
Systems of Conservation Laws

Intoduction to PDE

1 Description

The equations of motion of compressible fluids and gases are obtained from
the laws of conservation of mass, momentum and energy for arbitrary vol-
umes of the liquid. One basic assumption is that a small volume of the fluid
still contains a very large number of molecules, and in the limit of small
volumes only macroscopic averages of molecular activities survive.
The physical quantities required to describe the mass flow are the density
ρ(x, t), a non-negative function of position x ∈ R3 and time t, the velocities
u = u(x, t), and the internal energy e = e(x, t). In order to describe momen-
tum conservation we need to consider what forces act on the fluid. There will
be external forces F (x, t) per unit mass, acting on each volume element, and
internal forces acting at the interface between volume elements. The internal
forces are given by a stress tensor describing the components of the internal
forces in terms of the direction normal to the interface on which they act.
The internal force per unit area is thus a function

G = (G1, G2, G3) = G(x, t, `)

with |`| = 1, the normal. There will be heat transfer across the boundary of
volume elements, and this will be given by a function q(x, t) denoting heat
flow per unit area.
The conservation of mass in a volume V says that the rate of change of mass
in V is given by the mass flux through ∂V :

d

dt

ˆ
V

ρdx+

ˆ
∂V

ρ(` · u)dS = 0

where ` is the outward normal to ∂V . This is a consequence of the transport
lemma.
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Lemma 1. Let f(x, t) be a C1 function, let u be a (C1,α) smooth velocity field,
and let B be an open bounded set with smooth boundary, and let Bt = X(t, B)
the image of B under the flow generated by the particle trajectories

dX(a, t)

dt
= u(X(a, t), t), X(a, 0) = a.

Then
d

dt

ˆ
Bt

f(x, t)dx =

ˆ
Bt

(∂tf + ∂j(ujf)) dx.

Proof Let f̃(a, t) = f(X(a, t), t). Then
ˆ
Bt

f(x, t)dx =

ˆ
B0

f̃(a, t) |det∇aX(a, t)| da

We have that det(∇aX) > 0. We differentiate with respect to time. Using
chain rule

d

dt
(∇aX) = (∇xu)(X(a, t), t)(∇aX)

we obtain
d

dt
(det∇aX) = (∇x · u)(X(a, t), t)(det∇aX)

and thus

d
dt

´
Bt
f(x, t)dx

=
´
B0

(
∂tf̃(a, t) + f̃(a, t)(∇x · u)(X(a, t), t)

)
det∇aX(a, t)da

=
´
Bt

(∂tf(x, t) + u(x, t) · ∇xf(x, t) + (∇x · u(x, t))f(x, t))dx

Using the transport lemma we have

d
dt

´
V
ρdx =

´
V
∂tρdx+

´
V

div(uρ)dx
=
´
V
∂tρdx+

´
∂V
ρ(u · `)dS

If the mass is conserved then it follows thatˆ
V

∂tρdx+

ˆ
∂V

ρ(u · `)dS = 0.

Of course, the same thing is expressed by
ˆ
V

∂tρdx+

ˆ
V

div(uρ)dx = 0.
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Because V is arbitrary we deduce

∂tρ+ div(ρu) = 0, (1)

the mass conservation equation. The equation of conservation of momentum
is obtained in a similar way. The total (linear) momentum in a volume is´
V
ρudx. The rate of change of this is given by the total forces acting on the

fluid in V :
d

dt

ˆ
V

ρudx =

ˆ
V

ρFdx+

ˆ
∂V

GdS

Using the transport lemma we obtainˆ
V

(∂t(ρu) + u · ∇x(ρu) + (divu)(ρu))dx =

ˆ
V

ρFdx+

ˆ
∂V

GdS

Now we have Cauchy’s theorem: The function G(x, t, `) is linear in `

Gi(x, t, `) = Tij(x, t)`j

and is given by a stress tensor. Here is why Cauchy’s theorem is true (un-
der our smoothness assumptions). Looking at the balance above in a small
volume of diameter ε we see thatˆ

∂V

GdS = O(ε3)

We pick V to be a tetrahedron with 3 faces perpendicular to axes and one
perpendicular to `. We denote Tij the i component of the force acting on the
surface perpendicular to the j-th coordinate direction. We have

AGi(`) = Ti1A1 + Ti2A2 + Ti3A3 +O(ε3)

where A, Ai are the areas of the corresponding faces. But Ai = `iA, and
A = O(ε2), so

Gi − Tij`j = O(ε).

Thus, the momentum conservation becomes

∂t(ρui) + (u · ∇)(ρui) + (divu)ρui = ρFi + ∂j(Tij) (2)

The conservation of angular momentumˆ
V

ρ(x× u)dx
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leads to
Tij = Tji. (3)

Finally, considering the total energy per unit mass E = 1
2
|u|2 + e, we have

the rate of change of energy given by the sum of the work of the forces and
heat losses:

d

dt

ˆ
V

(ρE)dx =

ˆ
∂V

(`jTijui − `jqj)dS +

ˆ
V

ρFiuidx,

resulting in

´
V

(∂t(ρ( |u|
2

2
+ e)) + div(ρ( |u|

2

2
+ e)− Tu)dx

=
´
V

(ρ(F · u)− divq)dx

which gives

∂t

(
ρ

(
|u|2

2
+ e

))
+ ∂j

(
ujρ

(
|u|2

2
+ e

)
+ qj − Tjkuk

)
= ρFiui (4)

We have exhausted our principles, and do not have enough equations. Even
if the heat transfer flux q is known, and the body forces F are also given,
we still have eleven unknowns ρ, ui, e, Tij. The rest is modeling. A first
assumption is isotropy of stresses,

Tij = −pδij,

with p = p(x, t) the pressure. If viscosity is allowed and Newtonian fluids are
considered, then

Tij = −(p+
2

3
µ(divu))δij + µ (∂iuj + ∂jui)

The internal energy is postulated to be a function of density and pressure

e = e(p, ρ).

Finally, either
q = 0

(no heat flux) or the Fourier law

qi = κ∂iT

4



where T is the temperature (say, it is given at this point), and κ is the heat
conduction coefficient. Now the unknowns are u, p, ρ and we have enough
equations:

∂tρ+ ∂j(ρuj) = 0,
∂t(ρui) + ∂j(ρujui) = ∂jTij + ρFi

∂t

(
ρ
(
|u|2

2
+ e
))

+ ∂j

((
ρ
(
|u|2

2
+ e
))

+ qj − Tjkuk
)

= ρFiui

(5)

These are the Navier-Stokes equations of Newtonian fluid dynamics (or if
µ = 0 the Euler equations). One may think that T and e(p, ρ) are given
empirically. There are some thermodynamical considerations to make. The
one-form

de+ pd

(
1

ρ

)
plays an important role. The main thermodynamic relation is

TdS = de+ pd

(
1

ρ

)
(6)

T is temperature and S is entropy. The ideal gas law is

p = RρT

with R constant. From (6) we have

dS =
1

T
de− d(R log ρ)

so 1
T
de is an exact form. Then it follows e = e(T ). (But how T might depend

on ρ and p is left unsaid...) The quantity

h = e+
p

ρ

is called enthalpy. Under the assumption of constant specific heat at constant
volume cv and constant specific heat at constant pressure cp we are given the
relations

e = cvT,
h = cpT

and because h− e = p
ρ

we obtain the constant

R = cp − cv.
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Defining the ratio of specific heats

γ =
cp
cv

(7)

we have now
cp = γcv, R = (γ − 1)cv,

e =
1

γ − 1

p

ρ
, h =

γ

γ − 1

p

ρ
, T =

1

R

p

ρ

From (6) we obtain

dS = cv

(
dp

p
− γ dρ

ρ

)
so

S = cv log
p

ργ
+ constant (8)

or
p = kργe

S
cv (9)

An ideal gas with constant specific heat is called a polytropic gas. The Euler
equations are then 

Dtρ+ (divu)ρ = 0,
ρDtu+∇p = ρF,
ρDte+ (divu)p = 0

(10)

with Dt = ∂t + u · ∇. Combining the first and third one we have

Dte−
p

ρ2
Dtρ = 0

and using (6) we obtain
TDtS = 0 (11)

Thus, entropy is conserved along particle trajectories. A fluid with this
property is called adiabatic. Note that if we consider p = p(ρ, S) then

Dtp = c2Dtρ

with c2 = ∂ρp. The function c is called the sound speed. A fluid with constant
entropy is called isentropic. For such fluids

p = kργ (12)
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2 Symmetric hyperbolic systems

The equations of an ideal polytropic gas
∂tρ+ ∂j(ρuj) = 0,
∂t(ρui) + ∂j(ρuiuj) + ∂ip = ρFi
∂t(ρE) + ∂j(ρE + puj) = ρFiui

(13)

for E = 1
2
|u|2 + e,

e =
1

γ − 1

p

ρ

can be viewed as a system for the variables v = (ρ, ρu, ρE) by expressing p
in terms of v. The system looks like

∂tv +
n∑
j=1

∂jFj(v) = R (14)

where v : Rn × I → G ⊂ Rm, Fj : G → G, R : Rn → G. (Of course, new
notation, Fj are not the body forces, G is a state domain...). The entropy S
is conserved along trajectories, DtS = 0. This gives

∂t(ρS) + ∂j(ujρS) = 0, (15)

an additional conservation law. Moreover, expressing η = ρS in terms of the
variables v, it turns out that it is sometimes convex. We say that the system
(14) admits a convex extension if there exists η convex and qj so that, on
smooth solutions of (14) we have

∂t(η(v)) + ∂j(qj(v)) = 0 (16)

If this is true then
(∂vkη)∂tvk + (∂vkqj)∂jvk = 0,

and so
(∂vkη)(∂vlF

k
j )(∂jvl) = (∂vlqj)∂jvl.

Because this holds at all states v, it follows that

∂vlqj = ∂vlF
k
j (∂vkη)

Denoting
F ′j = ∂vlF

k
j
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we have
∇vqj = (F ′j)

∗∇vη

Differentiationg in some vk direction we get

∂2
vkvl

qj = (∂2
vkvp

η)∂vlF
p
j + (∂2

vlvk
F p
j )∂vpη

Denoting
A0(v) = ∂2

vkvp
η

we obtain
A0(v)F ′j = q′′j − F ′′j · ∇vη = Aj

where
q′′j = ∂2

vkvl
qj

and
F ′′j = ∂2

vkvl
F p

The main point of all this is: given a convex extension, we can rewrite the
system as

A0(v)∂tv + Aj(v)∂jv = 0, (17)

with A0 positive definite and Aj symmetric.

3 Energy estimates, uniqueness

We consider the system
∂tv +Bj(v)∂jv = 0 (18)

We say that (18) is hyperbolic if the symbol matrix

B(v, ω) =
n∑
j=1

ωjBj(v) (19)

has real eigenvalues
λ1(v, ω) ≤ . . . λm(v, ω)

for any ω ∈ Sn−1. A symmetrizable system is one for which there exists a
smooth (in v) matrix A0(v) that is uniformly positive definite and such that
Aj = A0Bj are all symmetric. Symmetrizable systems are hyperbolic. The
system can then be written as

A0(v)∂tv + Aj(v)∂jv = 0 (20)
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Proposition 1. Two bounded C1∩L2 solutions of (20) with the same initial
data coincide.

Proof. The difference w = v1−v2 of the two solutions obeys an equation

A0(x, t)∂tw + Aj(x, t)∂jw + L(x, t)w = 0 (21)

with initial data w(x, 0) = 0. Denoting by v̄ = 1
2
(v1 + v2) and ∂t = ∂0, we

have

A0(x, t) =
1

2
(A0(v1) + A0(v2)) ,

Aj(x, t) =
1

2
(Aj(v1) + Aj(v2)) ,

and

L(x, t)w =
m∑
k=1

wk

n∑
α=0

[ˆ 1

0

∂Aα
∂vk

((1− λ)v2 + λv1)dλ

]
∂αv̄

Because the system is symmetrizable, we have

δI ≤ A0(x, t) ≤ 1

δ
I

with δ > 0. This follows from the assumption that A0(v) is uniformly positive
definite on a domain G and the assumption that v1(x, t) ∈ G, v2(x, t) ∈ G.
The matrices Aα(x, t) are symmetric and bounded in C1. We introduce the
energy norm

‖w‖2
E =

ˆ
Rn
〈A0(x, t)w(x, t), w(x, t)〉dx

with 〈u, v〉 scalar product in Rm. Note that

δ‖w‖2
L2 ≤ ‖w‖2

E ≤
1

δ
‖w‖2

L2 .

Let us denote

divA =
n∑

α=0

∂αAα(x, t)

and
‖L‖ = sup

x,t, 〈w,w〉≤1

|〈L(x, t)w,w〉| .
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We have
d

dt
‖w‖2

E ≤
(
‖divA‖L∞ + 2‖L‖

δ

)
‖w‖2

E

Because w(x, 0) = 0 it follows that w(x, t) = 0.
Energy estimates for derivatives of solutions of linear symmetric hyper-

bolic systems
Aα(x, t)∂αw = f (22)

are obtained using commutators. They can be used to prove short time
existence of smooth solutions. We will not pursue this here.

Hyperbolic systems have finer uniqueness properties.

Definition 1. We say that an oriented hypersurface Σ ⊂ Rn+1 is spacelike
with respect to (20) if the symbol matrix

A(x, t, ν) =
n∑

α=0

ναAα(x, t)

is positive definite for any (x, t) ∈ Σ, when ν is the external normal to Σ.

We consider lens-shaped domains

D = DΩ,h = {(x, t)| x ∈ Ω, 0 < t < h(x)}

where h is a nonnegative smooth function compactly supported in Ω ⊂ Rn.
We say thatD is space-like if ∂D is space-like. We say thatD is normal space-
like if there exists a smooth family of positive functions h(x, λ), λ ∈ [0, 1) so
that h(x, 0) = 0, h(x, 1) = h(x) and

h(x, λ) ≤ c,

|∂λh(x, λ)| ≤ c(1 + |∇xh(x, λ)|,

Aα(x, t)να ≥ mλI

holds for (x, t) ∈ Σλ = {(x, t)| x ∈ Ω, t = h(x, λ)} with ν external normal to
Σλ, mλ > 0 locally uniformly bounded from below in [0, 1).

Theorem 1. Two bounded C1 solutions of (20) which coincide at t = 0 in Ω,
coincide in lens-shaped domains DΩ,h which are normal space-like for both.
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Proof. We take w = v1 − v2 as above, and use the same notations. We
have

∂α〈Aαw,w〉 = 〈(divA− 2L)w,w〉

Integrating in Dλ = {(x, t)| x ∈ Ω, t < h(x, λ)} we have

ˆ
Σλ

〈A(x, t, ν)w,w〉dS ≤ c0

ˆ
Dλ

|w|2dxdt

We denote

I(µ) =

ˆ
Σµ

|w|2dS

In view of our assumptions on the domain

ˆ
Dλ

|w|2dxdt ≤ C

ˆ λ

0

I(µ)dµ,

and so, we obtain

mλI(λ) ≤ k

ˆ λ

0

I(µ)dµ

Taking λ0 < 1 and Mλ0 = k sup0≤λ≤λ0 m
−1
λ we have

I(λ) ≤Mλ0

ˆ λ

0

I(µ)dµ

for all 0 ≤ λ ≤ λ0. Together with I(0) = 0, this implies I(λ) = 0 for all
λ ≤ λ0, and because λ0 is arbitrary, I(λ) = 0 for all λ < 1. This implies
w = 0.

4 Simple waves, Riemann invariants

We seek solutions of (18) of the form

v(x, t) = V (f(x · ω, t))

with ω ∈ Sn−1 a fixed direction, V : R→ G ⊂ Rm and f = f(y, t) a function
of y ∈ I ⊂ R and t ∈ R. Differentiating we see that in order to solve (18) we
need

(∂tf)V ′ + (∂yf)B(V, ω)V ′ = 0
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We try to separate variables. If

B(V, ω)V ′ = λV ′

and
∂tf + λ∂yf = 0

with λ ∈ R we are in good shape. Recall now that if (18) is hyperbolic, there
exist λ1(v, ω) ≤ · · · ≤ λm(v, ω) real eigenvalues of B(v, ω). Let us assume
that for some k ∈ {1, . . .m} the function λk(v, ω) is nice for v ∈ G1 ⊂ G and
also that the right eigenvector rk(v, ω)

B(v, ω)rk(v, ω) = λk(v, ω)rk(v, ω)

depends in C1 fashion on v ∈ G1. Then we may solve the equation

V ′ = rk(V, ω)

with V (0) = V0 some prescribed vector. The solution V (·) exists for a small
interval of parameters [−ε, ε] by ODE theory. Clearly then

B(V, ω)V ′ = λk(V, ω)V ′

Armed with the function V (·) we solve now

∂tf + λk(V (f), ω)∂yf = 0

with small initial data f0(y) ∈ [−ε, ε]. The solution of this first order quasi-
linear equation is obtained on characteristics. The characteristics are straight
lines

y = y0 + λk(V (f), ω)t

and f is constant on characteristics. This implies that the solution is given
implicitly by

f(y, t) = f0(y − tλk(V (f(y, t)), ω))

and differentiating we obtain

∂yf(y, t) =
f ′0(y − λkt)
1 + t∂λk

∂v
· rk
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Therefore f ceases to be C1 if 1+t∂λk
∂v
·rk = 0. We say that the k-th eigenvalue

is linearly degenerate in the direction ω if

∂λk
∂v
· rk = 0

holds for all v. We say that it is genuinely nonlinear in the direction ω if

∂λk
∂v
· rk 6= 0

for all v. If the k-th eigenvalue is genuinely nonlinear, we may normalize

∂λk
∂v
· rk = 1.

In that case
d

df
λk(V (f), ω) = 1

and therefore
λk(V (f), ω) = λk(V0, ω) + f.

Writing c = λk(V0, ω), this means that the equation for f is

∂tf + (c+ f)∂yf = 0,

the Burgers equation in a moving frame.
We are going to switch now to n = 1, m = 2 and discuss Riemann

invariants. The system is still (18)

∂tv +B(v)∂xv = 0.

There is only one two-by-two matrix B(v). We assume that system is strictly
hyperbolic, which means that its eigenvalues are real and distinct

λ1(v) < λ2(v).

We have right and left eigenvectors

B(v)rj(v) = λj(v)rj(v), j = 1, 2,

and
(B(v))∗lj(v) = λj(v)lj(v), j = 1, 2.
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In view of the fact that λ1(v) 6= λ2(v) we have

〈l1(v), r2(v)〉 = 〈l2(v), r1(v)〉 = 0.

We solve the equations
dv1

ds
= r1(v(s))

and
dv2

ds
= r2(v(s))

We have two families of curves in the state space G ⊂ R2. We define the
Riemann invariants wj to be functions that are constant on the vj curves.
This requirement is

〈r1,∇vw1〉 = 0

and
〈r2,∇vw2〉 = 0.

Because the eigenvalues are distinct, the vectors r1(v) and r2(v) are linearly
independent. It follows that necessarily

∇vw1 = c(v)l2(v)

and
∇vw2 = d(v)l1(v).

Now we take (18) and multiply from the left by the row vector ∇vw1. Using
the fact that ∇vw1 is proportional to l2(v) we obtain

∂t(w1(v)) + λ2(v)∂x(w1(v)) = 0

and similarly
∂t(w2(v)) + λ1(v)∂x(w2(v)) = 0.

Now we introduce the two families of characteristics

dx

dt
= λ1(v(x, t))

and
dx

dt
= λ2(v(x, t)).
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We see that w1(v(x, t)) is constant on the λ2 characteristics, and w2(v(x, t))
is constant on the λ1 characteristics. Changing variables in state space to w
we have the system {

∂tw1 + λ2(w)∂xw1 = 0
∂tw2 + λ1(w)∂xw2 = 0.

(23)

Differentiating the first equation we obatin

(∂t + λ2∂x)(∂xw1) +
∂λ2

∂w1

(∂xw1)2 +
∂λ2

∂w2

(∂xw2)(∂xw1) = 0

This is the ODE

Dtp+

(
∂λ2

∂w1

)
p2 +

(
∂λ2

∂w2

)
pq = 0

with
p = ∂xw1, q = ∂xw2, Dt = ∂t + λ2∂x.

We use the second equation in (23) to write

Dtw2 + (λ1 − λ2)q = 0

that is

q =
Dtw2

λ2 − λ1

where we use strict hyperbolicity (λ2 > λ1). The mixed derivatives group
can be written as (

∂λ2

∂w2

)
pq = pDt(w2)

∂λ2
∂w2

λ2 − λ1

.

Let h(w1, w2) be a function that satisfies

∂h

∂w2

=
1

λ2 − λ1

∂λ2

∂w2

.

Then, since Dtw1 = 0, we have

Dth = (Dtw2)(∂w2h) = (Dtw2)
∂λ2
∂w2

λ2 − λ1

Thus

Dtp+

(
∂λ2

∂w1

)
p2 + pDth = 0
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Multiplying by eh we obtain for g = ehp

Dtg +

(
∂λ2

∂w1

)
e−hg2 = 0.

Integrating on the λ2 characteristic we find, with

k(t) =

ˆ t

0

e−h
∂λ2

∂w1

ds

g(t)
g(0)

1 + k(t)g(0)

which blows up if k(t)g(0) = −1. If ∂λ2
∂w1

> 0 then it is easy to see that
k(t) ≥ ct and blow up occurs if ∂xw1(0) < 0.
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