Degree Theory

1 Degree theory in finite dimensions

This is adapted from [1] Recall the local inverse thm:

Theorem 1. Let f : R — R™ be a C' function and assume that V f(x)
1s 1nvertible. Then there exists an open neighborhood U of xy and an open
neighborhood V' of f(xo) such that the inverse function f~':V — U ewists
and belongs to C*.

Let X, Y be open, paracompact (separable, all covers admit a locally fi-
nite refinement) smooth manifolds of dimensions n and k, n > k respectively.
Let f be amap f: X — Y which is C"~*+1,

Definition 1. A point xy € X is a regular point for f if (Vf(xg)) has
maximal rank k. A point which is not regqular is called a critical point. A
point y € Y is a critical value if the preimage f~*({y}) contains a critical
point. Otherwise, y is called a reqular value.

Theorem 2. Sard’s theorem: If f € C" "1 f: X — Y like above, then
the set of its critical values has measure zero in'Y .

Proof. “Measure zero” in Y is well defined in a chart. We only give the
proof for n = k. Enough to prove when X is a closed cube with sides parallel
to the axes in R™ and with side of size L. We subdivide the cube in small
cubes of side %, with sides parallel to the axes. If x and xy belong to the
same small cube () then

F) = o) + (V) = an) +0 (1)

because the first derivatives of f are continuous in X. If the point zq is
critical for f then det(V f(xo)) = 0, and therefore the image of @ lies in a
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cylinder of base in a plane of dimension n — 1 and base area < C (%)n_l and
height o (%) As there are at most N™ cubes containing critical points, their
image under f is contained in a set whose volume is of the order No (%)
This converges to zero as N — oo.

Now we recall some notation from differential geometry. If we have an n
form in R” it is given locally by

= fdy

where dy = dy* A--- Ady™ is the volume form and f is a real valued function.
The pull back of x under a change of variables ¢ is

¢ () = (f o ¢)(x) det Jy(x)dw

where J; is the Jacobian of ¢. By the change of variables formula

/}/N:Sgngﬁ/Xﬁb*M (1)

Let X C X, where Xj is a smooth paracompact manifold of dimension
n and X is an open subset with compact closure X = X U 0X in X,.
Let ¢ : X — Y be a continuous map which is C* in X, to the smooth n
dimensional paracompact manifold Y. Let yo € Y \ ¢(0X). From the local
inverse theorem, the preimage

¢~ ({wo}) = {z € X| () = o}

is a discrete set (consists of isolated points). Because X is compact, this set
is finite.

Definition 2. If yq is a reqular value of ¢ then

d(yo) = Z sgn Jy(;) (2)

where

o~ ({wo}) = {x1, ..., a1}

We say that a coordinate patch €2 of a point yo € Y is “nice” if there are
suitable coordinates ¢ : 2 — R™ so that ¢g(€2) is a cube.
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Definition 3. Let u = f(y)dy be a smooth n form on'Y with support con-
tained in a nice coordinate patch Q of yo € Y, with Q@ C Y \ ¢(0X) and
[y 1= 1. Then we set

deg (6, X, o) = /X i 3)

Differential forms of the kind above will be called “admissible”. The fact
that deg (¢, X, yo) is well defined is a consequence of the following lemma.

Lemma 1. Let = f(y)dy be a smooth form on'Y with [, =0 and with
supp p contained in a nice coordinate patch ). Then there exists an n — 1-
form w whose support is included in Q and such that p = dw.

Indeed, given the lemma, if v and p are admissible for gy and ¢ in X then,
because v — 1 = dw and because ¢*(v — pu) = ¢*(dw) = dp*w, the integrals
of o*v and ¢*u are equal by Green’s theorem

/X d(6"w) = 0.

Proof of Lemma 1 Without loss of generality we may assume that the
support of p is included in a cube ). We must show that we can find g;

supported in () such that
=209
j=1

The proof is by induction. If n = 1, then g1 = [?_ f(z)d= satisfies dg; = fdy.
Now suppose the lemma is true in n dimensions. Let y"*' = ¢, (y,t) =
(yh,...,y", t) and set

mi) = [ o
Now [ m(y)dy = 0, so, by induction, there exist gi,..., g, such that

m(y) = Z 9;9(y)

and g; are supported in the projection of the cube. Let 7(¢) be a smooth
function supported on the corresponding side of the cube, with

/: ()t = 1.



Consider f(y,t) — 7(t)u(y). Because its integral in ¢ vanishes,

g(y.1) = / () — r(s)m(y))ds

—00

has support in ) and obeys

ig(y,t) = f(y,t) — T(t)m(y).
Thus .
Fy, v ) = 0nsag(y, ™) + Z 9;(g; ()T (y™* "))

which finishes the proof.

1.1 Properties of the degree

Proposition 1. For y; close to vy,

deg(¢7 Xa yO) = deg(¢7 Xa yl)

Proof. Indeed, if p is admissible for ¢ in X for g, it is also admissible for
¢ in X for y;. Because the degree is an integer, it is locally constant and
therefore is constant on connected components of Y\ ¢p(9.X).

Proposition 2. If yg is a reqular point for ¢ then
deg (¢, X, yo) = d(yo)

Proof. There are disjoint neighborhoods V; of z;, the points which comprise
¢~" ({yo}), such that ¢ is one-to-one on them. Then if N = N¥_,¢(V}), then
N is a neighborhood of yy, and if p is admissible with support in N then

deg (¢, X, 50) = f o' = Z?:l fvj o' = Z?:l sgn Jy () f¢>(vj) K
= 2521 sgn Jo(z;) fy H= Z§:1 sgn Jy(z;) = d(yo)-

It follows that deg (¢, X,yo) is an integer equal to d(y) for ant regular
value y belonging to the same connected component of Y\ ¢(90.X) as yo.

Proposition 3. Homotopy invariance. Consider a one parameter family
of maps ¢; : X — Y, continuous on X x [0,1] and with ¢, € CY(X) for
each t € [0,1]. Assume that yo ¢ ¢+(0X) holds for each t € [0,1]. Then
deg (¢y, X, yo) does not depend on t.



Proof. We take a small neighborhood of yy which avoids the compact set
$(0X x [0,1]). Let o be admissible for all ¢, t € [0,1] and y in X. Then

deg (61, X, o) = / ¢ (1)

is continuous and integer valued, so it is constant.

We can generalize this by allowing 1y, to depend continuously on ¢ and
having a relatively open set A C X x [0, 1] with compact closure. If y; does
not belong to ¢;((0A);) where A, = {z € X; (x,t) € A} and (0A); = {z €
X; (x,t) € 0A}, then deg (¢r, Ar, yr) is constant.

Proposition 4. Let X; be a sequence of disjoint open sets contained in the
interior of X. Let yo ¢ ¢ (X \U;X;). Then deg(¢,Xi,y0) = 0 for all but
finitely many i, and

deg (d)a X7 yO) = Z deg (¢7 Xi, yO)

Proof. Let N be an open neighborhood of y, not intersecting ¢(X \ U; X;)
(because the latter is compact, hence closed). Then we take a regular value
y € N. The degrees are computed at y, and y has a finite number of preim-
ages. A particular case is

Proposition 5. Excision. Let K C X be closed. If yo & ¢(K)U@(0X) then

d@g(¢,X, yO) = deg(¢7X\K7 yO)

Proof. We apply the previous proposition with X; = X \ K.

Proposition 6. Let X,Y be manifolds of dimension n and X', Y" of dimen-
sionm and ¢ : X — Y and ¢' : X' — Y’ be such that the degrees are defined
at y and y' respectively. Then

deg (¢ x ¢', X x X' (y,y")) = deg (¢, X,y) x deg(¢', X", )

Proof. If u and i/ are admissible for ¢ and ¢’ and y and 3’ then pu x u' is
admissible for ¢ x ¢’ and (y,y") at X x X’ and

/(¢ X @) (nx ') = /cb*u : /qb’*u’
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A few remarks about the degree. First, if the map ¢ is one-to-one and
preserving the orientation and if yy € ¢(X)N(Y\@(0X)) then deg (¢, X, yo) =
1. If yo & ¢(X) then deg (¢, X,y0) = 0. If 0X = (), X is compact and Y is
connected and not compact, then the degree vanishes at any y € Y.

Extension to continuous maps. If ¢, — ¢ uniformly in X, then for
large enough n, the degrees deg (¢, X, yo) are independent of n. Indeed, the
property yo ¢ ¢(0X) implies that there exists a neighborhood N of 1, such
that ¢,(0X)NN = () for large enough n. If dist(¢p;(0X),y0) >0 > 0,71 =1,2,
then (1—1t)p(z) +tpe(x) = ¢1(x) +t(z) with ¢ (z) uniformly small on 90X,
and therefore the homotopy cannot touch 0X. Note that the convergence
in C° does not imply continuity of the degree, but the homotopy invariance
does. Note also that the degree depends only on values of ¢ on 0X: all
continuous extensions of ¢ to the whole X have the same degree. (same
proof: if we have two continuous extensions, then the homotopy described
above does not touch the boundary).

Theorem 3. Let ¢ : X =Y, ¢ € C(X)). Let Q be a connected component
of Y\ ¢(0X) and p a smooth n— form in'Y with compact support in 2 and
with [, p# 0. Then

deg (6, X, Q) = f)j q;“
Y

The proof follows by establishing the relation first for measures supported
in nice coordinate patches, then using a partition of unity, cross multiplying
(using Lemma 1) and summing.

Theorem 4. Let ¢ : X — Y, ¢ : Y — Z be continuous. Let §; be the
connected components of Y \ ¢(0X) having compact closure in'Y . Then, for

z & 1o p(0X) we have
deg(1po ¢, X,2) = deg(d, X, ) deg (1h, Y, )

and the sum on the right hand side is finite.

Proof. WLOG: ¢, € C! and z is a regular value for both 1 o ¢ and for 1.
Then,

deg (Yo ¢, X, 2) = wa(a:):z sign Jyoe ()
= D ((a))=e S8R Jy((e))SigN Jo(a)

- Zw(y):z sigh Jy(y) E(b(x):y sign Jy ()

=D )= Sign Jygydeg (¢, X, ).
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Note that if y belongs to a connected component of Y\ ¢(0X) whose closure is
not compact, then deg (¢, X, y) = 0 so the sum is restricted to the connected
components whose closure is compact. Then

deg (¢ o ¢7 X? Z) = Z’z/}(y):z Sign Jd’(y) Zz deg (¢7 X7 Q’l)
=>_;deg (¢, X, Q;)deg (v, Q;, 2).

2 Applications

Let B be the closed unit ball in R”.

Proposition 7. Let ¢ : B — R" be continuous and such that ¢(x) never
points opposite to x on 0B, i.e.,

o(z) +tx #0, vVt >0,z € 0B.
Then ¢(z) = 0 has a solution inside B.

Proof. Indeed t¢(x)+ (1 —t)x does not vanish for any ¢ € [0, 1] and = € 9B.
Therefore deg (¢, B,0) = 1.

Note that the same result holds for —¢, i.e. if ¢(z) never points in the
same direction as z on 0B. In particular, if (¢(z),2z) < 0 on 0B then ¢ has
a fixed point in B.

Proposition 8. Let ¢ : R" — R" be continuous and satisfy

lim —((b(:c),x) = 00.
o

Then ¢ 1s onto.

Indeed, because ¢(z) — y still satisfies the assumption, it is enough to
prove that 3z, ¢(z) = 0. But because (¢(z),z) > 0 for |z| > R we see
that, if ¢(x) # 0 on |z| = R, we obtain a function which never points in the
opposite direction of ¢(z) on || = R, and we may use Proposition 7.

Theorem 5. If F' : B — R" is continuous and F(OB) C B then F has a
fixed point.

Proof. Assume that there is no fixed point on the boundary. Let ¢ =
x — F(z). Then, 0 = ¢(x) + tx = (1 + t)x — F(z) is impossible for z € 0.X,
t > 0. (If £ > 0 this would send F(z) outside B.) We apply Prop 7.

A variant of Brouwer’s fixed point:
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Theorem 6. (Brouwer fized point) A continuous map f from a closed convex
set in R™ to itself has a fixed point.

Proof. We first prove the result in the case when K is the closure of an open
bounded convex set €. In that case, WLOG 0 is in the interior of the open set.
We consider ¢(z) = — f(x). If we assume that 0 ¢ ¢(92) then 0 ¢ ¢,(0)
where ¢ (z) = x —tf(z). Indeed, if z = tf(z) for 0 <t < 1 and x € 0N then
tf(z) is on one hand in J2 and on the other hand (1 —¢)0 + ¢f(x) € § for
t < 1 because 0 is in the interior and f(x) € K. This is easily seen by taking
a tiny ball B, around zero so that its dilate by % is still included in €2. That
produces tf(x) + z € K for |z| < r. We conclude by degree theory ¢ has a
zero in 2.

The general case is done by considering convolution with a mollifier ¢..
The function f. = 1k f* ¢, is supported in K, = {x| dist (z, K) < e} which is
the closure of the open bounded convex set €2, = {z| dist (z, K) < €}, and f,
maps K, to itself. A convergent subsequence of fixed points of f, converges
as € — 0 to a fixed point of f in K.

Theorem 7. There is no continuous function f : B — 0B so that flop = 1

Indeed, if there were such a function, then f;(z) = (1 —1t)f(z) + tz would
be a homotopy to I such that 0 ¢ f;(0B). Therefore deg (f, B,0) = 1, but
that is impossible because 0 ¢ f(B), so deg (f, B,0) = 0.

Theorem 8. Borsuk’s Theorem. Let X be a bounded open subset of R™
symmetric about the origin and such that 0 € X. Let ¢ : 0X — R™\ {0} be
continuous and odd (Y(—x) = —(x)). Then the deg (¢, X,0) is odd.

Proof in [1].
The next result is needed for the Leray-Schauder degree.

Proposition 9. Let Q be an open bounded set in R™ and consider R™ as a
direct sum R™ = R™ @R" with n = ni+ns so that any x in R™ has a unique
decomposition x = x1 + xo with x; € R™, i =1,2. We consider a map of the
form f =z + ¢(x), with ¢ : @ — R™. Suppose that y € R™ and y ¢ f(09Q).
Then

deg (fa Q, y) = deg (f| Q15 M, y)

where 1 = QN R™,



Proof. We may assume that f € C*(Q) and y = 0 € R™. Let ¢;(x;) be
smooth compactly supported functions in R™ supported near the origin for
j = 1,2 and with normalized integrals [;n; ¥;(2;)dz; = 1. Then

deg (f,,0) = - [ (W1(z1)Ya(z0)d).

Now J¢(z) = det( + V,,é(x1 + 2)) so that

deg (f,0,0) = /R e+ o) () det(T + Vi olar + ) dnd

We replace ¥y by a sequence of functions tending to the delta function,
without changing the equality. We obtain

deg (f7 Qv 0) = f]R"l 77ZJ1(:El + ¢($1)) det(] + Vmgb(xl)dxl
:deg(f| QUQlaO)
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