
Boundedness, Harnack inequality and Hölder
continuity for weak solutions

Intoduction to PDE

We describe results for weak solutions of elliptic equations with bounded
coefficients in divergence-form. The ideas of proofs come from DeGiorgi,
Nash and Moser. References abound; we mostly use Gilbarg and Trudinger.
We discuss equations

Lu = g + ∂ifi (1)

where
Lu = −∂i(aij∂ju+ biu) + cj∂ju+ du (2)

We assume uniform ellipticity

aij(x)ξiξj ≥ λ|ξ|2 (3)

with λ > 0 good for all x considered. We assume that aij = aji are measur-
able and bounded, ∑

|aij(x)|2 ≤ Λ2. (4)

We assume that the coefficients b, c, d are bounded

λ−2(
∑
|bi(x)|2 + |ci(x)|2) + λ−1|d(x)| ≤ Γ (5)

and that the right hand side g ∈ L q
2 , f ∈ (Lq)n, for some q > n. Denoting

by
Ai(x, z, p) = aij(x)pj + bi(x)z + fi,

B(x, z, p) = cj(x)pj + d(x)z − g(x),

we say that u is a W 1,2(Ω) weak subsolution in Ω if

ˆ
Ω

(∂iv)Ai(x, u,∇u) + vB(x, u,∇u)dx ≤ 0 (6)
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holds for all v ∈ C1
0(Ω), v ≥ 0. We say that u is a supersolution if the

inequality is reversed

ˆ
Ω

(∂iv)Ai(x, u,∇u) + vB(x, u,∇u)dx ≥ 0. (7)

We will quote theorems in full generality but we will present the ideas of
proofs only, and for that purpose we will take b = c = d = f = g = 0.

1 Local boundedness, Harnack inequality

We denote
k(R) = λ−1

(
R1−n

q ‖f‖Lq +R2(1−n
q

)‖g‖
L
q
2

)
Theorem 1. If u is a W 1,2(Ω) subsolution of (1) then there exists a constant
C = C(n, Λ

λ
, q, p,ΓR) such that, for all balls B(y, 2R) ⊂ Ω, and p > 1 we

have
sup
B(y,R)

u ≤ C
(
R−

n
p ‖u+‖Lp(B(y,2R)) + k(R)

)
. (8)

If u is a W 1,2(Ω) supersolution then

sup
B(y,R)

(−u) ≤ C
(
R−

n
p ‖u−‖Lp(B(y,2R)) + k(R)

)
. (9)

The idea of proof is to use v = η2uβ as test function, where η is a cutoff
function, β is arbitrary, positive, and deduce bounds of the type

ˆ
|∇u|2uβ−1η2dx ≤ C

ˆ
|∇η|2uβ+1dx

This, together with a Sobolev embedding produces bounds for higher Lp

norms on the left hand side, depending on lower Lp norms on the right
hand side on larger domains. An iteration, due to Moser, finishes the proof.
Unfortunately, because uβ is not an admissible test function we have to trim
it first. We consider k > 0 a small positive constant, M a large positive
constant. We take u = u+ + k and set uM = u if u < M , uM = M + k if
u ≥M . We take now

v = η2(uβ−1
M u− kβ).
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where η is a nonnegative smooth cutoff function and β > 0. We take without
loss of generality y = 0, R = 4 and η ∈ C1

0(B4). We denote BR = B(0, R).
Now v is a legitimate test function and

∇v = η2uβ−1
M [(β − 1)∇uM +∇u] + 2η∇η(uβ−1

M u− kβ)

Here we used the fact that u = uM when the gradient of the latter is nonzero.
Later we will use also that ∇u = ∇uM when the latter is nonzero. Because
u is a subsolution we obtain (remember, b = c = d = f = g = 0 in our proof)

ˆ
η2uβ−1

M

[
(β − 1)|∇uM |2 + |∇u|2

]
dx ≤ C

ˆ
|∇η|η(|∇u|uβ−1

M u)dx.

Here we used the fact that uβ−1
M u− kβ ≥ 0 to drop the kβ term in the right

hand side. After hiding the term involving ∇u from the right hand side in
the left hand side, we have (new constant C!)

ˆ
η2uβ−1

M

[
(β − 1)|∇uM |2 + |∇u|2

]
dx ≤ C

ˆ
|∇η|2u2uβ−1

M dx

We let now w = u
β−1
2

M u. The inequality above implies
ˆ
η2|∇w|2dx ≤ C(β + 1)

ˆ
|∇η|2w2dx

In view of the fact that ∇(ηw) = η∇w + w∇η and the estimate above we
have, using the Sobolev embedding,(ˆ

(ηw)
2n
n−2dx

)n−2
n

≤ C(β + 1)

ˆ
|∇η|2w2dx

if n > 2. (If n = 2 we replace 2n
n−2

in the left hand side by any q < ∞). We
choose appropriately now the test function η so that, for balls Br ⊂ BR we
obtain (ˆ

Br

w
2n
n−2dx

)n−2
n

≤ C(β + 1)

(
1

R− r

)2 ˆ
BR

uβ+1dx

Writing q = β + 1, we have(ˆ
Br

u
nq
n−2

M dx

)n−2
n

≤ Cq

(
1

R− r

)2 ˆ
BR

uqdx
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for any q > 1 and r < R. Letting M →∞ and then k → 0 we obtain

‖u+‖
L

nq
n−2 (Br)

≤
(
C

q

(R− r)2

) 1
q

‖u+‖Lq(BR)

Denoting the amplification factor by a = n
n−2

> 1, and choosing for i =

0, 1, . . . , qi = pai, ri = 2 + 21−i, we obtain

‖u+‖Lqi+1 (Bri+1 ) ≤ C
i

ai ‖u+‖Lqi (Bri )

and so
‖u+‖Lqi (Bri ) ≤ C

∑ i

ai ‖u+‖Lp(B4)

and thus
‖u+‖L∞(B2) ≤ C‖u+‖Lp(B4)

proving the theorem for subsolutions. The same idea of proof works for
supersolutions. Now we prove a lemma, a weak Harnack inequality.

Theorem 2. If u is a supersolution of (1) that is nonnegative in a ball
B(y, 4R) ⊂ Ω then

R−
n
p ‖u‖Lp(B(y,2R) ≤ C

(
inf

B(y,R)
u+ k(R)

)
holds for 1 ≤ p < n

n−2
with C = C(n, Λ

λ
, q, p, RΓ).

The idea of proof is similar to the one for L∞ bounds except we are
going to use negative powers, and a result of John-Nirenberg, of independent
interest. We start by assuming without loss of generality that y = 0, R = 1,
and so on. Also, we may assume u is bounded (either by the previous result,
or by a trimming procedure like in the proof above). We set

v = η2ūβ

with η ∈ C1
0(B4) a nonnegative cutoff function,

ū = u+ k

with k > 0 and β 6= 0. Using the fact that u is a supersolution we have, after
hiding one term,ˆ

η2ūβ−1|∇u|2dx ≤ C(|β|)
ˆ
|∇η|2ūβ+1dx
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The constant C(|β|) is bounded when |β| > ε > 0. We set w = ū
β+1
2 if

β 6= −1 and w = log ū if β = −1. Letting γ = β + 1 we haveˆ
|η∇w|2 ≤ C(|β|)γ2

ˆ
|∇η|2w2dx

if β 6= −1, and ˆ
|η∇w|2 ≤ C

ˆ
|∇η|2dx (∗)

if β = −1. We will refer to this inequality at the end of the proof. Thus, for
n > 2, from the Sobolev inequality we obtain the inequality

‖ηw‖
L

2n
n−2
≤ C (1 + |γ|) ‖|∇η|w‖L2

Choosing η like before, we have

‖w‖L2a(Br1 ) ≤ C(1 + |γ|)(r2 − r1)−1‖w‖L2(Br2 )

with a = n
n−2

as before, and r2 > r1. Denote

Φ(p, r) =

(ˆ
Br

|ū|pdx
) 1

p

We have the inequalities

Φ(aγ, r1) ≤
(
C(1+|γ|)
r2−r1

) 2
|γ|

Φ(γ, r2), if γ > 0

Φ(γ, r2) ≤
(
C(1+|γ|)
r2−r1

) 2
|γ|

Φ(aγ, r1), if γ < 0.

We take any 0 < p0 < p < a and we have, with rm = 1 + 2−m, m = 0, . . . ,
and appropriate γm < 0,

Φ(−p0, 3) ≤ CΦ(−∞, 1)

We can check that Φ(−∞, r) = infBr ū. We also can prove one step, using
γ > 0,

Φ(p, 2) ≤ CΦ(p0, 3)

We would be therefore done if we could find some p0 > 0 such that

Φ(p0, 3) ≤ CΦ(−p0, 3)

This follows from a result of F. John and Nirenberg.
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Theorem 3. (F. John-L. Nirenberg) Let u ∈ W 1,1(U) where U is convex.
Suppose that there exists a constant K so that

ˆ
U∩Br

|∇u|dx ≤ Krn−1

holds for all balls Br. Then there exists σ0 > 0 and C depending only on n
such that ˆ

Ω

exp
( σ
K
|u− uU |

)
dx ≤ C(diam U)n

holds with σ = σ0|U |(diam U)−n and uU =
ffl
U
u.

Let us note that, from the inequality (∗), we obtain, via Schwartz

ˆ
Br

|∇w|dx ≤ Cr
n
2

(ˆ
Br

|∇w|2dx
) 1

2

≤ Crn−1

Therefore, by the theorem of John-Nirenberg, there exists a constant p0 > 0
such that ˆ

B3

exp (p0|w − w3|)dx ≤ C

where w3 =
ffl
B3
wdx. Therefore

(

ˆ
B3

ep0wdx)(

ˆ
B3

e−p0wdx) ≤ Cepow3e−p0w3 = C

This concludes the proof of the weak Harnack inequality, modulo the John-
Nirenberg result. Putting together Theorem 1 and Theorem 2 we have the
full Harnack inequality for weak solutions:

Theorem 4. If u is a weak W 1,2(Ω) solution with u ≥ 0 then there exists a
constant C so that

sup
B(y,R)

u ≤ C inf
B(y,R)

u

holds for any y ∈ Ω so that B(y, 4R) ⊂ Ω. Moreover, for any U ⊂⊂ Ω there
exists a constant, depending on U and Ω so that

sup
U
u ≤ C inf

U
u
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2 Hölder continuity

The weak Harnack inequality is sufficient to prove the Hölder continuity of
weak solutions.

Theorem 5. Let u be a weak W 1,2(Ω) solution of (1). Then u is locally
Hölder continuous in Ω. For every ball B0 = B(y,R0) ⊂ Ω there exists a
constant C = C(n, Λ

λ
,Γ, q, R0) such that

oscB(y,R)u ≤ CRα(R−α0 sup
B0

|u|+ k)

where α = α(n, Λ
λ
,ΓR0, q) > 0 and k = λ−1(‖f‖Lq + ‖g‖

L
q
2
).

Moreover, for every U ⊂⊂ Ω, there exists α = α(n, Λ
λ
,Γd) > 0 where

d = dist(U, ∂Ω), so that

‖u‖Cα(U) ≤ C(‖u‖L2(Ω) + k)

We provide the proof for the case b = c = d = f = g = 0. Let M0 =
supB0

|u|, M4 = supB(y,4R) u, m4 = infB(y,4R) u, M1 = supB(y,R) u, m1 =
infB(y,R) u. We have

L(M4 − u) = 0, L(u−m4) = 0

so, we can apply the weak Harnack inequality of Theorem 2 with p = 1. We
obtain

R−n
ˆ
B(y,2R)

(M4 − u)dx ≤ C(M4 −M1)

and

R−n
ˆ
B(y,2R)

(u−m4) ≤ C(m1 −m4)

Adding, we obtain

(M4 −m4) ≤ C[M4 −m4 − (M1 −m1)]

and so
M1 −m1 ≤ γ(M4 −m4)

with γ = C−1
C

< 1. We have thus, for ω(R) = oscB(y,R)u

ω(R) ≤ γω(4R)

It follows by iteration (exercise!) that

ω(R) ≤ CRαω(R0)
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3 Riesz potentials and the John-Nirenberg

inequality

We use the notation of Gilbarg and Trudinger

(Vµf)(x) =

ˆ
Ω

|x− y|n(µ−1)f(y)dy

with µ ∈ (0, 1]. This is the same as the Riesz potential of order nµ of fχΩ,
where Ω is a bounded open set and χΩ its characteristic (indicator) function.
Note that

Vµ1 ≤ µ−1ω1−n
n |Ω|µ

Indeed, choosing R so that |Ω| = ωnR
n, we have

(Vµ1)(x) =

ˆ
Ω

|x− y|n(µ−1)dy ≤
ˆ
B(x,R)

|x− y|n(µ−1)dy

because |Ω\B(x,R)| = |B(x,R)\Ω| and the points in Ω\B(x,R) are farther
away and hence have smaller potential the points in B(x,R) \ Ω.

Lemma 1. The operator Vµ maps Lp(Ω) continuously into Lq(Ω), 1 ≤ q ≤ ∞

0 ≤ δ = δ(p, q) = p−1 − q−1 < µ

Moreover

‖Vµf‖Lq ≤
(

1− δ
µ− δ

)1−δ

ω1−µ
n |Ω|µ−δ‖f‖Lp

The proof: choose r so that

r−1 = 1 + q−1 − p−1 = 1− δ

Then h(x− y) = |x− y|n(µ−1) is in Lr(Ω) and, using the same trick as above

‖h‖Lr ≤
(

1− δ
µ− δ

)1−δ

ω1−µ
n |Ω|µ−δ

Now we write
h|f | = h

r
qhr(1−p

−1)|f |
p
q |f |pδ
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and using Hölder we get

|Vµ(x)| ≤[´
Ω
hr(x− y)|f(y)|pdy

] 1
q
[´

Ω
hr(x− y)dy

]1−p−1

‖f‖pδLp

But supx∈Ω

[´
Ω
hr(x− y)dy

] 1
r is finite and raising the inequality above to

power q and integrating we obtain the desired result.

Lemma 2. Let Ω be convex and u ∈ W 1,1(Ω). Let S be any measurable set.
Then

|u(x)− uS| ≤
dn

n|S|

ˆ
Ω

|x− y|1−n|∇u(y)|dy

a.e. in Ω, where

uS =
1

|S|

ˆ
S

udy

and d = diam Ω.

It is enough to establish the inequality for C1(Ω) functions. Then

u(x)− u(y) = −
ˆ |x−y|

0

∂ru(x+ rω)dr

where ω = y−x
|x−y| and ∂r = ω · ∇. Integrating in y over S:

|S|(u(x)− uS) = −
ˆ
S

dy

ˆ |x−y|
0

∂ru(x+ rω)dr

We define

V (x) =

{
|∂ru(x)|, if x ∈ Ω

0, if x /∈ Ω

and thus we have

|u(x)− uS| ≤ 1
|S|

´
|x−y|≤d dy

´∞
0
V (x+ rω)dr

= 1
|S|

´∞
0
dr
´
|ω|=1

dω
´ d

0
V (x+ rω)ρn−1dρ

= dn

n|S|

´∞
0

´
|ω|=1

V (x+ rω)drdω

= dn

n|S|

´
Ω
|x− y|1−n|∂ru(y)|dy

We introduce now Morrey spaces: We say that f ∈ Mp(Ω) if there exists a
constant K so that ˆ

Br∩Ω

|f |dx ≤ Krn(1− 1
p

)
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holds for all balls Br = B(x0, r). The norm ‖f‖Mp(Ω) is the smallest such
constant K.

Lemma 3. Let f ∈Mp(Ω), and δ = p−1 < µ. Then

|Vµf(x)| ≤ 1− δ
µ− δ

(diam Ω)n(µ−δ) ‖f‖Mp(Ω)

Proof. We extend f by zero outside Ω and denote

m(r) =

ˆ
B(x,r)

|f |dy

Then,
|Vµf(x)| ≤

´
Ω
rn(µ−1)|f(y)|dy, r = |x− y|,

=
´ d

0
rn(µ−1)m′(r)dr, d = diamΩ

= dn(µ−1)m(d) + n(1− µ)
´ d

0
rn(µ−1)−1m(r)dr

≤ C 1−δ
µ−δd

n(µ−δ)

We note here a generalization of Morrey’s inequality

Proposition 1. Let u ∈ W 1,1(Ω) and assume that there exist K > 0 and
0 < α ≤ 1 so that ˆ

Br

|∇u|dx ≤ Krn−1+α

for all balls Br ⊂ Ω. Then u ∈ Cα(Ω) and

oscBr u ≤ CKrα

The proof is a direct application of Lemma 2 with S = Ω = Br and
Lemma 3 with Ω = Br.

Lemma 4. Let f ∈ Mp(Ω) with p > 1 and let g = Vµf with µ = p−1. Then
there exist constants c1, c2 depending only on n and p so that

ˆ
Ω

exp

(
|g|
c1K

)
dx ≤ c2 (diam Ω)n

where K = ‖f‖Mp(Ω).
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Proof: we write, for q ≥ 1:

|x− y|n(µ−1) = |x− y|(
µ
q
−1)n

q |x− y|n(1− 1
q

)(µ
q

+µ−1)

and by Hölder

|g(x)| ≤
(
Vµ
q
|f |
) 1
q
(
Vµ+µ

q
|f |
)1− 1

q

By Lemma 3

Vµ+µ
q
|f | ≤ (1−µ)q

µ
d
n
pqK, d = diam Ω

≤ (p− 1)qd
n
pqK

and by Lemma 1

´
Ω
Vµ
q
|f |dx ≤ pqω

1− 1
pq

n |Ω|
1
pq ‖f‖L1

≤ pqωnKd
n(1− 1

p
+ 1
pq

)

Therefore ´
Ω
|g|qdx ≤ p(p− 1)q−1ωnq

qdnKq

≤ p′ωn{(p− 1)qK}qdn

where p′ = p
p−1

. Choosing c1 > e(p− 1) and summing, we have

´
Ω

∑ |g|m
m!(c1K)m

dx ≤ p′ωnd
n
∑(

p−1
c1

)m
mm

m!

≤ c2d
n

Combining Lemma 2 and Lemma 4 we proved Theorem 3.
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