero. Later we will use also that $\nabla \bar{u}=\nabla \bar{u}_{M}$ when the latter is nonzero. Because u is a subsolution we obtain (remember, $b=c=d=f=g=0$ in our proof)

$$
\int \eta^{2} \bar{u}_{M}^{\beta-1}\left[(\beta-1)\left|\nabla \bar{u}_{M}\right|^{2}+|\nabla \bar{u}|^{2}\right] d x \leq C \int|\nabla \eta| \eta\left(|\nabla \bar{u}| \bar{u}_{M}^{\beta-1} \bar{u}\right) d x .
$$

Here we used the fact that $\bar{u}_{M}^{\beta-1} \bar{u}-k^{\beta} \geq 0$ to drop the k^{β} term in the right hand side. After hiding the term involving $\nabla \bar{u}$ from the right hand side in the left hand side, we have (new constant C !)

$$
\int \eta^{2} \bar{u}_{M}^{\beta-1}\left[(\beta-1)\left|\nabla \bar{u}_{M}\right|^{2}+|\nabla \bar{u}|^{2}\right] d x \leq C \int|\nabla \eta|^{2} \bar{u}^{2} \bar{u}_{M}^{\beta-1} d x
$$

We let now $w=\bar{u}_{M}^{\frac{\beta-1}{2}} \bar{u}$. The inequality above implies

$$
\int \eta^{2}|\nabla w|^{2} d x \leq C(\beta+1) \int|\nabla \eta|^{2} w^{2} d x
$$

In view of the fact that $\nabla(\eta w)=\eta \nabla w+w \nabla \eta$ and the estimate above we have, using the Sobolev embedding,

$$
\left(\int(\eta w)^{\frac{2 n}{n-2}} d x\right)^{\frac{n-2}{n}} \leq C(\beta+1) \int|\nabla \eta|^{2} w^{2} d x
$$

if $n>2$. (If $n=2$ we replace $\frac{2 n}{n-2}$ in the left hand side by any $q<\infty$). We choose appropriately now the test function η so that, for balls $B_{r} \subset B_{R}$ we obtain

$$
\left(\int_{B_{r}} w^{\frac{2 n}{n-2}} d x\right)^{\frac{n-2}{n}} \leq C(\beta+1)\left(\frac{1}{R-r}\right)^{2} \int_{B_{R}} \bar{u}^{\beta+1} d x
$$

Writing $q=\beta+1$, we have

$$
\left(\int_{B_{r}} \bar{u}_{M}^{\frac{n q}{n-2}} d x\right)^{\frac{n-2}{n}} \leq C q\left(\frac{1}{R-r}\right)^{2} \int_{B_{R}} \bar{u}^{q} d x
$$

for any $q>1$ and $r<R$. Letting $M \rightarrow \infty$ and then $k \rightarrow 0$ we obtain

$$
\left\|u^{+}\right\|_{L^{\frac{n q}{n-2}\left(B_{r}\right)}} \leq\left(C \frac{q}{(R-r)^{2}}\right)^{\frac{1}{q}}\left\|u^{+}\right\|_{L^{q}\left(B_{R}\right)}
$$

Denoting the amplification factor by $a=\frac{n}{n-2}>1$, and choosing for $i=$ $0,1, \ldots, q_{i}=p a^{i}, r_{i}=2+2^{1-i}$, we obtain

$$
\left\|u^{+}\right\|_{L^{q_{i+1}\left(B_{r_{i+1}}\right)}} \leq C^{\frac{i}{a^{2}}}\left\|u^{+}\right\|_{L^{q_{i}\left(B_{r_{i}}\right)}}
$$

and so

$$
\left\|u^{+}\right\|_{L^{q_{i}}\left(B_{r_{i}}\right)} \leq C^{\sum \frac{i}{a^{i}}}\left\|u^{+}\right\|_{L^{p}\left(B_{4}\right)}
$$

and thus

$$
\left\|u^{+}\right\|_{L^{\infty}\left(B_{2}\right)} \leq C\left\|u^{+}\right\|_{L^{p}\left(B_{4}\right)}
$$

proving the theorem for subsolutions. The same idea of proof works for supersolutions. Now we prove a lemma, a weak Harnack inequality.

Theorem 2. If u is a supersolution of (1) that is nonnegative in a ball $B(y, 4 R) \subset \Omega$ then

$$
R^{-\frac{n}{p}}\|u\|_{L^{p}(B(y, 2 R)} \leq C\left(\inf _{B(y, R)} u+k(R)\right)
$$

holds for $1 \leq p<\frac{n}{n-2}$ with $C=C\left(n, \frac{\Lambda}{\lambda}, q, p, R \Gamma\right)$.
The idea of proof is similar to the one for L^{∞} bounds except we are going to use negative powers, and a result of John-Nirenberg, of independent interest. We start by assuming without loss of generality that $y=0, R=1$, and so on. Also, we may assume u is bounded (either by the previous result, or by a trimming procedure like in the proof above). We set

$$
v=\eta^{2} \bar{u}^{\beta}
$$

with $\eta \in C_{0}^{1}\left(B_{4}\right)$ a nonnegative cutoff function,

$$
\bar{u}=u+k
$$

with $k>0$ and $\beta \neq 0$. Using the fact that u is a supersolution we have, after hiding one term,

$$
\int \eta^{2} \bar{u}^{\beta-1}|\nabla u|^{2} d x \leq C(|\beta|) \int|\nabla \eta|^{2} \bar{u}^{\beta+1} d x
$$

The constant $C(|\beta|)$ is bounded when $|\beta|>\epsilon>0$. We set $w=\bar{u}^{\frac{\beta+1}{2}}$ if $\beta \neq-1$ and $w=\log \bar{u}$ if $\beta=-1$. Letting $\gamma=\beta+1$ we have

$$
\int|\eta \nabla w|^{2} \leq C(|\beta|) \gamma^{2} \int|\nabla \eta|^{2} w^{2} d x
$$

if $\beta \neq-1$, and

$$
\begin{equation*}
\int|\eta \nabla w|^{2} \leq C \int|\nabla \eta|^{2} d x \tag{*}
\end{equation*}
$$

if $\beta=-1$. We will refer to this inequality at the end of the proof. Thus, for $n>2$, from the Sobolev inequality we obtain the inequality

$$
\|\eta w\|_{L^{\frac{2 n}{n-2}}} \leq C(1+|\gamma|)\||\nabla \eta| w\|_{L^{2}}
$$

Choosing η like before, we have

$$
\|w\|_{L^{2 a}\left(B_{r_{1}}\right)} \leq C(1+|\gamma|)\left(r_{2}-r_{1}\right)^{-1}\|w\|_{L^{2}\left(B_{r_{2}}\right)}
$$

with $a=\frac{n}{n-2}$ as before, and $r_{2}>r_{1}$. Denote

$$
\Phi(p, r)=\left(\int_{B_{r}}|\bar{u}|^{p} d x\right)^{\frac{1}{p}}
$$

We have the inequalities

$$
\begin{array}{ll}
\Phi\left(a \gamma, r_{1}\right) \leq\left(\frac{C(1+|\gamma|)}{r_{2}-r_{1}}\right)^{\frac{2}{|\gamma|}} \Phi\left(\gamma, r_{2}\right), & \text { if } \gamma>0 \\
\Phi\left(\gamma, r_{2}\right) \leq\left(\frac{C(1+|\gamma|)}{r_{2}-r_{1}}\right)^{\frac{2}{|\gamma|}} \Phi\left(a \gamma, r_{1}\right), & \text { if } \gamma<0 .
\end{array}
$$

We take any $0<p_{0}<p<a$ and we have, with $r_{m}=1+2^{-m}, m=0, \ldots$, and appropriate $\gamma_{m}<0$,

$$
\Phi\left(-p_{0}, 3\right) \leq C \Phi(-\infty, 1)
$$

We can check that $\Phi(-\infty, r)=\inf _{B_{r}} \bar{u}$. We also can prove one step, using $\gamma>0$,

$$
\Phi(p, 2) \leq C \Phi\left(p_{0}, 3\right)
$$

We would be therefore done if we could find some $p_{0}>0$ such that

$$
\Phi\left(p_{0}, 3\right) \leq C \Phi\left(-p_{0}, 3\right)
$$

This follows from a result of F. John and Nirenberg.

Theorem 3. (F. John-L. Nirenberg) Let $u \in W^{1,1}(U)$ where U is convex. Suppose that there exists a constant K so that

$$
\int_{U \cap B_{r}}|\nabla u| d x \leq K r^{n-1}
$$

holds for all balls B_{r}. Then there exists $\sigma_{0}>0$ and C depending only on n such that

$$
\int_{\Omega} \exp \left(\frac{\sigma}{K}\left|u-u_{U}\right|\right) d x \leq C(\operatorname{diam} U)^{n}
$$

holds with $\sigma=\sigma_{0}|U|(\operatorname{diam} U)^{-n}$ and $u_{U}=f_{U} u$.
Let us note that, from the inequality $(*)$, we obtain, via Schwartz

$$
\int_{B_{r}}|\nabla w| d x \leq C r^{\frac{n}{2}}\left(\int_{B_{r}}|\nabla w|^{2} d x\right)^{\frac{1}{2}} \leq C r^{n-1}
$$

Therefore, by the theorem of John-Nirenberg, there exists a constant $p_{0}>0$ such that

$$
\int_{B_{3}} \exp \left(p_{0}\left|w-w_{3}\right|\right) d x \leq C
$$

where $w_{3}=f_{B_{3}} w d x$. Therefore

$$
\left(\int_{B_{3}} e^{p_{0} w} d x\right)\left(\int_{B_{3}} e^{-p_{0} w} d x\right) \leq C e^{p_{0} w_{3}} e^{-p_{0} w_{3}}=C
$$

This concludes the proof of the weak Harnack inequality, modulo the JohnNirenberg result. Putting together Theorem 1 and Theorem 2 we have the full Harnack inequality for weak solutions:

Theorem 4. If u is a weak $W^{1,2}(\Omega)$ solution with $u \geq 0$ then there exists a constant C so that

$$
\sup _{B(y, R)} u \leq C \inf _{B(y, R)} u
$$

holds for any $y \in \Omega$ so that $B(y, 4 R) \subset \Omega$. Moreover, for any $U \subset \subset \Omega$ there exists a constant, depending on U and Ω so that

$$
\sup _{U} u \leq C \inf _{U} u
$$

2 Hölder continuity

The weak Harnack inequality is sufficient to prove the Hölder continuity of weak solutions.

Theorem 5. Let u be a weak $W^{1,2}(\Omega)$ solution of (1). Then u is locally Hölder continuous in Ω. For every ball $B_{0}=B\left(y, R_{0}\right) \subset \Omega$ there exists a constant $C=C\left(n, \frac{\Lambda}{\lambda}, \Gamma, q, R_{0}\right)$ such that

$$
\operatorname{osc}_{B(y, R)} u \leq C R^{\alpha}\left(R_{0}^{-\alpha} \sup _{B_{0}}|u|+k\right)
$$

where $\alpha=\alpha\left(n, \frac{\Lambda}{\lambda}, \Gamma R_{0}, q\right)>0$ and $k=\lambda^{-1}\left(\|f\|_{L^{q}}+\|g\|_{L^{\frac{q}{2}}}\right)$.
Moreover, for every $U \subset \subset \Omega$, there exists $\alpha=\alpha\left(n, \frac{\Lambda}{\lambda}, \Gamma d\right)>0$ where $d=\operatorname{dist}(U, \partial \Omega)$, so that

$$
\|u\|_{C^{\alpha}(U)} \leq C\left(\|u\|_{L^{2}(\Omega)}+k\right)
$$

We provide the proof for the case $b=c=d=f=g=0$. Let $M_{0}=$ $\sup _{B_{0}}|u|, M_{4}=\sup _{B(y, 4 R)} u, m_{4}=\inf _{B(y, 4 R)} u, M_{1}=\sup _{B(y, R)} u, m_{1}=$ $\inf _{B(y, R)} u$. We have

$$
L\left(M_{4}-u\right)=0, \quad L\left(u-m_{4}\right)=0
$$

so, we can apply the weak Harnack inequality of Theorem 2 with $p=1$. We obtain

$$
R^{-n} \int_{B(y, 2 R)}\left(M_{4}-u\right) d x \leq C\left(M_{4}-M_{1}\right)
$$

and

$$
R^{-n} \int_{B(y, 2 R)}\left(u-m_{4}\right) \leq C\left(m_{1}-m_{4}\right)
$$

Adding, we obtain

$$
\left(M_{4}-m_{4}\right) \leq C\left[M_{4}-m_{4}-\left(M_{1}-m_{1}\right)\right]
$$

and so

$$
M_{1}-m_{1} \leq \gamma\left(M_{4}-m_{4}\right)
$$

with $\gamma=\frac{C-1}{C}<1$. We have thus, for $\omega(R)=\operatorname{osc}_{B(y, R)} u$

$$
\omega(R) \leq \gamma \omega(4 R)
$$

It follows by iteration (exercise!) that

$$
\omega(R) \leq C R^{\alpha} \omega\left(R_{0}\right)
$$

3 Riesz potentials and the John-Nirenberg inequality

We use the notation of Gilbarg and Trudinger

$$
\left(V_{\mu} f\right)(x)=\int_{\Omega}|x-y|^{n(\mu-1)} f(y) d y
$$

with $\mu \in(0,1]$. This is the same as the Riesz potential of order $n \mu$ of $f \chi_{\Omega}$, where Ω is a bounded open set and χ_{Ω} its characteristic (indicator) function. Note that

$$
V_{\mu} 1 \leq \mu^{-1} \omega_{n}^{1-n}|\Omega|^{\mu}
$$

Indeed, choosing R so that $|\Omega|=\omega_{n} R^{n}$, we have

$$
\left(V_{\mu} 1\right)(x)=\int_{\Omega}|x-y|^{n(\mu-1)} d y \leq \int_{B(x, R)}|x-y|^{n(\mu-1)} d y
$$

because $|\Omega \backslash B(x, R)|=|B(x, R) \backslash \Omega|$ and the points in $\Omega \backslash B(x, R)$ are farther away and hence have smaller potential the points in $B(x, R) \backslash \Omega$.

Lemma 1. The operator V_{μ} maps $L^{p}(\Omega)$ continuously into $L^{q}(\Omega), 1 \leq q \leq \infty$

$$
0 \leq \delta=\delta(p, q)=p^{-1}-q^{-1}<\mu
$$

Moreover

$$
\left\|V_{\mu} f\right\|_{L^{q}} \leq\left(\frac{1-\delta}{\mu-\delta}\right)^{1-\delta} \omega_{n}^{1-\mu}|\Omega|^{\mu-\delta}\|f\|_{L^{p}}
$$

The proof: choose r so that

$$
r^{-1}=1+q^{-1}-p^{-1}=1-\delta
$$

Then $h(x-y)=|x-y|^{n(\mu-1)}$ is in $L^{r}(\Omega)$ and, using the same trick as above

$$
\|h\|_{L^{r}} \leq\left(\frac{1-\delta}{\mu-\delta}\right)^{1-\delta} \omega_{n}^{1-\mu}|\Omega|^{\mu-\delta}
$$

Now we write

$$
h|f|=h^{\frac{r}{q}} h^{r\left(1-p^{-1}\right)}|f|^{\frac{p}{q}}|f|^{p \delta}
$$

and using Hölder we get

$$
\begin{gathered}
\left|V_{\mu}(x)\right| \leq \\
{\left[\int_{\Omega} h^{r}(x-y)|f(y)|^{p} d y\right]^{\frac{1}{q}}\left[\int_{\Omega} h^{r}(x-y) d y\right]^{1-p^{-1}}\|f\|_{L^{p}}^{p \delta}}
\end{gathered}
$$

But $\sup _{x \in \Omega}\left[\int_{\Omega} h^{r}(x-y) d y\right]^{\frac{1}{r}}$ is finite and raising the inequality above to power q and integrating we obtain the desired result.

Lemma 2. Let Ω be convex and $u \in W^{1,1}(\Omega)$. Let S be any measurable set. Then

$$
\left|u(x)-u_{S}\right| \leq \frac{d^{n}}{n|S|} \int_{\Omega}|x-y|^{1-n}|\nabla u(y)| d y
$$

a.e. in Ω, where

$$
u_{S}=\frac{1}{|S|} \int_{S} u d y
$$

and $d=\operatorname{diam} \Omega$.
It is enough to establish the inequality for $C^{1}(\Omega)$ functions. Then

$$
u(x)-u(y)=-\int_{0}^{|x-y|} \partial_{r} u(x+r \omega) d r
$$

where $\omega=\frac{y-x}{|x-y|}$ and $\partial_{r}=\omega \cdot \nabla$. Integrating in y over S :

$$
|S|\left(u(x)-u_{S}\right)=-\int_{S} d y \int_{0}^{|x-y|} \partial_{r} u(x+r \omega) d r
$$

We define

$$
V(x)=\left\{\begin{array}{cl}
\left|\partial_{r} u(x)\right|, & \text { if } x \in \Omega \\
0, & \text { if } x \notin \Omega
\end{array}\right.
$$

and thus we have

$$
\begin{gathered}
\left|u(x)-u_{S}\right| \leq \frac{1}{|S|} \int_{|x-y| \leq d} d y \int_{0}^{\infty} V(x+r \omega) d r \\
=\frac{1}{|S|} \int_{0}^{\infty} d r \int_{|\omega|=1}^{d} d \omega \int_{0}^{d} V(x+r \omega) \rho^{n-1} d \rho \\
=\frac{d^{n}}{n|S| S \int_{0}^{\infty}} \int_{|\omega|=1}^{\infty} V(x+r \omega) d r d \omega \\
=\frac{d^{n}}{n|S|} \int_{\Omega}|x-y|^{1-n}\left|\partial_{r} u(y)\right| d y
\end{gathered}
$$

We introduce now Morrey spaces: We say that $f \in M^{p}(\Omega)$ if there exists a constant K so that

$$
\int_{B_{r} \cap \Omega}|f| d x \leq K r^{n\left(1-\frac{1}{p}\right)}
$$

holds for all balls $B_{r}=B\left(x_{0}, r\right)$. The norm $\|f\|_{M^{p}(\Omega)}$ is the smallest such constant K.

Lemma 3. Let $f \in M^{p}(\Omega)$, and $\delta=p^{-1}<\mu$. Then

$$
\left|V_{\mu} f(x)\right| \leq \frac{1-\delta}{\mu-\delta}(\operatorname{diam} \Omega)^{n(\mu-\delta)}\|f\|_{M^{p}(\Omega)}
$$

Proof. We extend f by zero outside Ω and denote

$$
m(r)=\int_{B(x, r)}|f| d y
$$

Then,

$$
\begin{gathered}
\left|V_{\mu} f(x)\right| \leq \int_{\Omega} r^{n(\mu-1)}|f(y)| d y, \quad r=|x-y| \\
=\int_{0}^{d} r^{n(\mu-1)} m^{\prime}(r) d r, \quad d=\operatorname{diam} \Omega \\
=d^{n(\mu-1)} m(d)+n(1-\mu) \int_{0}^{d} r^{n(\mu-1)-1} m(r) d r \\
\leq C \frac{1-\delta}{\mu-\delta} d^{n(\mu-\delta)}
\end{gathered}
$$

We note here a generalization of Morrey's inequality
Proposition 1. Let $u \in W^{1,1}(\Omega)$ and assume that there exist $K>0$ and $0<\alpha \leq 1$ so that

$$
\int_{B_{r}}|\nabla u| d x \leq K r^{n-1+\alpha}
$$

for all balls $B_{r} \subset \Omega$. Then $u \in C^{\alpha}(\Omega)$ and

$$
\operatorname{osc}_{B_{r}} u \leq C K r^{\alpha}
$$

The proof is a direct application of Lemma 2 with $S=\Omega=B_{r}$ and Lemma 3 with $\Omega=B_{r}$.

Lemma 4. Let $f \in M^{p}(\Omega)$ with $p>1$ and let $g=V_{\mu} f$ with $\mu=p^{-1}$. Then there exist constants c_{1}, c_{2} depending only on n and p so that

$$
\int_{\Omega} \exp \left(\frac{|g|}{c_{1} K}\right) d x \leq c_{2}(\operatorname{diam} \Omega)^{n}
$$

where $K=\|f\|_{M^{p}(\Omega)}$.

Proof: we write, for $q \geq 1$:

$$
|x-y|^{n(\mu-1)}=|x-y|^{\left(\frac{\mu}{q}-1\right) \frac{n}{q}}|x-y|^{n\left(1-\frac{1}{q}\right)\left(\frac{\mu}{q}+\mu-1\right)}
$$

and by Hölder

$$
|g(x)| \leq\left(V_{\frac{\mu}{q}}|f|\right)^{\frac{1}{q}}\left(V_{\mu+\frac{\mu}{q}}|f|\right)^{1-\frac{1}{q}}
$$

By Lemma 3

$$
\begin{gathered}
V_{\mu+\frac{\mu}{q}}|f| \leq \frac{(1-\mu) q}{\mu} d^{\frac{n}{p q}} K, \quad d=\operatorname{diam} \Omega \\
\leq(p-1) q d^{\frac{n}{p q}} K
\end{gathered}
$$

and by Lemma 1

$$
\begin{gathered}
\int_{\Omega} V_{\frac{\mu}{q}}|f| d x \leq p q \omega_{n}^{1-\frac{1}{p q}}|\Omega|^{\frac{1}{p q}}\|f\|_{L^{1}} \\
\leq p q \omega_{n} K d^{n\left(1-\frac{1}{p}+\frac{1}{p q}\right)}
\end{gathered}
$$

Therefore

$$
\begin{aligned}
& \int_{\Omega}|g|^{q} d x \leq p(p-1)^{q-1} \omega_{n} q^{q} d^{n} K^{q} \\
& \leq p^{\prime} \omega_{n}\{(p-1) q K\}^{q} d^{n}
\end{aligned}
$$

where $p^{\prime}=\frac{p}{p-1}$. Choosing $c_{1}>e(p-1)$ and summing, we have

$$
\begin{aligned}
\int_{\Omega} \sum \frac{|g|^{m}}{m!\left(c_{1} K\right)^{m}} d x & \leq p^{\prime} \omega_{n} d^{n} \sum\left(\frac{p-1}{c_{1}}\right)^{m} \frac{m^{m}}{m!} \\
& \leq c_{2} d^{n}
\end{aligned}
$$

Combining Lemma 2 and Lemma 4 we proved Theorem 3.

