Boundedness, Harnack inequality and Holder
continuity for weak solutions

Intoduction to PDE

We describe results for weak solutions of elliptic equations with bounded
coefficients in divergence-form. The ideas of proofs come from DeGiorgi,
Nash and Moser. References abound; we mostly use Gilbarg and Trudinger.
We discuss equations

Lu =g+ 0;f; (1)

where
Lu = —3Z-(a,-j8ju + bzu) + cjf)ju + du (2)

We assume uniform ellipticity
aij(2)&& > M (3)
with A > 0 good for all  considered. We assume that a;; = a;; are measur-
able and bounded,
D lai(@)F < A% (4)
We assume that the coefficients b, ¢, d are bounded
2O @)+ [ (@)P) + A d(x) < T (5)

and that the right hand side g € L3, f ¢ (L?)", for some ¢ > n. Denoting
by
Ai(z, 2, p) = ai(v)p; + bi(z)z + fi,

B(z,z,p) = ¢j(z)p; + d(x)z — g(x),

we say that u is a W1H2(Q2) weak subsolution in € if
/(@v)Ai(x, u, Vu) + vB(z,u, Vu)dzr <0 (6)
0
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holds for all v € C3(Q), v > 0. We say that u is a supersolution if the
inequality is reversed

/(@-U)Ai(x,u, Vu) +vB(x,u, Vu)dx > 0. (7)
Q

We will quote theorems in full generality but we will present the ideas of
proofs only, and for that purpose we will take b=c=d = f =g =0.

1 Local boundedness, Harnack inequality

We denote
K(R) = X7 (R3] e + 70D gl )

Theorem 1. Ifu is a W'2(Q) subsolution of (1) then there exists a constant
C = C(n,%,q,p, ['R) such that, for all balls B(y,2R) C 2, and p > 1 we
have

sup w < C (B3t | uspwany + k(R)) (®)

B(y,R)

If u is a WY2(QQ) supersolution then

sup (—u) < C (B3 |[u”|lzopany + k(R)) . (9)
B(y,R)

The idea of proof is to use v = n?u” as test function, where 7 is a cutoff
function, § is arbitrary, positive, and deduce bounds of the type

/|Vu|2uﬁ_1772dm SC’/|V77|QUB+1dx

This, together with a Sobolev embedding produces bounds for higher L
norms on the left hand side, depending on lower LP norms on the right
hand side on larger domains. An iteration, due to Moser, finishes the proof.
Unfortunately, because ©” is not an admissible test function we have to trim
it first. We consider £ > 0 a small positive constant, M a large positive
constant. We take 7 = u™ + k and set upy = uw if u < M, Uy = M + k if
u > M. We take now

v =0T T — k9.



where 7 is a nonnegative smooth cutoff function and g > 0. We take without
loss of generality y = 0, R = 4 and n € C3(B,). We denote Br = B(0, R).
Now v is a legitimate test function and

Vo =1, (6 — 1)V + Va) + 20V (as, 'a — k)

Here we used the fact that @ = w,; when the gradient of the latter is nonzero.
Later we will use also that Vu = Vu,, when the latter is nonzero. Because
u is a subsolution we obtain (remember, b = ¢ =d = f = g = 0 in our proof)

/ P (6 — 1) Vaul? + |Val?] dr < © / (| Valas a)dz.

Here we used the fact that ﬂfj_lﬂ — k% > 0 to drop the k° term in the right
hand side. After hiding the term involving Vu from the right hand side in
the left hand side, we have (new constant C')

/ﬁﬂﬁ/ (8 — 1)|Vay [ + |VaP] de < c/ Vn2at e

g1
We let now w = u,; u. The inequality above implies

/772|Vw|2d$ <C(p+1) / |Vn|*wd

In view of the fact that V(nw) = nVw + wVn and the estimate above we
have, using the Sobolev embedding,

(/(nw)f—%dw)w <C(B+1) / \Vn|Pw?de

if n > 2. (If n =2 we replace % in the left hand side by any ¢ < oo). We

choose appropriately now the test function 7 so that, for balls B, C Br we

obtain L )
2n T 1
</Twn2dm> <C(B+1) (R—T) /BRﬂﬁJrlda:

Writing ¢ = 8 + 1, we have

n—2

_ng_ o 1 2
_n < —q
(/7.uM dx) _Cq<R—7’) /BRuda:
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for any ¢ > 1 and r < R. Letting M — oo and then £ — 0 we obtain

1
q q
I, 5, < (C s ) s

Denoting the amplification factor by a = -*5 > 1, and choosing for i =

0,1,..., ¢ =pa’, r; = 2+ 2'~% we obtain

o
lu Lo (B, < Collwt || as,,)

and so ‘
[t 20s(m,,) < C= 3

U+HLP(B4)
and thus
a2 (82 < Cllw || o,
proving the theorem for subsolutions. The same idea of proof works for

supersolutions. Now we prove a lemma, a weak Harnack inequality.

Theorem 2. If u is a supersolution of (1) that is nonnegative in a ball
B(y,4R) C Q) then

R7|[ul| <C|( inf u+k(R
lullatyam < € (ut, u k()

holds for 1 < p < -5 with C' = C(n, %,q,p, RT).

The idea of proof is similar to the one for L* bounds except we are
going to use negative powers, and a result of John-Nirenberg, of independent
interest. We start by assuming without loss of generality that y =0, R =1,
and so on. Also, we may assume u is bounded (either by the previous result,
or by a trimming procedure like in the proof above). We set

v = 772225
with € C}(By) a nonnegative cutoff function,

u=u+k

with £ > 0 and 8 # 0. Using the fact that u is a supersolution we have, after
hiding one term,

/ a8 Vulde < C(6) / VP de
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B+1

The constant C(|8]) is bounded when |B| > ¢ > 0. We set w = u 2z if
B # —1 and w = logu if § = —1. Letting v = f + 1 we have

[ 1nvul < cpi? [ 1vaPuis
if B# —1, and
[nvur <c [(vapas ¢

if = —1. We will refer to this inequality at the end of the proof. Thus, for
n > 2, from the Sobolev inequality we obtain the inequality

lnwl]], 20, < C 1+ W) [IVlw]2
Choosing 7 like before, we have
HUJHL%(BTI) <O+ ) (r2 = 7’1)71HwHL2(BTQ)

with a = -5 as before, and 7, > r;. Denote

o) = ([ T aps)’

) < (222)F a5 0

=

We have the inequalities

®(7ar2) < <M>m (I)(a,)/?rl)a if 7 < 0.

We take any 0 < py < p < a and we have, with r,, =1+2"", m =0,...,
and appropriate v, < 0,

®(—po,3) < CP(—00,1)

We can check that ®(—oo,r) = infg u. We also can prove one step, using
7 >0,

We would be therefore done if we could find some py > 0 such that
(I)<p07 3) S C(I)(_p07 3)

This follows from a result of F. John and Nirenberg.
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Theorem 3. (F. John-L. Nirenberg) Let uw € WY (U) where U is conver.
Suppose that there exists a constant K so that

/ |Vulde < Kr" !
UNB,

holds for all balls B,. Then there exists g > 0 and C depending only on n
such that

o . "
/Qexp <E]u — uU\)d:c < C(diam U)
holds with o = oo|U|(diam U)™™ and uy = §,; u.

Let us note that, from the inequality (%), we obtain, via Schwartz

|Vw|dz < Cr? < |Vw|2dx> <Cor!

B, B,

Therefore, by the theorem of John-Nirenberg, there exists a constant py > 0
such that

/ exp (polw — ws|)dx < C
B3

where ws = f33 wdzx. Therefore

(/ epowda:)(/ e Pdx) < CePotBe P =
Bs Bs

This concludes the proof of the weak Harnack inequality, modulo the John-
Nirenberg result. Putting together Theorem 1 and Theorem 2 we have the
full Harnack inequality for weak solutions:

Theorem 4. If u is a weak WH2(Q) solution with u > 0 then there exists a
constant C' so that

sup u < C inf u

B(y,R) B(y,R)
holds for any y € Q so that B(y,4R) C 2. Moreover, for any U CC ) there
exists a constant, depending on U and ) so that

supu < C'infu
U U



2 Holder continuity

The weak Harnack inequality is sufficient to prove the Holder continuity of
weak solutions.

Theorem 5. Let u be a weak W'2(Q) solution of (1). Then u is locally
Hélder continuous in §2. For every ball By = B(y, Ry) C § there exists a
constant C' = C(n, %, ', q, Ry) such that

0scp(y,r)t < CR*(Ry“sup |u| + k)
By

where o = a(n, %,FRo,q) >0 and k= "(||f|lr« + gl 5)-
Moreover, for every U CC Q, there exists a = a(n, %,Fd) > 0 where
d = dist(U,092), so that

ullca@y < C(lJullL2@) + k)

We provide the proof for the case b=c=d = f =g = 0. Let My, =
supp, |u|, My = SUPp(yap) U M4 = infpyaryu, My = supp pyu, mi =
inf gy, r) u. We have

L(My—u)=0, Lu—my)=0

so, we can apply the weak Harnack inequality of Theorem 2 with p = 1. We
obtain

R_”/ (My —u)dx < C(My — M)
B(y,2R)

and
R_”/ (u—my) < C(my —my)
B(y,2R)
Adding, we obtain
(M4 — m4) S C[M4 — My — (Ml — ml)]

and so
M, —m; < 7(M4 - m4)

with v = €51 < 1. We have thus, for w(R) = oscp(y,pyu
w(R) < yw(4R)
It follows by iteration (exercise!) that

w(R) < CRYw(Ry)
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3 Riesz potentials and the John-Nirenberg
inequality

We use the notation of Gilbarg and Trudinger
V) = [ fo =y pw)dy
Q

with u € (0,1]. This is the same as the Riesz potential of order nu of fxq,
where 2 is a bounded open set and xq its characteristic (indicator) function.
Note that

V1< p ol

Indeed, choosing R so that || = w,R", we have

V@) = [Jo—gl ey < [ ey
Q B(z,R)

because |2\ B(x, R)| = |B(z, R)\ | and the points in 2\ B(x, R) are farther
away and hence have smaller potential the points in B(z, R) \ €2.

Lemma 1. The operator V,, maps LP(§2) continuously into L(€2), 1 < ¢ < oo
0<d=0(pq)=p ' —q <p

Moreover

1-96 1-0 - -
Vil < (325) w1001

The proof: choose r so that
rl=1+q'—p'=1-6

Then h(z —y) = |z —y|["*V is in L"(Q) and, using the same trick as above

1-6 1-6
bl < (325)  wiviop?
-

Now we write

hlf| = hah" G| fla| P



and using Holder we get
IV, (2)] < y
([, b (@ — I f )Py [y b7 (@ —y)dy] " | FI1%

But sup,cq [ Jo b (z — y)dy}; is finite and raising the inequality above to
power ¢ and integrating we obtain the desired result.

=

Q=

Lemma 2. Let Q be convexr and v € WH1(Q). Let S be any measurable set.
Then

d”/ -
u(x) —ug| < —— [ |z —y| 7" |Vu(y)|dy
|u(z) — us| mE Q| T Vu(y)]

.
us = — | udy
5] /s

It is enough to establish the inequality for C''(Q) functions. Then

a.e. in ), where

and d = diam €.

lz—yl
uw(z) —u(y) = —/O Oru(x + rw)dr

where w = £==%
lz—y|

|z— yl
|S|(u(z) — ug) /dy/ u(x + rw)dr

_J 1Gu(z)|, ifzeq
V(x)_{ 0, ifzrédQ

We define

and thus we have

u(@) —us| < 5 J i< dy [;° V(x4 rw)dr
— Oood:i f(Lo dw [TV (@ 4 rw)pntdp
= WSnfo f| = V(r +rw)drdw

5 Jo [z =yl 0u(y)|dy

We introduce now Morrey spaces: We say that f € MP(Q) if there exists a
constant K so that

L
|5

|fldx < K3
B,



holds for all balls B, = B(x,7). The norm || f||a»(q) is the smallest such
constant K.

Lemma 3. Let f € MP(Q), and 6 =p~' < p. Then

1-46 . n(u—
Vif (@) < 2 (diam @) || fllaia

Proof. We extend f by zero outside €2 and denote

m(r) = / iy

VoS (@) < Jore=DIfw)ldy, = |z —yl,
= fod r"=Ym/ (r)dr,  d = diam
= A" Im(d) +n(l — p) fod r =D =1 (1) dr
< Ol;gdn(u—&
<0z

Then,

We note here a generalization of Morrey’s inequality

Proposition 1. Let u € WH(Q) and assume that there exist K > 0 and
0<a<1sothat

|Vu|dz < Ky tte
B

for all balls B, C Q. Then u € C*(R2) and

oscp, u < CKr®

The proof is a direct application of Lemma 2 with S = 2 = B, and
Lemma 3 with Q2 = B,.

Lemma 4. Let f € MP(Q) withp > 1 and let g = V,,f with u=p~'. Then
there exist constants c1, ¢y depending only on n and p so that

/Qexp (CLL[’() dr < ¢y (diam Q)"

where K = || f|| mr(0)-
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Proof: we write, for ¢ > 1:

=y = o=y G G

and by Holder

g(@) < (Velfl)" (Vieslf1)
By Lemma 3
Vips| f] < L8945 K, d = diam O
<(p—1)gdn K

and by Lemma 1
1-L L
Jo Vel fldz < pgwn 1] £l s
< paw, K d" )
Therefore

Jo l9l%dz < p(p — 1)1 w,q?d" K9
< pw{(p—1)gK}d"

where p’ = z%' Choosing ¢; > e(p — 1) and summing, we have

fQ — I —dx < pw,d™ (%) %T
S ngn

Combining Lemma 2 and Lemma 4 we proved Theorem 3.
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