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ABSTRACT. We discuss general incompressible inviscid models, including the Euler equations, the surface
quasi-geostrophic equation, incompressible porous medium equation, and Boussinesq equations. All these
models have classical unique solutions, at least for short time. We show that they have real analytic Lagrangian
paths. More precisely, we show that as long as a solution of any of these equations is in a class of regularity that
assures Holder continuous gradients of velocity, the corresponding Lagrangian paths are real analytic functions
of time. The method of proof is conceptually straightforward and general, and we address the combinatorial
issues head-on. July 10, 2014.

1. Introduction

Analyticity of Lagrangian paths of solutions of incompressible Euler equations is a classical subject.
Propagation of real analyticity in space and time, from analytic initial data, and for as long as the so-
lution exists, has been amply investigated [BBZ76, BB77, AMS86, Del85, LB86, .LO97, KV09, KV11,
Zhell, Saw13|]. The smoothness or real analyticity of Lagrangian paths without having analytic Eulerian
data is quite a different subject from propagation of analyticity. This subject has been addressed in the
past [Lic25,/Che92, Gam94, Ser95a, [Ser95c, Ser95b, |Che98, Kat00], and has recently generated renewed
interest [Suell, |(GST12, Shn12, 714, Isel3, Nad13, ZF13, FV14]. The remarkable property of smooth-
ness of the Lagrangian paths in this system holds even when the Eulerian variables (velocity, pressure) have a
limited degree of smoothness. A relatively low degree of smoothness of the Eulerian variables is maintained
through the evolution if it is initially present, because the equations, when well posed, are time-reversible.
Consequently, the real analyticity of Lagrangian paths in such circumstances is all the more remarkable. An
interesting example of the distinct degrees of smoothness of Eulerian and Lagrangian variables is provided in
the recent works [Isel2, BDLS13||, which concern a rough enough Eulerian setting for non-uniqueness. The
purpose of this paper is to show that the real analyticity of Lagrangian paths of solutions of hydrodynamic
models is a general property which occurs naturally when the Eulerian velocities are slightly smoother than
Lipschitz, and follows from a uniform chord-arc property of the paths using singular integral calculus.

The Lagrangian paths of any fluid model with velocities w(x, t), with € R? and t € R are defined by
ordinary differential equations

dX
ﬁ :U’(Xat)v (1.1)

X (a,0) = a. (1.2)

We refer to a € R? as a “label” because it marks the initial point on the path @ — X (a,t). The gradient of
the path obeys

d
—(VX) = (Vu)(VX) (1.3)

dt
1
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with initial data the identity matrix. As long as w is Lipschitz, we have
sup |VX(a,t)| < exp/ |Vl oo dt (1.4)
acR?

where we denote by |-| the norm of the matrix. The maps X are C''Y and invertible if w is in L' (0, T'; C17),
and the inverse, the “back-to-labels” map A(x,t) = X ~!(x,t) obeys

OA+u-VA=0, (1.5)
with initial data A(x,0) = x. Incompressibility is not needed for this to hold. The gradients obey
H(VA)+u-V(VA)+ (VA)(Vu) =0, (1.6)
with initial data the identity matrix, and with (V. A)(Vu) the matrix product. Therefore
sup |[VA(z,t)| < eXp/ [Vul|edt (1.7
zeR?

follows by integrating on characteristics. Because
a—b= A(X(a’ t)a t) - A(X(ba t)a t)
it follows from ((1.7) that

t
la —b|] < |X(a,t) — X (b, t)|exp/ [IVu|| poedt,
0

and because
1L q

X(a,t) = X(b.0) = | o

—X((1—s)a+ sb,t)ds
it follows from (T.4)) that
t
| X (a,t) — X(b,t)] <|a— b[exp/ IVu| podt.
0

We have thus the chord-arc condition

_b’
N P la
B ’X(aat)_X(bvt)‘

<\ (1.8)

where .
A= exp/ |IVu| peodt. (1.9)
0

This condition holds for any fluid system, as long as the velocities are Lipschitz, even if the fluid is com-
pressible. Time analyticity of paths will be discussed here only in the incompressible case, for convenience,
but the proofs are the same for compressible equations, modulo differentiating the Jacobian of the path map.

We consider here one of the following equations: the 2D surface quasi-geostrophic equation (cf. 2.1)—
(2.2)), the 2D incompressible porous medium equation (cf. (2.5)—(2.6)), the 2D and the 3D incompressible
Euler equations (cf. and (2.8)), and the 2D Boussinesq equations (cf. (2.10)—(2.11))). These are by
no means an exhaustive list of equations for which our method applies. They have been chosen because,
with the sole exception of the 2D Euler equations, all the above models are examples of equations where
the question of global existence of smooth solutions remains open. Nevertheless, they all have real analytic
particle paths. The main result of this manuscript is:

THEOREM 1.1 (Lagrangian analyticity in hydrodynamic equations). Consider any of the above hy-
drodynamic systems on a time interval when the Eulerian velocities are C17, for some y € (0,1). Then, as
the chord-arc parameter in remains finite on the time interval, the Lagrangian particle trajectories are
real analytic functions of time.
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We note that the assumption of the theorem holds for short time if the initial data are such that the
Eulerian velocities are C'"7. The analyticity is a local property. It follows from the proof of the theorem that
the radius of time analyticity of X (-, ¢) is a function of a suitable norm of the initial data and time, which
enters only through the chord-arc parameter \. This parameter dependence is consistent with that for the
spatial analyticity radius in the case of real analytic initial datum [KV09, KV11].

The main idea of the proof starts with a representation of the velocity in Lagrangian variables in terms
of conserved quantities. It is easiest to show this in the case of 2D active scalars. Two dimensional incom-
pressible hydrodynamic velocities can be expressed in terms of a stream function 1),

u=vVty (1.10)
where V4 = (—0o,0;) is the gradient rotated counter-clockwise by 90 degrees. The active scalars solve
transport equations

Of+u-Vo=0 (1.11)

with u given by (1.10) and v related to 6 by some time independent linear constitutive law ¢) = L6. In most
cases this leads to a simple integral formula

u(x,t) = p.. - K(x —y)0(y,t)dy

with a kernel K that is singular at the origin, real analytic away from the origin, and integrates to zero on
spheres. Note that (L.11)) simply says that

(X (a,t),t) =0y(a). (1.12)
Composing the representation of the velocity with the Lagrangian map we obtain
dX (a,t __
g’) —pw. | K(X(a,t)— X(b,t))8o(b)db (1.13)
R2

where the symbol p.v. denotes a principal value in the Eulerian variables. Throughout the manuscript, for
notational convenience we drop the p.v. in front of the integrals, as they are always understood as principal
values in the Eulerian sense. In Section [2| we give the precise versions of for the hydrodynamic
models under consideration.

The straightforward general idea is to use the chord-arc condition and analyticity of the kernel to prove
inductively Cauchy inequalities for all high time derivatives of X at fixed label. The implementation of
this idea encounters two sets of difficulties: one due to combinatorial complexity, and the other due to the
singularity of the kernels and unboundedness of space.

Combinatorial complexity is already present in a real variables proof of real analyticity of compositions
of multivariate real analytic functions. We discuss this issue separately in Section [3] We use a multivari-
ate Faa di Bruno formula (cf. [CS96] or Lemma [3.2] below), multivariate identities (we call them “magic
identities”, because they seem so to us; cf. Lemma@ and an induction with modified versions of Cauchy
inequalities (cf. (3.4) or (4.4), inspired by [KP02]) in order to control the growth of the combinatorial terms.
This difficulty is universal, and because we addressed it head-on, the method is applicable to even more
examples, not only the ones described in this work, and not only to hydrodynamic ones.

The singular integral difficulties are familiar. In all these systems the gradient of velocity is also rep-
resented using singular integrals of Calderén-Zygmund type. The singular nature of the kernels is always
compensated by the presence of polynomial terms in X (a,t) — X (b, t), which arise since the kernels have
vanishing means on spheres centered at the origin. The fact that we integrate in the whole space necessitates
the introduction of a real analytic cutoff, which for simplicity we take to be Gaussian.

The Euler equations have classical invariants [Con01, |Con04, [ZF13], which yield completely local
relations involving dX /dt in Lagrangian coordinates. This is remarkable, but special: in more general
systems the corresponding relations are not local. Because of this, we pursue the same proof for the Euler
equations as for the general case.
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We give the fully detailed proof of Theorem [I.]in the case of the 2D SQG equations. This is done in
Section[d] The proofs for the 2D IPM and 2D and 3D Euler equations are the same. The 2D IPM and 3D
Euler equations have of course different kernels; 2D Euler has a less singular kernel. The proof in the case
of the 2D Boussinesq equations has an additional level of difficulty since the operator L in the constitutive
law for 6 is time-dependent. This issue will be addressed in a forthcoming work.

The paper is organized as follows. In Section [2] we provide the self-contained Lagrangian formulae
of type (I.I3) for each of the hydrodynamic models under consideration. In Section [3] we introduce the
combinatorial machinery used in the proof of the main theorem, which is centered around the multivariate
Faa di Bruno formula. In Section 4| we give the proof of Theorem in the case of SQG. Lastly, in
Appendix [A] for the sake of completeness, we give the derivation of the natural Lagrangian formulae stated
in Section [2| In Appendix [B| we recall from [KP02|] the one-dimensional Faa di Bruno formula and its
application to the composition of real analytic functions.

2. Self-contained Lagrangian evolution

In this section we give self-contained formulae for the time derivatives of X and VX, for each of the
hydrodynamic equations considered. In each case the initial datum enters these equations as a parameter.
We use the usual Poisson bracket notation

{f,9} = (011)(D29) = (22£)(D19) = (V*f) - (Vg).
2.1. 2D Surface Quasi-Geostrophic Equation. The inviscid SQG equation is
0+ (u- V) =0, 2.1
u=VH-A)"120 =R (22)

where R = (Rj, R2) is the vector of Riesz-transforms. Here x € R? and ¢t > 0. We recall cf. [CMT94]
that the SQG equation is locally well-posed if 6y € C17, with v € (0, 1). It follows from Z.1)—(2.2) that
the vector fields V6 - V and 9; + u - V commute. The ensuing self-contained formula for the Lagrangian
trajectory X induced by the velocity field u is

dX
@t = [ K(X(at) - X(b.0)0(b) b, 23)
while the gradient of the Lagrangian, V, X, obeys

d(vd‘;X)(a,t) =V.X(a,t) /K(X(a, t) — X (b,t)) (V#Xl(b, t))  Vibo(b)db.  (2.4)

Here the kernel K associated to the rotated Riesz transform R is given by

€1
Yy

We refer to Appendix for details.

2.2. The 2D Incompressible Porous Media Equation. The inviscid IPM equation assumes the form
00+ (u-V)o =0, 2.5
u=P0,0) =—-Vp—(0,0). (2.6)

We recall, cf. [CGOO07] that the IPM equation is locally well-posed if 8y € C17, with v € (0,1). For the
particle trajectories X induced by the vector field u we have

dX . _ 1 [(X(at) - X(b1)"
o= "o | X (@) - Xm0

{HO(b)7 X2<b7 t>} db
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and
d(vd‘;X)(a,t) =V.X(a,t) /K(X(a, t) — X (b,t)) {6o(b), X2(b,t)} db
+3 @), Xt} | | ] VXt
where K is given by
Ky) = Klnow) = 5 | 0% 0 0] )

The details are given in Appendix [A.2]

2.3. The 3D Euler Equations. The three-dimensional Euler equations in vorticity form are given by
Ow+u-Vw=w-Vu (2.8)
where the divergence free w can be recovered from w via the Biot-Savart formula [MB02]
1 r—y
t —_— t)dy.
u(z,t) = 47r/Ra Pe— x w(y,t)dy
The geometric interpretation of (2.8)) and incompressibility is that the vector fields w - V and 9; + v - V
commute. The local existence and uniqueness of solutions to (2.8)) with initial data ug € C17, for~ € (0, 1),
goes back at least to [Lic25]] (see also [MBO02]] and references therein for a more modern perspective). Due
to the Cauchy formula
w(X(a,t),t) = VX(a,t)wo(a),
the Lagrangian map X obeys the self-contained evolutions

@ = [ e s * (VX (b thwa(B)ab

and
d(VeX
Vo) (0,1) = (VuX)(a.1) / K (X(a,1) - X(b.)) (VX (b, sy (b)) db
1
+ §(VaX(a,t)wo(a)) x (Vo X)(a,t)
where for vectors @ and y the matrix kernel K (x)y is defined in coordinates by

(K(2)y)i; = 8%7((:8 X Y) ®93|-|a-3€: ® (T X Y));; _ 8?;(93 X y)i$j|;_|5(m X Y);

The details are given in Appendix [A.3]

Z;

2.4. The 2D Euler Equations. The two-dimensional Euler equations in vorticity form are
Ow+u-Vw=0 (2.9)
where the Biot-Savart law [MBO02] in two dimensions reads
1 [(z—y)"
=— | —= dy.
u(a) = 5 [ Tty
The equations are locally in time well-posed if the initial velocity uwg € C7, for some v € (0,1)
(cf. [Lic25])). In two dimensions solutions cannot develop finite time singularities [Jud63|], but this fact
will not be used in our proof, since global existence is not known for any of the other hydrodynamic equa-
tions considered in this paper. The particle trajectory X obeys the evolution
dX( 0 1 /(X(a,t) — X (b,t))*
—(a —_—
dat 2 | X (a,t) — X (b,t)[?

wO(b)dba
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while the time derivative of VX obeys

W(a,t} = V.X(a, t)/K(X(a,t) — X (b, 1)) wo(b) db + %wo(a) [ (1) _01 } V.X(a,t)

with K being the kernel in (2.7). These details are given in Appendix

2.5. The 2D Boussinesq Equations. The two-dimensional Boussinesq equations for the velocity field
u, scalar pressure p, and scalar density 6 are

ou+ (u-V)u = —Vp+ ey, V-u=0, (2.10)
00+ (u- V)0 =0, (2.11)
where e = (0,1), € R?, and ¢ > 0. The scalar vorticity w = V* - u = 9, us — 0,,u; satisfies
Ow + (u - V)w = 0y, 0.

The local well-posedness for the 2D Boussinesq holds for initial data ug,fp € C7 with v € (0,1)
(cf. [ES94,ICN97]). The particle trajectories X induced by w then obey

dX 1 [ (X(a,t)— X (b))t
T @0= 0 [ [ Xen X0 9@

1 [ (X(a,t)— X(bt): [ [t
* o (X (a,t) — X (b,t)|? </0 {eo(b)7X2(b,7')}dT> db

d(VdX :(/K (a,t) — X(b,t))w (b)db>V X(a,t)

(/K (a,1) (b,t))/t (60(b), Xa(b, 7))} deb) V. X (a,1)

+2< /{90 , Xs(a,7)} dT) [(1) _Ol}VaX(a,t),

where the kernel K is given by (2.7). The derivation is given in Appendix [A.5]

and

3. Analyticity and the composition of functions: combinatorial lemmas

Let X : R — R< be a vector valued function which obeys the differential equation

d
dt

where K : R? — R? is a given real analytic function of several variables. In this section we show that if X
is bounded, then it is in fact real analytic(see Theorem below). This statement should be understood in
the neighborhood of a point ¢y € R, and Xy = X (ty) € R4,

The proof in the case d = 1 is taken from [KP02, Chapter 1.5], and serves as a guiding example (see
Appendix [B|below). The case d > 2 requires an extended combinatorial machine, and for that we appeal to
the multivariate Faa di Bruno formula in [[CS96]]. The precise result is:

— X (1) = K(X(t)) 3.1

THEOREM 3.1. Let K = (K1, ..., Ky): RY — R? be a function which obeys
!
(X < .
0% K (X)) CR|°‘| (3.2)
for some C;R > 0, i € {1,...,d}, and for all X in the neighborhood of some Xy = X (to), where
X = (X1,...,Xq): R — R%is a function which obeys

[ Xi(t)| < C (3.3)
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for all t in the neighborhood of to, and i € {1,...,d}. If X is a solution of (3.1)), then we have that

1 (1/2\ (2C)"

1

orxa) < o (2) B 64
foralln > 1, all coordinates i € {1,...,d}, and all t in a neighborhood of to. In particular, X is a real

analytic function of t at to, with radius of analyticity R/C.

3.1. Preliminaries. We denote by N the set of all integers strictly larger than —1, and by Ng the set of
all multi-indices ¢ = (a1, - - - , aq) with o; € Ny. For a multi-index o, we write

lal =1+ ...+ ag

al = (041!) et (ad!)
0% =0y .. .8;‘;
y* =) (g

where y € R¢ is a point. The following definition shall be needed below.

DEFINITION. Letn>1,1<s<n,and o € Ng with 1 < |a| < n, define the set

Pin,a) =4 (k1,... . ks;l1,... . 0s) e NEx ... N¢ x Nx...N:
0 0

O<\k:i\,0<€1<...<€5,Zs:ki—a,§:|ki|£i—n}. 3.5
=1 =1

In particular, we note that ¢; #~ 0.

Moreover, for an integer j > 1 we define

(1/2) _/2/2-1)...(1/2—j+1)

J J!

(£)--

We use the above non-standard convention for (162) so that we can ensure

(1! (1/.2) >0

J

and

for all j > 0. Moreover, we will use that

12y 1% 25 =3 (25— 3)! 5!
=1y 1( / ) _ 2],]}‘[0(2/@+ =" = gy < Oy (3.6)

for some universal constant C', whenever j > 2.
With this notation in hand, we recall [[CS96, Theorem 2.1].

LEMMA 3.2 (Multivariate Faa di Bruno Formula). Let h: R — R be a scalar function, C™ in the
neighborhood of y, = g(x), and g: R — R be a vector function, C*™ in the neighborhood of . Define
f(z) =h(g(z)): R — R. Then

n s % a) (o))
) =t S @iy S [[UE00)

1<]|a|<n s=1 Py(n,a) j=1

holds for any n > 1, with the convention that 0° := 1.



8 PETER CONSTANTIN, VLAD VICOL, AND JIAHONG WU

3.2. Main combinatorial identity. The following lemma will be essential in the proof of Theorem[3.1]
LEMMA 3.3 (Multivaried Magic Identity). For n > 1, with the earlier notation we have that
s 1 / 2) | |

Y (-1)a ,;Z > H = +1)(n1fl).

1<]la|<n s=1 Ps(n,a) j=1

PROOF OF LEMMA [3.3 The proof mimics that of the proof of [KP02, Lemma 1.5.2], by using a diag-
onal argument.
Let Z: R — R be defined as

Z(t)=(1-Vi—2t) = (1 —(1+ (—2t))1/2) .
This function has the property that
@20 =~ (")) -
for any ¢ > 0. Also, Z(0) = 0.

Next, consider a function K : R? — R, such that
(0*K)(0,...,0) = |a|!

for any multi-index o € Ng. For example, take a real analytic function of several variables, which on the
diagonal is given by

For example, consider

K(Zl,...,Zd):H(l_l

j=

—_

which is smooth in a neighborhood of the origin in R
Let F': R — R be defined as

1
F(t)=K(Z(t Z(t)) = .
() = K(Z(0),.... 2() = =
This function has the property that
1/2
")) = — ! —9)ntl
F(0) (n+1)! (n n 1)( 2) 3.7

for any n > 1.
Using Lemma[3.2] we have on the other hand that

n s ; [k; ]
FO@O)=n! Y (9°K)0,...,003 (042)(0) ™

1<|a|<n 1 Pl =1 (k:j!)(fjl)lkj\
k51
n s <_(1€/-2)(_2)£J£J'>
— n‘ ’a‘l J
1<§|<n ;Ps%a)jzl (kj')(éj')lky\
s (1/2)‘kj|
—nl=2" 3 al(- 'alz ,

The proof of the lemma is concluded by appealing to (3.7). O
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3.3. The proof of Theorem 3.1}

PROOF OF THEOREM 3.1l The proof is by induction. The case n = 1 is contained in assumption (3.3).
We now show the induction step. Fix one coordinate ¢ throughout the proof. Using the multivaried Faa
di Bruno formula of Lemma [3.2] we obtain

(071X (1) = O (K (X (1))

. = (0x00)”
= n! Z 8 K Z Z H k:‘ g]\k\ :
1<|a|<n s=1 P,(n,a) j=1

By appealing to (3.2)) and the inductive hypothesis (3.4)), we obtain

Ik
1 -1 1/2 (20)7 /
orrixg<om Y elsn 5 H< o)

k;
1<|a|<n s=1 Ps(n,0) j=1 (kj1)(£; ')‘ |
2C)n 1/2)|k’j|
<on-1y C S Cajeljapy,
1<]a|<n s=1 Ps(n,a) j=
(2c)” 1/2
=Cn!(=1)" 2 1
Cn!(-1) 7 (n+1) nt1
(2C)"+ /1 1/2
= (=1)" ==’ |
(=1)"(n+1)! 7 nt 1 n

In the second-to-last inequality we have essentially used Lemma|[3.3] With (3.6), the proof is complete. [

4. Lagrangian analyticity for the SQG equation

In this section we give the proof of Theorem [I.T]in the case of the surface quasi-geostrophic equations.
The precise statement is:

THEOREM 4.1 (Lagrangian analyticity for SQG). Consider initial data 0y € C*YNW L, and let § be
the unique maximal solution of the initial value problem for @I)-2.2), with 0 € L2.([0,Ty); CtYnWwh1).
Given any t € [0,T}), there exists T € (0,T, —t), with T = T( )/2;009)), and R > 0 with
R = R(t,||0o|lcrvawr1s7), such that

108 X || oo (1,64 13010y < CRIRT™

holds for any n > 0. Here C is a universal constant, and the norm || X ||c1,~ is defined in (.3) below. In
particular, the Lagrangian trajectory X is a real analytic function of time, with radius of analyticity R.

Take any ¢ € (0,7). Analyticity is a local property of functions, so it is sufficient to follow the
Lagrangian paths for a short interval of time [t,¢ 4+ T'] past t. Note that from the local existence theory we
have the bounds on the size of (-, t). Without loss of generality it is sufficient to give the proof for ¢ = 0.

Fix a A € (1, 3/2] throughout this section. Let T € (0, T%) be such that

T
/ |V (t)|| oo dt < log A. 4.1
0

The existence of this 1" is a consequence of the local existence theorem. It follows that the chord-arc
condition

1 la — b|

— <
AT [X(a,t) = X(b,1)]
[0,

a

<A 4.2)

holds for any @ # b € R? and any ¢ €
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For v € (0,1), define
[ Xlcrr = 1 X(a) = afz~ + [VaX (a)|lz= + [Va X (a)lov 4.3)

Our goal is to use induction in order to show that there exists Cy = Co(||00|lctvaw11,7,A) > 0 and
C1 = C1(\, Ck) > 0 such that the Cauchy inequalities

1
nwxmm@mﬂnsvﬂﬁlm<;>CWQPl @4
hold for any n > 0. Here A is the chord-arc constant in , and C' is the kernel-dependent constant from
(#.6) below.
In order to have the induction base case n = 0 in (4.4) taken care of, we choose

Co > [| X || Lo (0,5017) - (4.5)

The right side of (4.5)) is finite in view of the local existence theorem. To prove the induction step, we need to
estimate supco,7) 107X (- ) || oo SUPye(o,7] 107+ (V o X)(+,t)|| 1, and lastly the Holder semi norm

supyepo,7(0; A (V X)(+,t)]c~. This is achieved in the following three subsections.
4.1. The L> estimate. Recall that

@) = [ K(X(a.t) - X(b.1)0(b) db

where K (y) = y/(27|y|?). We need to localize this kernel near the origin with a rapidly decaying real
analytic function. For this purpose we use a Gaussian and define

1 1
K’L?’L(y) - y 67|y|2 and Kout(y) = L(l — €7|y|2)

27|y|3 27|y|3
so that K = K;,, + K ;. There exists a universal constant C'xr > 1 such that
clo a1 clolay!
£ /& K —|y|?/2 « K
|a KZ”( )| — | ||a|+2 e and ’a KOut(y)’ S |y||a| (46)

holds for any multi-index o and any y # 0. The proof of the above estimates is given in Section [d.5]below.
Moreover, since [, B1(0) K, (y)dy = 0, we write

a0 = [ Ki(X(@.t) = X(6.0)(60(6) - bofa) db
+ / K out (X (a,t) — X (b, ))00(b) db. @)
We apply n time derivatives to (2.3) and obtain
o X (a,t) = / O Kin(X(a,t) — X (b,1)) (6(b) — o(a)) db

+ /&?Kout(X(a,t) — X(b,t))0y(b) db (4.8)

Fix an index ¢ € {1,2} and let either K = Kj,; or K = Koy ;. Apply the Faa di Bruno formula in
Lemma[3.2]to obtain

O (K(X(a,t) — X(b,1)))
Y @)X -xb.)S Y [ gl)lk(ll) Y 4

1<|ex|<n s=1 Pg(n,ax) j=1
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Combining formulas (4.8) and (.9) with the inductive assumption (4.4)) for the Lipschitz norm of X, and
the bound (4.6)), we arrive at

107 X (a,t)| < n!
1<|a|<n

o oo s)

s= 1P (n,a) j= 1 (k])(gﬂ')‘k‘

/ ’a|10\0¢|
[ X (a,t) — X (b, )|l

1411 1/2 )C’ C[_l‘ _b|)\kj|

xz Z H( (kj.)(éj!)\k‘ |60(b)| db.  (4.10)

s=1 Py(n,e) j=1

From the definition of Ps(n, ) in (3.5)), we recall

,a,,clale |X (a,t)— X (b,t)|2/2
/ | X (a,t) — X (b, t)[?tled

|00(b) — Oo(a)| db

1<|a|<n

S

Stk =n, Y Ikl =al,
j=1

Jj=1
and estimate (4.10]) becomes

n / k51
o X (@0l <nl (-1 Cpey YD ()Ralloglcr ™y Y H Tin + Tout)
1<|a|<n s=1 Ps(n,a) j=1
4.11)
where
|a — b’|a‘6_|X(avt)_X(bvt)‘2/2
L, = Oo(b) — 0 db
|X(a,t) _ X(b,t)|2+|a| ‘ O( ) O(Cl)’
and
!a — bl
out / |X ( )||a| |90( )|db
Using the chord-arc condition (@.2), and
00(b) — bo(a)| < [fo]c|a — b7,
we estimate
Lin < [60)cn A2t / la — b7 21 bP/(2X) g < §AZ(4 1 4 \) (G A,
On the other hand, (4.2) also yields
Tout < )\|a|H90HL17
so that
Lin + Lo < [N (8X2(v™1 4+ M) [6o] e + 1|60/ 1) (4.12)

Therefore, if we let

C1 > CgA (4.13)
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and
@>8A2( I, 6 4.14
5 =8\ (y olcr + 6ol 1, (4.14)
from (@.11) and (4.12)) we conclude
) / L
077 X (a,1)] < Snd(=1)" CgiCY > (-1 ‘“'\Oz!'z Z H
I<|al<n s=1 Py(n,a) j=1
<(n+1)!(-1) <n+1>00+101 (4.15)

where in the last inequality we have appealed to Lemma [3.3] Estimate (4.15) proves the L portion of the
induction step in (4.4)).

4.2. The Lipschitz estimate. Similarly to (4.7), we decompose (2.4)) as

d(VoX)
)

= V.X(a,t) / Kin(X(a,t)— X (b,t)) (vaXL(b,t) V3o (b) — VX1 (a,t) VaHO(a)) db
+VoX(a,t) / Ko (X (a,t) — X (b,t) Vi XL (b, 1) Vi00(b) db. (4.16)

To estimate the L°° norm of 97 (V,X), we apply 9}" to (@.16). By the Leibniz rule we obtain

IV, X (a,t)

- ¥ (:) <;)8fTVaX(a,t)

0<m<r<n

X / O K in(X (a,t) — X (b, 1)0r "™ (ViE X1 (b, 1) Vo (b) — Vi XL (a,t)Vabo(a)) db

n r n—r
+ ) (J(m)at VX (a,t)
0<m<r<n

< [0 K (X (@) = X(6,1)0] ™ (T4 X (b.0)Vufo0) b @.17)
Invoking the inductive assumption (4.4)), we have
n—r n—r—1 1/2 n—r n—r— 1
0] "V X (a,t)] < (—1) (n—nr)! 0 Cy"Cy (4.18)

Also, in view of we estimate
6] " (Vi X (b, ) Vobo(b) — 8, "™ (Vy X (a, 1)) Vabo(a)]

< (=171 — ) < 12

r—m

>Cgm0{””‘1|a — b7Vl cv (4.19)
and

1/2

r—m

o X BTt )] < (0 et (V2 e mer v @20
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Leti € {1,2}. Using (4.9) and (.6) we bound
10" Kin,i (X (a,t) — X (b,1))]

Cl ||a|'e | X (a,t)—X (bt)[2/2 ™ HaJVX HLoo]a—b\)
|
< m: Z | X (a,t) — X (b,t UaH—Z E Z H k: N (¢, |)\k \

1<|e|<m s=1 Ps(m,a) j=1

s ( )Z i=1p. 1(1/2)0 Cf _1>‘ ;|

> oy S 11

k
<ol prc (k1) (1) %]
< (-nmmicger S (—nleleRlera)i, Z > H P @.21)
1<|e|<m s=1 Ps(m,a) j=1

where
|a — b||a|6_|X(a=t)_X(b7t)‘2/2
|X(a7 t) - X(b’ t)||a|+2

Using the chord-arc condition (.2)) we arrive at

,Tin:

Tin < |a — b’7267|a7b|2/(2)\2))\|a|+2
and recalling that C; > AC, we obtain from (4.21)) that
07" Kini(X (a,t) — X (b,1))|

m 1/2 L3
< (~1)"mIC'Ca — bl e PN YT (el y T Y Z
1<la|<m s=1 Py(m,a) j=1
M| YT “2 Ja—b2/(2)2) \2 1/2
< (=1)"m!Cy'CT"|a — b|"“e A*2(m +1) 1 (4.22)

where in the last equality we have appealed to Lemma[3.3] Similarly, from (.9) and {.6) we have
10" Kouti( X (a,t) — X (b, 1))|

m / Ik
< (-ymmicger Y (ylleior el T Y Y H (4.23)
1<|a|<m s=1 Ps(m,a) j=1
Using @.2)) we arrive at
T, — e bl < Aol
‘X(a‘v t) - X(bv t)“a'
Therefore, appealing to Lemma [3.3| we arrive at
1/2
|07 Kout,i (X (a,t) — X (b,t))] < (=1)"m!C{*CT*2(m + 1)<m:— 1>. (4.24)

Combining @.17)-@.20), (#.22)), and @.24), we arrive at
07+ VX (a,t)]

<I Y (:f) (;) (=)™ (n—r)! (nlf 2T> cpreprt

0<m<r<n

X (—1)mm!05”01"2(m+1)< 1/2 )(—1)7“—’”—1 (T—m)!( 1/2 )Cng{ml (4.25)

m+1 r—m
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where
I = 32Vl / la — b[1—2e—la—bR/(2X) gp / 1400 ()| db
<8y + NNVl or + [ V8ol
< éc%co (4.26)

by making Cj sufficiently large, depending on the initial data. The above and (.23)) imply
071V X (a,1)]

<qaptiomt S ot () e (2 ) o (2 ) aan

O0<mer<n n—r m+1
At this stage we invoke another combinatorial identity.
LEMMA 4.2. We have that

> (m+1 (=)™ <ml/+21> (—1r—m-t <T1_/2m> (=) (nlf 2T> <A4(n+1)(=1)" (;ﬁ)

0<m<r<n

holds for any integer n > 1.
The proof of Lemma[4.2)is given in Section[4.4]below. From (4.27) and (4.28) we conclude

orax(an) < cpriery o (U2) sapreparer o (172)

which concludes the proof of the Lipschitz estimate in the induction step for (4.4).

4.3. The Holder estimate for ¥V, X. In order to prove that [0 ™'V X (a, t)]c~ obeys the bound @4),
we consider the difference

VX (a,t) — IV X (b,t)

and estimate it in a similar fashion to |07V, X (a,t)|. However, before applying n time derivatives, we

use ([4.16) to re-write

d
= (VX(a,1) = VX(b.1))

= (VX (a,t) — VX(b,1)) /Km(X(a, t) — X (e, 1)) (VXL (e, t)Vhy(c) — VEX L (a,t)Vhy(a))de
+ (VX (a,t) — VX (b,1)) / Ko (X (a,t) — X(c,t)VEX 1 (e, t)Voy(c)de
+VX(b,1) / [Kin(X(a.1) — X(e.0)) (V- X (e.)Vho(e) — VX (a,1) Vo (a))

~K (X (b,1) = X (,0) (VEX (e,)V00(c) — VX (b, 1)V (b) ) | de

+ VX (b,t) / (Kout(X (a,t) — X(c,t)) — Kou(X (b, t) — X(c, t)))vixi(c, )V (c)de.
(4.29)
In view of {.29), similarly to (4.17) we write
NIV X (a,t) — VX (b,t) = L1 + Ly + L3 + Ly,
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where

L= "V (VX (ant) — TV X (b, )
= 2 (6 )
X / O"Kin(X (a,t) — X (c,1)0r ™ (VEX (e, t)Vhy(c) — VX *(a,t)Vby(a)) dc (4.30)
Ly = "V ) (VX (a,t) — 9TV X (b, 1)
= X (e VX G)

X / O K (X (a,t) — X (c, 1)o7 ™ (VXL (e, 1)) Vo(c) de 4.31)

1 n\ 7\ qer
Ly = Z (T> <m) A"V X (b,t)
0<m<r<n

X / [ag”Km(X(a,t) ~ X(c,t)arm (VLXL(c,t)VGO(c) - VLXL(a,t)veo(a))

—O K i (X (b,t) — X (c,£))0] ™ (VLXL(C, £)Voo(c) — VXL (b, t)veo(b)ﬂ de (4.32)

Li= ) (’;) <;)af’“VX(b,t>

0<m<r<n
< [ (O KX @,t) = X (e.0) ~ 0 Ko X (b.0) - X (1)
x O ™(VEX L (e, 1)V (c)de. (4.33)
First we notice that by using the bound

1/2

n—r

0PV X (a,t) — O TVEXL (b, t)| < Ja— b)Y (—1)" " (n — 1) ( >cg—rcgl—r—1

instead of (4.18)), precisely as in Section[4.2] above we show that

1 1/2
< Zla — bl Tomn( 1\ ! .
Ly + Ly < gla— b Gy CY (=1)" (n + 1) (n+1> (4.34)

under precisely the same conditions on Cyp and C'; as above.
In order to estimate L3, we decompose it as

L3 = L31 + L3a + L33 + L3a,

where

L= Y (:f) <;>8f_TVX(b,t)

0<m<r<n

X / , MK (X (a,t) — X(c,1)0 ™ (VEX L (e, t)Vby(c) — VX1 (a,t)Voy(a))de
e~ 252 |<4]a—b|

Lp=— Y (Z) (;) TV X (b, t)
0<m<r<n

X / ” OMK (X (b,t) — X (c, )0l ™(VEX L (e, 1) Vhy(c) — VEXL(b, 1)Vl (b))de
je— 25 |<4]a—b|
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account for the singular pieces, and

Lys — % 3 (:}) <;) oYX (b.1)(X(a.t) ~ X(b,1))

0<m<r<n
1
<[ | oKX @)+ (- pX(b.0) ~ X(e)dp
|c—“T+b|24|a—b\ 0
X 8{’m(2VLXL(c, t)Vly(c) — VXL (a,t)Vly(a) — VX (b, t)veo(b))dc

1
L= (”) <T)ap—7"vx<b, t)or—m (VLXL(b, £)Vo(b) — vLXi(a,t)wo(a))
2 r/)\m
0<m<r<n
X / ) (a;nKm(X(a, t) — X(c,t)) + 0K (X (b, t) — X(c, t)))dc
lc—242|>4|a—b|
account for the pieces at infinity. Here, we have used the polarization identity L33 + L34 = z1y1 — T2y =

(1 —x2)(y1 + y2)/2 + (1 + z2)(y1 — y2)/2. Moreover, for the term L33 in the above decomposition we
have used the mean value theorem to write

K (X (a,t) — X (c,1)) — O Kin(X (b,1) — X (c,1))
1
~ (X(a,t) - X(b,1)) /0 VK m(pX (a,t) + (1— p) X (b,1) — X (e 1))dp.

We first bound Ls3; and L3p. We appeal to (4.18)), @.19), (¢.22)), (4.25)), and Lemma4.2]to obtain

1/2
Ls1 + Laz < CgC7 (=1)"(n + 1)! <n i 1>13,m (4.35)
where
I3in = NC1?|[ Vb0 o / |b— c["72eIb=el V) 4 g — 17 2e el M) g
le— 232 |<4|a—b|

< 20my ' C Vool la — b
since C; > A\Ck. Letting

Co > 1607y 1 C2|| Voo || o (4.36)
we obtain in combination with (4.33) that
L3 + L3o < §|a — b"YCO +1C1 (=1)"(n+1)! <n in 1) 4.37)

holds. In order to estimate L33, we notice that due to the chord-arc condition,
t
| X (b,t) — X(c,t) —b+c| < Ab— ] / IVu(s)||peds < Alog Alb — ¢,
0

and similarly for @ and c. Thus, we have that
[pX(a,t) + (1 - p)X(b,1) — X(c, )|
>|pa+(1—pb—c|l—pX(a,t)—a—X(c,t)+c|l—(1—-p)|X(bt)—b— X(c,t)+ |
> |e— (a+b)/2] — a— bl/2— Mog Alpla— ¢ + (1 — p)|b — c)
>lc—(a+0b)/2| —|a—0b]/2—AlogA(lc— (a+b)/2|+ |a —b|/2)
holds for any p € (0, 1). Therefore, in view of the choice A € (1, 3/2] we have that Alog A < 2/3, and thus
|pX (a,t)+ (1 —p)X(b,t) — X(c,t)| > |c—(a+b)/2|/3—|a—b| > |c—(a+b)/2]|/12 (4.38)
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holds whenever |c¢ — (a + b)/2| > 4|a — b|. Using (.6) and (4.9) we thus bound

1
/0 OV (0X (a,t) + (1 — p) X (b.1) — X(e.1))ldp

<ml Y |*VK . (pX (a,t) + (1 p)X(b,t) - X(e,t))|

1<|al<m

XZ 3 Z (Pl (X (a,t) — X(c, 1)) + (1= p)|0) (X (b, 1) — X(c, b))
(k1) ()%

s=1 Py(m,a) j=1 J J

C|}?|+1(12)\a\+3(‘a| + 1)!€—|c—(a+b)/2\2/(288)

c— (a+ b)/2[or3

B (9>\\c—(a+b)/2\ (1)1 (1/2) ng ij—1) k;

DIDIDD : ol - (4.39)

s=1 Ps(m,a) j=1

< m!
1<le|<m

Therefore, once we notice that |a| + 1 < 212, if we let
C1 > 27)\Ck, (4.40)
from (4.39) and Lemma [3.3| we deduce that

1
/0 OV 1 (pX (a,1) + (1 — p) X (b.1) — X(e.1))|dp

< 20uPmi(m + V(- | Y2 oo e 4.41
< 2612 mi(m +1)(~1) <m+1> T e (@t b)2F (4D
Using @.18), @.19), @.25), Lemma[4.2] and (4.41)), we arrive at
1/2
L3z < CyCT(—1)"(n+1)! (n —/I- 1> la — b|13 out 4.42)
where
I3 out = 22\Cx123C7 2|V ||c / de
! v IVooller le—(a+b)/2|>4|a—b| 2 lc—(a+b)/2
< 144|yv90\|m/ e (a+b)/23de
le—(a+b)/2|>4|a—b|
< 2887T/(1 ~IVbolicv (4la — b))~
< EC@’CL — b7t (4.43)
if we choose Cj sufficiently large. From (4.42)) and (4.43) we conclude that
1 1/2
L3z < 1—603“0?(—1)”(71 +1)! (ni 1) la — b[". (4.44)

In order to estimate L34 we need to appeal to one more cancellation property: each component of the
kernel K is a derivative of a non-singular scalar kernel, i.e.

1
Yy s -1
K(y)=-—">"— = .
W)= Zrfyp =V <2w|y|>

This is in fact the reason why K has zero mean on spheres. The kernels associated to each of the hydro-
dynamic systems considered in this paper obey this property. The upshot of the above identity is that we
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have
Kin(y) =V (K5 @) + K ) = (65 ).} + K () (4.45)
where {-, -} denotes the Poisson bracket, and
D () = L oIyl
in \Y¥) =
W)= 3y
and
i
K (y) = —Foer
7yl
Similarly to (@.6), there exits Cx > 0 such that
Cv|04\ ! C| |
k)< SElol vt g e ) < CEIL e (4.46)

ly[lo [yl

holds for any multi-index « and any y # 0.
The importance of the cancellation property hidden in (.43)) is seen as follows. When bounding the
term L34 we need to estimate

Tn(a) = / 0" Kin(X(a,t) — X(c, t))de,
|e—atb|>4|a—b|

and a similarly defined 7}, (b). Due to (@.43)), and the change of variables

(VIED) (X (a,t) — X (e, 1))
9% e t)iK(l)(X(a,t)—X(c,t))—k
602 661

= (K (X(a,t) — X(c,1)), X;(c, 1)}

oX; .0

Do (et g KL (X (a,t) - X(e1)

which holds due to the Poisson bracket being invariant under composition with a divergence-free X, we
rewrite

T(a) = / b oK (X (a,t) — X(e,t))de
|e— 28| >4|a—b)
—/ ar{K§;>(X(a,t)—X(c,t)),X(c,t)}dc
|e— 2+l |>4|a—b|
-/ oK (X (a,) - X(e,0)de
le “+b|>4|a b

_Z< >/c a4 |>4|a—b| {8t Kin )( X(a,1) - X(e, t)),é){”‘iX(c,t)}dc.

In the second term in the above, we integrate by parts in the ¢ variable (the variable in which the derivatives
in the Poisson bracket are taken) and note that c-derivatives commute with t-derivatives, to obtain

Tpn(a) = / K'Y (X (a,t) — X(c,t))de
|c— 28 |>4|a—b| "

‘Z@) /| o s, KD (X (a,t) — X (e, t)nt - 9 (VX (e,1))do(c) (4.47)
i=0 c— =5~ |=4la—
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where n is the outward unit normal to the circle {c: |c¢ — 22| = 4|a — b|}. The corresponding formula
also holds for T, (b). Using (4.46) and the argument used to prove ([4.22), it follows that

. o ela—e?/(2x?) 1/2
% (1) _ < (—1)41C% i€ 20(z /
0i K, (X (a,t) — X(c,t))| < (1) z.C’OCl—‘a_ ] A“2(i + 1)<i 1 (4.48)
forall7 > 0 and
K2 (X (a,t) — X (c,)] < (—=1)"mICyrCyre1a=el?/(2X) \29(m, 4 1) < 1/+2 1) (4.49)
m
or all m > 0. Therefore, usin . an .46)—4. we conclude that
for all heref ing (4.18) and (4.46)—(.49) lude th
1/2 2 2
To(a)| < (=1)m!ICC™A22(m + 1 < )/ e~la=el?/22) g (4.50)
(@) < (yrmcgepyam+ (0 ) [,

+ i (?) (—1)4ICECIN%2(i + 1) <¢1f1> (=)™ (m — i);< 1/2 >an—i01n—i—1

m—1
o—la—cl?/(232)
<[ T ()
e~ 9%t |—4ja-b|  |@ —C]

] 1/2
(—D)™mlCtem2(m + U(m{i— 1) (4.51)

1
< —
128

by choosing Cj sufficiently large, depending on A. Here we have used that |a — ¢| > 3|a — b| and the
combinatorial identity

m

> 2(i+ 1)(-1) <i1£21> (—pm-it (ﬂi/i) =4(=1)"(m +1) (,nlf1>

i=0
which is proven using the argument given in Section #.4] To conclude the T34 bound, we combine (.51
and the corresponding estimate for the b term, with (.18), (#.19), and Lemma[4.2]to obtain

1 1/2
L3y < —CPHion(—1)n 1)! — b
< G CHer -1 e (2 Yla -
forallm > 0.

Thus, from (4.37), (4.44), and the above estimate for L34, we obtain the desired bound for L3, namely

1 1/2
L < gaep-ar s (12 Yla - o @)

It is left to estimate Ly, as defined in (4.33)), which is achieved similarly to L3. First we decompose

Ly = Ly + Lyo + Luys,

Ln= Y (:f) <7;> TV X (b, 1)
0<m<r<n

X / a;nKout(X<a’7t) - X(Ca t))a{—m(vaL(c’ t))ve()(c)dc
|e—232|<4|a—b]

Lp=—- Y. (Z) (;) VX (b, 1)

0<m<r<n

where

x / O K out(X (b,t) — X (c,1))0r ™ (VEX (e, 1)) Voo(c)de
le—atb|<4|a—b|
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and

Lis= Y (") < >8[‘_7”VX(b, (X (a,t) — X(b,1))

r
T m
0<m<r<n

1
<[ | oK anlpX @)+ (1 )X (b.) - X(e,t))dp
le—2E2|>4]a—b| JO

x O ™(VE XL (e, 1)) Voo(c)de
We appeal to (@.18), #.20), (4.24)), and Lemma #.2]to obtain

1/2
L Ly < CyCTH(—=1)" 1)! Iy
n+ Lo < GO+ 0 1 ) 1

under the standing assumptions on Cj and C7, where
Ly,in = / [Vo(e)|de < (16m]a — b]*)/?||Vbo| 1212 < Cola — b[?
le— 932 |<4|a—b|
by letting

Co = 8(16m)"/? (|0l 1 + I Vol ) -
From (@.53)) and {#.54) we obtain the desired bound

1 1/2
L Ly < =CHlom(—1)n 1)! —b|".
a1 + 42,800 Cr(=1)"(n+ )<n—|—1>|a b|

(4.53)

(4.54)

(4.55)

Estimating L3 is similar to bounding Lss. First, note that similarly to (4.:4T)), under the standing assumptions

on Cy and C; we have

/1 875mVKin(pX(a'7t) + (1 - p)X(b,t) - X(C, t))dp
0

< 24Cgm!(m + 1)(-1)™ (Tnlfl> C‘TCTM—(CllﬂLb)/Ql

for |c — (a + b)/2| > 4|a — b|. Combining @-18), @#20), Lemma[4.2] and {#.56) we obtain
1/2
Lis £ GROH 1"+ 0! (12 Yl = Bl

where
|V (c)|

Liout = 24ACLC;2 _ Vhle]l
. b Jie—agtsajap) € — (@ + 1) /2

de
71 1 71
< GlIVOollp2re—la = b < SCola — b]
by choosing Cj sufficiently large. Finally, from {@.53)-#.58)) we obtain that
1 1/2
Ly < —CyHep(=1)"(n+1)! —b|".
v qanereari (12 Ya -

The bounds (@.34), @.52)), and (4.39)) combined show that

VX (- 8)]or < CIFLCP(—1)"(n + 1)! (;fl)

for 0 <t < T, which concludes the proof of the Holder estimate for VX

(4.56)

4.57)

(4.58)

(4.59)
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4.4. Proof of the Lemma 4.2}

PROOF OF IDENTITY (4.28). In order to prove Lemma 4.2, we need to compute

oo (2o )er = (22)

r=0 m=0
n '

= Z Z ambr—mbn—r (460)

r=0 m=0

where n > 1, and we have defined the coefficients
1/2 _1(1/2

=2 H(-1)™ by = (—1)™! 4.61
n=20m+ 00 (12 = (V) @6

for all m > 0. Note that both a,,, and b, are non-negative, and thus it is clear that .S,, > 0 for all n > 1.
We now find the generating function for the coefficients a,, and b,,,. We recall the following generaliza-
tion of Newton’s Binomial formula: for &« € R and —1 < ¢ < 1, we have

(1-t) =1+ f: <j> (—t). (4.62)
j=1

In particular, we have that

(1-t)/2=1- i(—n (1/2) i (1/2) =2 Zb it (4.63)

j=1 7=0

Formally differentiating the identity (4.63)) we arrive at

1 —-1/2 _ 1/2 j—1 = _1\n 1/2 n
5 Z] ( t ;)(nJr DY) (4.64)
and therefore
(1—t)12 = Za . (4.65)

Multiplying the power series formally, we now have that

>t (ﬁ: i ambT_mbn_T> =) at? | [ D bt

n>0  \r=0m=0 70 j=0
—a-n 2 (2- a0
— 41—t V2 2 (2 (1- t)1/2)
21 Y (day by (4.66)

n>0

2

Equating powers of ¢, we thus obtain from the above that

S, = 4dan — b, = 8(n + 1)(_1)n< 1/2 ) (et <1/2>

n+1 n
- (8 a 2n2— 1) (n+ D=L <nlfl) B %(" TOED <nli21> (+67)

foralln > 1.
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As a consequence, we obtain that
1/2 \ 16n — 10 1/2

Sp = HE=n" — <8 nE=nr 4.68

(2 = < s ()2 (468

which completes the proof. O
4.5. Proof of estimate (4.6). The claim is that exists a universal constant Cx > 1 such that

Ol Ol

T[Tz ly[lo]

holds for any multi-index o and any y # 0. We shall give here the proof of the inner kernel K, since

the proof for the outer kernel K oy follows similarly, in view of the fact that (1 — e~¥/*)|y|~2 = O(1) as

ly| — 0.
From the Leibniz rule we have

() 2, ()

BHy=a

0% K i (y)| < e W2 and 19K u(y)| < (4.69)

L . .
It is easy to check that the number of terms in 9 <| |3> is at most 2/8!, and that the coefficient of each one

of these terms is bounded from above by (2|3| + 1)!!. Therefore, we obtain

1
s(Y_ 81 ( T
‘a <|y|3)‘ 2R B+ UM s

The total number of terms in 6’7(6_‘3"2) is at most 2171~ and the coefficient of each term is bounded by
217!, Therefore,

107 (e71¥1*)| < 22M1=1 =W max{1, |y|1
Therefore, it follows that

1 o ) o
0% <ly|3 y2>‘ < Z <ﬂ>2|ﬁ| (2|8] + 1)”|y\|ﬂ\+2 92l7|-1 —lyl? max{1, ,y‘lvl}

BH+v=a
e—lyl?/2 o . .
Yy

BH+y=a

Now for any y # 0, we have the bound
_ 2
e W2 |y max{1, [y} < (2]71/¢)".
and using Stirling’s formula

n! ~ V2mn (n/e)", V2mn (n/e)™ < n!

we arrive at
2y a1, ) < 2 ol
Therefore, k
L
o (Z’?’e—lyﬁﬂ §|y}x+2€_|yl2/2 ﬁﬂz::a <g>25 (28] + 1)1 2211 \/% !
<2 e ! /2 T al B!~y
ple © 2 Bl a]

where we have used
281 (218] + 1)l 2217 < 22lel (18] 4 1)1 < 2%l (jaf + 1)1 < 2319 |a]!



LAGRANGIAN ANALYTICITY 23

Since |B]!|v|! < |, the rough estimate

T al Bl _ 3 o ol
B! all T Bly!

B+y=a Btvy=c

holds. In summary, we have shown that,

1 Slaf | !
oo <|y|36y2)‘ < melylz/g
Yy Yy

The constant C' in (#.6)) is thus less than 2.

Appendix A. Derivation of Lagrangian formulae

In this Appendix we provide the derivation of the self-contained formulae for dX /dt and dV X /dt
stated in Section[2] Let A denote back-to-labels map, which is the inverse particle trajectory map, i.e.

A(X(a,t),t) = a.
We will frequently use that
(Vo A) (X (a,t),t)(VeX)(a,t) =1

or equivalently

(V. A) (X (a,t),t) = (VoX)(a, 1))t = (VaX)L(a,t). (A.1)
Coordinate-wise the above identity is equivalent to
8A1 6X2 8A2 8X2
—(X(a,t),t) = —= — (X (a,t =——(a,t
G (X(@n.) =52 @, TE(X(a,0).0) = 52 a.1),
8141 8X1 8A2 aXl
—(X(a,t),t) = ——(a,t — (X (a,t),t) = —(a,1).
o (X(an). ) = -T2 an, X (.0 = e

The upshot of the above formulae is that if we define
90(A($, t)) = H(ZB, t)
then we have

%o
8aj

04;
81‘k

_
_8aj

yer

Oy, 0(x,t) = (A(x,t)) (x,t) (a) (a,t) (A2)

J
where in the last equality we have used (A.T).
A.1. 2D SQG. The constitutive law of SQG yields
)L

u(z) = R0(x) :/(“’y

Slw — y|39(y)dy = /K(w —y)0(y)dy

and the evolution gives

Combining the above we arrive at
@ = [ K(X(@0) - iy = [ K(X(a.t) - Xb.0)(b)db

since by incompressibility the determinant of the Jacobian is equal to 1. To derive the formula for d(V X)) /dt,
we switch back to Eulerian coordinates where

O, ui(x) = /K(cc —y)0y, 0(y, t)dy
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and then appeal to (A.2) in order to obtain

dOXi 4y = OXe 00y DA,
Ki( t)— X(b,t b)—(X(b,t b.
dt da ~ da; / (a, ( ))819 ( )Gyk( (b,t),t)d
Using (A.T)) we arrive at
(V. X)

dt
which proves (2.4).
A.2. 2D IPM. In Eulerian coordinates the scalar vorticity w satisfies
w=Vt.ou=-09,0.
Therefore, along particle trajectories we have
w(X(a,t),t) = =(0:,0)(X(a,t),t) = —{bo(a), X2(a,t)}.

Therefore, since the kernel of the two dimensional Biot-Savart law in Eulerian coordinates is given by

z— )t
u(e) = 5 [ EY iy,

(a,t) = VaX(a,t)/K(X(a,t) — X (b,t))(VEX1)(b,t)(Vibo)(b)db.

upon letting y = X (b, ¢) we obtain
5.6 1 [ (X(a,t)— X(bt)*
it @0 =50 | (X~ X K00
_ _% ’((XX((‘;?) (( );‘2 {80(b), Xa(b,1)} db.

To derive the formula for 0,V X, we differentiate the kernel and arrive at

aX
d(vdt)(a,t) = —VaX(a,t)/K(X(a,t) — X (b,t)) {6o(b), X2(b,t)} db
1 0 -1
+ 3 {6o(a), X2(a,t)} 10 V.X(a,t) (A.3)
where K is the same as in (2.7)), namely
1 U192 Y3 — Ui ]
Ky)=K(y,y) = —— . Ad
(y) (yl y2) 27T|y|4 |: y% _ y% _2y1 Yo ( )

A.3. 3D Euler. From the Biot-Savart in three dimensions

u(a, ) = 1/“”ycmmw

AT Jgs |z — y|?
composition with the Lagrangian path y = X (b, t), and the Cauchy formula
w(X(a,t),t) = VX(a,t)wo(a)
we arrive at a self-contained formula for the evolution of X (a, t)
dX X (b,t)
—(a,t VX (b,t b))db.
it 47r/ X(a. )~ xX.0p * (VX b:Db)

The evolution equation for VX is obtained by ﬁrst switching to Eulerian coordinates, which allows us to
compute V,u from w via Calderén-Zygmund singular integrals. For this purpose one considers the rate of
strain matrix

1
Sij = 5 (qu] + 8Juz)
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and uses the Biot-Savart law to compute

o 3/ (x—y) xw(y)),; (x—y)+ (x —y) xw(y)); (x —y);
787 Jgs |z —y[°

—. / (K (z — y)w(y))ijdy

where we have defined

S;

dy

(A.S5)
Of course, the full gradient is then obtain using
1
(Vu)v = Sv + Jw X

To obtain the evolution of VX we then compute

Bl — X puintal
T 6. (@1 = G, (X(@,0),0 5 E a0
00X}, 1

= Sit(X(a,t),t) 3 (a,t)+§(w(X(a,t),t) x (Vg; X)(a,t));

= [ X @)~ X (0.0) (90X (0 ()t ()

+ % ((VaX(a,t)wo(a)) x (Vo; X)(a, 1)),

where we have used the notation in (A.3)) for the ik-component of K (-)(V,Xwy).

A.4. 2D Euler. From the Lagrangian conservation
w(X(a, t)a t) = WO(G’)
and the Eulerian two dimensional Biot-Savart law [MB02] we directly arrive at
dX 1 (X(a,t) — X(b,t))*
— = — b)db.
i (@D =5, / X(a.t) - Xm0
Estimates for the time derivative of V, X are obtained from the above by differentiating the kernel, similarly

to (A.3)). We obtain

M(a,t) =V.X(a,t) /K(X(a,t) — X (b,t)) wo(b) db + EMO(G) [

0 -1

dt 2 1 0

where the kernel K is given in (A.4).

} VoX(a,t)

A.5. 2D Boussinesq. Along the particle trajectory = X (a, t), the vorticity obeys
ow(X(a,t),t) = (0,,0)(X (a,t),t).

Integrating in time yields

w(X (a,t),t) = wo(a) —i—/o (0:,0)(X (a,7),7)dr.

Next, we rewrite (0,,6)(X (a, ), ) in terms of the Lagrangian coordinates. The equation for ¢ yields
O(x,t) = 0o(A(x,1)).
Therefore, we have

(@0, 0)(@,1) = 5 (A1) 5

00o
(,1) + 5, (A1)

04

t
(9.%'1 (32, )’
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and letting x = X (a, t) yields

(@ 0)(X(@,0),0) = 52(@) 21 (X (a,0).0) + 50 (@) 52 (X (@.0),0)

Upon using (A.T)) we arrive at
(02,0)(X (@, ), t) = 04,60(a)0a, X2(a,t) — 9a,00(a)0a, X2(a,t) = {bo(a), X2(a, 1)},

and therefore

t
w(X(a,t),t) = wo(a) —i—/ {bo(a), X2(a,7)} dr.
0
To obtain and equation just in terms of X, we recall

dX 1 /(X(a,t)—X(bﬂf))L

dt (a‘ t) (X(a’7t)7t) - W(X(b, t),t) db

or | [(X(a,t)— X (b,t)2
Therefore,
dX 1 [ (X(a,t)— X(b,t))*"
a0 =5 [ xKen X0 t>|2 o () &b

| [ (X(a,t)— X(b
"o ) 1 X@n) - bt\? (/ {Bo(® XQ(’”)”T)

To derive the formula for 9; VX, we differentiate the kernel and obtain

2D 0,0 = ([ KX (@)~ X(0.0) (b)) V. X0

</K (a,1) (b,t))/ot (60(b), Xo(b, 7))} drdb) V. X(a,1)

+5 (ot + [ i@ oty ar) [ ] [ vaxtan,

where K is given in (A.4) above.

Appendix B. The composition of analytic functions: the one dimensional case

The contents of this section is adapted from [KP02, Theorem 1.3.2], and is presented here for the sake
of completeness. This serves as the motivation for the combinatorial machinery given in Section [3|above.

PROPOSITION B.1. Ifg: R — R is bounded h: R — R is real analytic, and g obeys the ODE
g'(x) = h(g(x)), (B.1)

then g is in fact real analytic.

LEMMA B.2 (One-dimensional Faa di Bruno formula). Let I C R be an open interval, g € C*°(I),
and h € C>°(J), where J = f(I). Let f = h o g. Then for all n > 1 we have

k:EPnk) ] 1
P(nk)=<{k=(k1,....kn): > jhi=n> kj=k

where k = (ki, ..., ky) is a multi-index,
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and we use the notation
El'=Fk!.. k!
A consequence of the Faa di Bruno formula is the following identity, as given in [KP02, Lemma 1.5.2].
LEMMA B.3 (One-dimensional magic identity). For each integer n > 1 we have
S CURIT) ()
k=1keP(n,k) Jj=1
PROOF OF PROPOSITION [B.Il The assumption that A is real analytic translates into the fact that there

exists C', R > 0 such that

W9 () < X (B.2)

- Rk
for all £ > 0, and all y close to some .
We make the following inductive assumption on the function g: that for all 1 < j < n it holds that

199 ()] < ;j!(—l)j1<1§2> (f)j (B3)

at all points x sufficiently close to some xg.
Let n > 0. We apply n derivatives to the equation (3.I) and use Lemma [B.2]to obtain

n k;
S = S H( ‘)
We appeal to (B.2)) and the inductive assumption (B.3)) to estimate

k:EP(n;k) : j=1
(n+1)] < n' k' - j—1 1/2\ 2C) &

keP(n;k) ' j=1 J

Using that ), k; = k and ), jk; = n we obtain that

n ’fk;l 1/2
5+ < O )
g R > ! L ( )

keP(n;k) Jj=

Using the identity given in Lemma we thus obtain

ooy ont 8 e V)

n+1
— (e B (12

which is exactly (B.3) at level n + 1. This completes the proof since in view of (3.6)), the bound gives

jl
9@ < G ey

which shows that g is real analytic with radius of convergence R/C. O
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