
Degree Theory

1 Degree theory in finite dimensions

This is adapted from [1] Recall the local inverse thm:

Theorem 1. Let f : Rn → Rn be a C1 function and assume that ∇f(x0)
is invertible. Then there exists an open neighborhood U of x0 and an open
neighborhood V of f(x0) such that the inverse function f−1 : V → U exists
and belongs to C1.

Let X, Y be open, paracompact (separable, all covers admit a locally fi-
nite refinement) smooth manifolds of dimensions n and k, n ≥ k respectively.
Let f be a map f : X → Y which is Cn−k+1.

Definition 1. A point x0 ∈ X is a regular point for f if (∇f(x0)) has
maximal rank k. A point which is not regular is called a critical point. A
point y ∈ Y is a critical value if the preimage f−1({y}) contains a critical
point. Otherwise, y is called a regular value.

Theorem 2. Sard’s theorem: If f ∈ Cn−k+1, f : X → Y like above, then
the set of its critical values has measure zero in Y .

Proof. “Measure zero” in Y is well defined in a chart. We only give the
proof for n = k. Enough to prove when X is a closed cube with sides parallel
to the axes in Rn and with side of size L. We subdivide the cube in small
cubes of side L

N
, with sides parallel to the axes. If x and x0 belong to the

same small cube Q then

f(x) = f(x0) + (∇f(x0))(x− x0) + o

(
L

N

)
because the first derivatives of f are continuous in X. If the point x0 is
critical for f then det(∇f(x0)) = 0, and therefore the image of Q lies in a
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cylinder of base in a plane of dimension n−1 and base area ≤ C
(
L
N

)n−1
and

height o
(
L
N

)
. As there are at most Nn cubes containing critical points, their

image under f is contained in a set whose volume is of the order No
(

1
N

)
.

This converges to zero as N →∞.
Now we recall some notation from differential geometry. If we have an n

form in Rn it is given locally by

µ = fdy

where dy = dy1∧· · ·∧dyn is the volume form and f is a real valued function.
The pull back of µ under a change of variables φ is

φ∗(µ) = (f ◦ φ)(x) det Jφ(x)dx

where Jφ is the Jacobian of φ. By the change of variables formula

ˆ
Y

µ = sgn Jφ

ˆ
X

φ∗µ (1)

Let X ⊂ X0 where X0 is a smooth paracompact manifold of dimension
n and X is an open subset with compact closure X̄ = X ∪ ∂X in X0.
Let φ : X̄ → Y be a continuous map which is C1 in X, to the smooth n
dimensional paracompact manifold Y . Let y0 ∈ Y \ φ(∂X). From the local
inverse theorem, the preimage

φ−1 ({y0}) = {x ∈ X̄ | φ(x) = y0}

is a discrete set (consists of isolated points). Because X̄ is compact, this set
is finite.

Definition 2. If y0 is a regular value of φ then

d(y0) =
k∑
j=1

sgn Jφ(xj) (2)

where
φ−1 ({y0}) = {x1, . . . , xk}

We say that a coordinate patch Ω of a point y0 ∈ Y is “nice” if there are
suitable coordinates g : Ω→ Rn so that g(Ω) is a cube.

2



Definition 3. Let µ = f(y)dy be a smooth n form on Y with support con-
tained in a nice coordinate patch Ω of y0 ∈ Y , with Ω ⊂ Y \ φ(∂X) and´
Y
µ = 1. Then we set

deg (φ,X, y0) =

ˆ
X

φ∗µ (3)

Differential forms of the kind above will be called “admissible”. The fact
that deg (φ,X, y0) is well defined is a consequence of the following lemma.

Lemma 1. Let µ = f(y)dy be a smooth form on Y with
´
Y
µ = 0 and with

suppµ contained in a nice coordinate patch Ω. Then there exists an n − 1-
form ω whose support is included in Ω and such that µ = dω.

Indeed, given the lemma, if ν and µ are admissible for y0 and φ in X then,
because ν − µ = dω and because φ∗(ν − µ) = φ∗(dω) = dφ∗ω, the integrals
of φ∗ν and φ∗µ are equal by Green’s theoremˆ

X

d(φ∗ω) = 0.

Proof of Lemma 1 Without loss of generality we may assume that the
support of µ is included in a cube Q. We must show that we can find gj
supported in Q such that

f =
n∑
j=1

∂jgj

The proof is by induction. If n = 1, then g1 =
´ y
−∞ f(z)dz satisfies dg1 = fdy.

Now suppose the lemma is true in n dimensions. Let yn+1 = t, (y, t) =
(y1, . . . , yn, t) and set

m(y) =

ˆ ∞
−∞

f(y, t)dt.

Now
´
m(y)dy = 0, so, by induction, there exist g1, . . . , gn such that

m(y) =
n∑
j=1

∂jgj(y)

and gj are supported in the projection of the cube. Let τ(t) be a smooth
function supported on the corresponding side of the cube, withˆ ∞

−∞
τ(t)dt = 1.
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Consider f(y, t)− τ(t)µ(y). Because its integral in t vanishes,

g(y, t) =

ˆ t

−∞
(f(y, s)− τ(s)m(y))ds

has support in Q and obeys

∂tg(y, t) = f(y, t)− τ(t)m(y).

Thus

f(y, yn+1) = ∂n+1g(y, yn+1) +
n∑
j=1

∂j(gj(y)τ(yn+1))

which finishes the proof.

1.1 Properties of the degree

Proposition 1. For y1 close to y0,

deg (φ,X, y0) = deg (φ,X, y1).

Proof. Indeed, if µ is admissible for φ in X for y0, it is also admissible for
φ in X for y1. Because the degree is an integer, it is locally constant and
therefore is constant on connected components of Y \ φ(∂X).

Proposition 2. If y0 is a regular point for φ then

deg (φ,X, y0) = d(y0)

Proof. There are disjoint neighborhoods Vj of xj, the points which comprise
φ−1 ({y0}), such that φ is one-to-one on them. Then if N = ∩kj=1φ(Vj), then
N is a neighborhood of y0, and if µ is admissible with support in N then

deg (φ,X, y0) =
´
φ∗µ =

∑k
j=1

´
Vj
φ∗µ =

∑k
j=1 sgn Jφ(xj)

´
φ(Vj)

µ

=
∑k

j=1 sgn Jφ(xj)
´
Y
µ =

∑k
j=1 sgn Jφ(xj) = d(y0).

It follows that deg (φ,X, y0) is an integer equal to d(y) for ant regular
value y belonging to the same connected component of Y \ φ(∂X) as y0.

Proposition 3. Homotopy invariance. Consider a one parameter family
of maps φt : X̄ → Y , continuous on X̄ × [0, 1] and with φt ∈ C1(X) for
each t ∈ [0, 1]. Assume that y0 /∈ φt(∂X) holds for each t ∈ [0, 1]. Then
deg (φt, X, y0) does not depend on t.
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Proof. We take a small neighborhood of y0 which avoids the compact set
φ(∂X × [0, 1]). Let µ be admissible for all φt, t ∈ [0, 1] and y0 in X. Then

deg (φt, X, y0) =

ˆ
φ∗t (µ)

is continuous and integer valued, so it is constant.
We can generalize this by allowing y0 to depend continuously on t and

having a relatively open set A ⊂ X × [0, 1] with compact closure. If yt does
not belong to φt((∂A)t) where At = {x ∈ X; (x, t) ∈ A} and (∂A)t = {x ∈
X; (x, t) ∈ ∂A}, then deg (φt, At, yt) is constant.

Proposition 4. Let Xi be a sequence of disjoint open sets contained in the
interior of X. Let y0 /∈ φ

(
X̄ \ ∪iXi

)
. Then deg (φ,Xi, y0) = 0 for all but

finitely many i, and

deg (φ,X, y0) =
∑
i

deg (φ,Xi, y0).

Proof. Let N be an open neighborhood of y0 not intersecting φ(X̄ \ ∪iXi)
(because the latter is compact, hence closed). Then we take a regular value
y ∈ N . The degrees are computed at y, and y has a finite number of preim-
ages. A particular case is

Proposition 5. Excision. Let K ⊂ X̄ be closed. If y0 /∈ φ(K)∪φ(∂X) then

deg (φ,X, y0) = deg (φ,X \K, y0).

Proof. We apply the previous proposition with X1 = X \K.

Proposition 6. Let X, Y be manifolds of dimension n and X ′, Y ′ of dimen-
sion m and φ : X → Y and φ′ : X ′ → Y ′ be such that the degrees are defined
at y and y′ respectively. Then

deg (φ× φ′, X ×X ′, (y, y′)) = deg (φ,X, y)× deg (φ′, X ′, y′)

Proof. If µ and µ′ are admissible for φ and φ′ and y and y′ then µ × µ′ is
admissible for φ× φ′ and (y, y′) at X ×X ′ and

ˆ
(φ× φ′)∗(µ× µ′) =

ˆ
φ∗µ ·

ˆ
φ′∗µ′
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A few remarks about the degree. First, if the map φ is one-to-one and
preserving the orientation and if y0 ∈ φ(X)∩(Y \φ(∂X)) then deg (φ,X, y0) =
1. If y0 6∈ φ(X̄) then deg (φ,X, y0) = 0. If ∂X = ∅, X is compact and Y is
connected and not compact, then the degree vanishes at any y ∈ Y .

Extension to continuous maps. If φn → φ uniformly in X̄, then for
large enough n, the degrees deg (φn, X, y0) are independent of n. Indeed, the
property y0 /∈ φ(∂X) implies that there exists a neighborhood N of y0 such
that φn(∂X)∩N = ∅ for large enough n. If dist(φi(∂X), y0) ≥ δ > 0, i = 1, 2,
then (1− t)φ1(x)+ tφ2(x) = φ1(x)+ tψ(x) with ψ(x) uniformly small on ∂X,
and therefore the homotopy cannot touch ∂X. Note that the convergence
in C0 does not imply continuity of the degree, but the homotopy invariance
does. Note also that the degree depends only on values of φ on ∂X: all
continuous extensions of φ to the whole X̄ have the same degree. (same
proof: if we have two continuous extensions, then the homotopy described
above does not touch the boundary).

Theorem 3. Let φ : X → Y , φ ∈ C(X̄)). Let Ω be a connected component
of Y \φ(∂X) and µ a smooth n− form in Y with compact support in Ω and
with

´
Y
µ 6= 0. Then

deg (φ,X,Ω) =

´
X
φ∗µ´
Y
µ

The proof follows by establishing the relation first for measures supported
in nice coordinate patches, then using a partition of unity, cross multiplying
(using Lemma 1) and summing.

Theorem 4. Let φ : X̄ → Y , ψ : Y → Z be continuous. Let Ωi be the
connected components of Y \ φ(∂X) having compact closure in Y . Then, for
z 6∈ ψ ◦ φ(∂X) we have

deg (ψ ◦ φ,X, z) =
∑
i

deg (φ,X,Ωi)deg (ψ,Ωi, z)

and the sum on the right hand side is finite.

Proof. WLOG: φ, ψ ∈ C1 and z is a regular value for both ψ ◦ φ and for ψ.
Then,

deg (ψ ◦ φ,X, z) =
∑

ψ◦φ(x)=z sign Jψ◦φ(x)

=
∑

ψ(φ(x))=z sign Jψ(φ(x))sign Jφ(x)

=
∑

ψ(y)=z sign Jψ(y)

∑
φ(x)=y sign Jφ(x)

=
∑

ψ(y)=z sign Jψ(y)deg (φ,X, y).
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Note that if y belongs to a connected component of Y \φ(∂X) whose closure is
not compact, then deg (φ,X, y) = 0 so the sum is restricted to the connected
components whose closure is compact. Then

deg (ψ ◦ φ,X, z) =
∑

ψ(y)=z sign Jψ(y)

∑
i deg (φ,X,Ωi)

=
∑

i deg (φ,X,Ωi)deg (ψ,Ωi, z).

2 Applications

Let B be the closed unit ball in Rn.

Proposition 7. Let φ : B → Rn be continuous and such that φ(x) never
points opposite to x on ∂B, i.e.,

φ(x) + tx 6= 0, ∀t ≥ 0, x ∈ ∂B.

Then φ(x) = 0 has a solution inside B.

Proof. Indeed tφ(x)+(1− t)x does not vanish for any t ∈ [0, 1] and x ∈ ∂B.
Therefore deg (φ,B, 0) = 1.

Note that the same result holds for −φ, i.e. if φ(x) never points in the
same direction as x on ∂B. In particular, if (φ(x), x) ≤ 0 on ∂B then φ has
a fixed point in B.

Proposition 8. Let φ : Rn → Rn be continuous and satisfy

lim
x→∞

(φ(x), x)

|x|
=∞.

Then φ is onto.

Indeed, because φ(x) − y still satisfies the assumption, it is enough to
prove that ∃x, φ(x) = 0. But because (φ(x), x) ≥ 0 for |x| ≥ R we see
that, if φ(x) 6= 0 on |x| = R, we obtain a function which never points in the
opposite direction of φ(x) on |x| = R, and we may use Proposition 7.

Theorem 5. If F : B → Rn is continuous and F (∂B) ⊂ B then F has a
fixed point.

Proof. Assume that there is no fixed point on the boundary. Let φ =
x− F (x). Then, 0 = φ(x) + tx = (1 + t)x− F (x) is impossible for x ∈ ∂X,
t ≥ 0. (If t > 0 this would send F (x) outside B.) We apply Prop 7.

A variant of Brouwer’s fixed point:
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Theorem 6. (Brouwer fixed point) A continuous map f from a closed convex
set in Rn to itself has a fixed point.

Proof. We first prove the result in the case when K is the closure of an open
bounded convex set Ω. In that case, WLOG 0 is in the interior of the open set.
We consider φ(x) = x− f(x). If we assume that 0 /∈ φ(∂Ω) then 0 /∈ φt(∂Ω)
where φt(x) = x− tf(x). Indeed, if x = tf(x) for 0 ≤ t < 1 and x ∈ ∂Ω then
tf(x) is on one hand in ∂Ω and on the other hand (1 − t)0 + tf(x) ∈ Ω for
t < 1 because 0 is in the interior and f(x) ∈ K. This is easily seen by taking
a tiny ball Br around zero so that its dilate by 1

t
is still included in Ω. That

produces tf(x) + z ∈ K for |z| < r. We conclude by degree theory φ has a
zero in Ω.

The general case is done by considering convolution with a mollifier φε.
The function fε = 1Kf ∗φε is supported in Kε = {x| dist (x,K) ≤ ε} which is
the closure of the open bounded convex set Ωε = {x| dist (x,K) < ε}, and fε
maps Kε to itself. A convergent subsequence of fixed points of fε converges
as ε→ 0 to a fixed point of f in K.

Theorem 7. There is no continuous function f : B → ∂B so that f|∂B = I

Indeed, if there were such a function, then ft(x) = (1− t)f(x) + tx would
be a homotopy to I such that 0 /∈ ft(∂B). Therefore deg (f,B, 0) = 1, but
that is impossible because 0 /∈ f(B), so deg (f,B, 0) = 0.

Theorem 8. Borsuk’s Theorem. Let X be a bounded open subset of Rn

symmetric about the origin and such that 0 ∈ X. Let ψ : ∂X → Rn \ {0} be
continuous and odd (ψ(−x) = −ψ(x)). Then the deg (ψ,X, 0) is odd.

Proof in [1].
The next result is needed for the Leray-Schauder degree.

Proposition 9. Let Ω be an open bounded set in Rn and consider Rn as a
direct sum Rn = Rn1⊕Rn2 with n = n1 +n2 so that any x in Rn has a unique
decomposition x = x1 + x2 with xi ∈ Rni, i = 1, 2. We consider a map of the
form f = x+ φ(x), with φ : Ω→ Rn1. Suppose that y ∈ Rn1 and y /∈ f(∂Ω).
Then

deg (f,Ω, y) = deg (f| Ω1 ,Ω1, y)

where Ω1 = Ω ∩ Rn1.
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Proof. We may assume that f ∈ C1(Ω) and y = 0 ∈ Rn1 . Let ψj(xj) be
smooth compactly supported functions in Rnj supported near the origin for
j = 1, 2 and with normalized integrals

´
Rnj ψj(xj)dxj = 1. Then

deg (f,Ω, 0) =

ˆ
Rn

f ∗(ψ1(x1)ψ2(x2)dx).

Now Jf (x) = det(I +∇x1φ(x1 + x2)) so that

deg (f,Ω, 0) =

ˆ
Rn2

ˆ
Rn1

ψ1(x1 + φ(x1))ψ2(x2) det(I +∇x1φ(x1 + x2))dx1dx2

We replace ψ2 by a sequence of functions tending to the delta function,
without changing the equality. We obtain

deg (f,Ω, 0) =
´
Rn1

ψ1(x1 + φ(x1)) det(I +∇x1φ(x1)dx1

= deg (f| Ω1 ,Ω1, 0)
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