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Abstract

We consider convective systems in a bounded domain, in which viscous fluids described by the
Stokes system are coupled using the Boussinesq approximation to a reaction-advection-diffusion
equation for the temperature. We show that the resulting flows possess relaxation-enhancing
properties in the sense of [12]. In particular, we show that solutions of the nonlinear problems
become small when the gravity is sufficiently strong due to the improved interaction with the cold
boundary. As an application, we deduce that the explosion threshold for power-like nonlinearities
tends to infinity in the large Rayleigh number limit. We also discuss the behavior of the principal
eigenvalues of the corresponding advection-diffusion problem and the quenching phenomenon for
reaction-diffusion equations.

1 Introduction

The presence of a strong incompressible flow in an advection-diffusion equation

∂φ

∂t
+Au · ∇φ = ∆φ,

with a large parameter A � 1 improves the mixing properties of the pure diffusion process. This
manifests itself as diffusivity enhancement (see [25] and references therein) in the whole space, or
as accelerated convergence to an equilibrium in a smooth bounded domain Ω, in the strong flow
limit A→ +∞. As a measure of the latter effect the following definition has been proposed in [12]:
a time-independent flow u(x) is relaxation-enhancing if for any τ > 0 and any δ > 0 there exists
A0(τ, δ) so that any solution of the initial value problem

∂φ

∂t
+Au · ∇φ = ∆φ in Ω, (1.1)

φ(0, x) = φ0(x),
φ = 0 on ∂Ω,

satisfies
‖φ(τ)‖L∞ ≤ δ‖φ0‖L1 (1.2)

for all A ≥ A0(τ, δ). The L1 − L∞ decay in (1.2) can be replaced by any Lp − Lq decay with
1 ≤ p, q ≤ ∞ – this does not change the class of relaxation enhancing flows [12]. It has been
shown in [4, 12] that the flow u(x) is relaxation-enhancing if and only if u has no first integrals in
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H1
0 (Ω). Equivalently, such flows lead to eigenvalue enhancement: the principal eigenvalue µ(A) of

the Dirichlet problem

−∆φ+Au · ∇φ = µ(A)φ in Ω, (1.3)
φ = 0 on ∂Ω,

satisfies limA→+∞ µ(A) = +∞ if and only if u is relaxation-enhancing [4, 12, 22].
Similar effects have been observed for reaction-advection-diffusion equations of the form

∂φ

∂t
+Au · ∇φ = ∆φ+ f(φ), (1.4)

with a non-negative nonlinearity f(s) that vanishes at s = 0 and s = 1 – such equations appear
in flame propagation as well as many other applied problems. It has been shown that a flow may
speed-up a flame [9, 18, 23, 28, 30] or quench the propagation [11, 17, 24, 37, 38] as A→ +∞.

Yet another problem where a prescribed flow has been shown to have a non-trivial effect is
the explosion problem when the nonlinearity in (1.4) is of the form f(s) = kg(s). Here g(s) is
a uniformly positive convex function that grows super-linearly as s → +∞, and the problem is
posed in a bounded domain Ω with Dirichlet boundary conditions φ = 0 on ∂Ω. Solutions of the
corresponding steady problem with A = 0 exist provided that k < kcr, while no solutions exist for
k > kcr [14, 19, 21]. Similarly, solutions of the parabolic problem with A = 0 blow-up for k > kcr

[7] – see [8] for a recent review of related results. On the other hand, it has been shown in [6] that
for A 6= 0 the flow may have a regularizing effect and increase the explosion threshold kcr(A). In
particular, if u is relaxation enhancing then kcr(A) → +∞ as A→∞.

In the present paper we consider similar mixing effects in nonlinear flows when the fluid is
coupled to the temperature via a buoyancy force in the Stokes-Boussinesq approximation, in the
infinite Prandtl number limit. The temperature θ(t, x) satisfies a semilinear advection-diffusion
equation:

∂θ

∂t
+ u · ∇θ = ∆θ + kg(θ)

in a smooth bounded domain Ω ⊂ Rn, n = 2, 3, with Dirichlet boundary conditions θ = 0 on ∂Ω.
The flow is coupled to temperature by the Stokes-Boussinesq equation

∂u

∂t
−∆u+∇p = ρθêz,

with no-slip boundary conditions u = 0 on ∂Ω. Here ρ is the Rayleigh number – the non-dimensional
gravity strength – and we are interested in the behavior of solutions in the limit ρ → +∞, so that
the flow is strong. The nonlinearity g(s) is non-negative and the parameter k > 0 measures its
strength. The vector êz is the unit vector in the vertical direction: êz = (0, 1) and êz = (0, 0, 1) in
dimensions two and three, respectively.

The Stokes-Boussinesq reactive system has been actively studied recently when the nonlinearity
g(s) is either of the KPP or ignition type, mostly in unbounded domains. It has been shown that
traveling fronts exist in various situations in infinite cylinders in two [2, 3, 13, 33, 34] and three [26]
dimensions. Some a priori bounds in an infinite strip have been obtained in [10]. Numerical studies
of the stability and qualitative behavior of such fronts have been performed in [15, 16, 35, 36]. The
full convective Boussinesq explosion problem in a bounded domain has been studied numerically in
[1] where a complex behavior of solutions has been observed. Existence and regularity of solutions
have been established in [27]. However, much less of the qualitative properties of solutions is known
in the Boussinesq case, apart from the aforementioned numerical simulations and lower bounds for
the front speed obtained in [31].
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Here we investigate the effect of a strong convection with a large Rayleigh number. We prove
several results that show the regularizing and mixing effects of convection. First, we show that for
any parameter k > 0, steady solutions of the explosion problem do exist provided that the Rayleigh
number is sufficiently large. This means that, unlike in the cellular flows, where the fluid flow may
lower the critical threshold according to the numerical studies of [5], Boussinesq convection does
not create hot spots, at least at high Rayleigh numbers. We also show that the fluid coupling
has a regularizing effect: solutions become small as ρ tends to infinity. When the nonlinearity is
of the ignition type we show that no steady solutions of the reactive Stokes-Boussinesq equation
may exist when ρ is large. As a consequence we deduce that convection induces quenching in the
time-dependent problem – the temperature goes to zero as t → +∞. This is an analogue of the
corresponding results in [11, 17, 24, 37] for quenching in a prescribed flow.

We also extend the notion of relaxation-enhancing flows to families of flows. As in (1.1)-(1.2),
a family of incompressible flows uρ(x) is relaxation-enhancing if for any τ > 0 and any δ > 0 there
exists ρ0(τ, δ) so that any solution of the initial value problem

∂φ

∂t
+ uρ · ∇φ = ∆φ in Ω, (1.5)

φ(0, x) = φ0(x),
φ = 0 on ∂Ω,

satisfies
‖φ(τ)‖L∞ ≤ δ‖φ0‖L1 (1.6)

for all ρ ≥ ρ0(τ, δ). In particular, if u(x) is a given relaxation enhancing flow, then uρ(x) = ρu(x)
is a relaxation-enhancing family. Another typical class of relaxation-enhancing families comes from
flows of the form uρ(x) = ρ1+αv(ρx), where v(y) is a periodic cellular flow and α > 0. In that
case not only the flow rotates faster as ρ increases but also the invariant sets of uρ become smaller.
We show that solutions of the steady reactive Stokes-Boussinesq form a relaxation enhancing family
and the corresponding principal nonlinear eigenvalues tend to infinity. As a consequence, the exit
time of the corresponding diffusion process tends to zero uniformly as ρ→ +∞. Interestingly, while
relaxation-enhancing flows are fairly difficult to construct explicitly, relaxation enhancing families
arise naturally as solutions of nonlinear problems. Moreover, unlike in the case of prescribed flows
[23, 29, 30], our proofs do not involve any delicate analysis of the behavior of the streamlines.
A useful ingredient in the proof is Lemma 3.1, which provides a uniform bound for solutions of
advection-diffusion problems in an incompressible flow, with constants independent of the flow. To
the best of our knowledge, this lemma, which may be of independent interest, was first established
in the preprint [6]. We are not aware of any other reference for this result.

This paper is organized as follows. We present our main results in Section 2. Section 3 contains
the analysis of the convective explosion problem. In Section 4 we establish the relaxation enhance-
ment properties of the corresponding flows and discuss the nonlinear eigenvalue problem. Finally,
in Section 5 we address quenching with the ignition nonlinearity.
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Chicago. PC was supported by NSF grant DMS-0504213, AN by NSF grant DMS-0604600 and LR
by NSF grant DMS-0604687.
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2 The main results

The steady explosion problem

We consider the nonlinear steady explosion problem

−∆θ + u · ∇θ = kg(θ), (2.1)
−∆u+∇p = ρθêz, ∇ · u = 0

in a bounded two-dimensional domain Ω ⊂ R2 with the Dirichlet boundary conditions

u|∂Ω = 0, θ|∂Ω = 0. (2.2)

Here k ≥ 0 is a parameter measuring the strength of nonlinearity. We assume that g(s) is positive
for all s ∈ R: g(s) ≥ g0 > 0 and grows at most polynomially at infinity: there exists C > 0 and
m ≥ 0 so that

0 < g0 ≤ g(s) ≤ C(1 + sm) for s ≥ 0. (2.3)

If, in addition, we assume that g(s) is convex and grows super-linearly at infinity, then there exists
a critical threshold k∗ so that a solution of (2.1) with u = 0, or, equivalently, ρ = 0, exists for all
k ∈ (0, k∗) while (2.1) has no classical (or weak) solutions for k > k∗ [14, 19, 21]. It turns out that
a strong convection has the following regularizing effect.

Theorem 2.1 Let g(s) be a locally Lipschitz nonlinearity satisfying (2.3) and let Ω ⊂ R2 be a
smooth bounded domain. Then for any k > 0 there exists ρ0(k) so that (2.1)-(2.2) has a classical
solution for all ρ > ρ0(k). Moreover, for any ε > 0 there exists ρ1(ε, k) so that for all ρ > ρ1(ε, k)
the system (2.1)-(2.2) has a solution which, in addition, satisfies ‖θ‖H1

0 (Ω) < ε.

If we consider a nonlinearity g(s) which is a priori bounded: 0 ≤ g(s) ≤M for all s ∈ R then we
have a stronger result which holds both in dimensions two and three.

Theorem 2.2 Let g(s) be a locally Lipschitz nonlinearity satisfying 0 ≤ g(s) ≤ M for all s ∈ R,
and let Ω ⊂ Rn, n = 2, 3 be a smooth bounded domain. Then for any k > 0 there exists ρ0(k)
so that (2.1)-(2.2) has a classical solution for all ρ > ρ0(k). Moreover, for any ε > 0 there exists
ρ1(ε, k) so that for all ρ > ρ1(ε, k) the system (2.1)-(2.2) has a solution which, in addition, satisfies
‖θ‖H1

0 (Ω) < ε.

The small solutions constructed in Theorems 2.1 and 2.2 are analogous to the minimal solutions
which exist for ρ = 0. However, for ρ > 0 different solutions θ(x) correspond to different flows u(x)
so the maximum principle is not available to compare them and it is not clear if solutions are ordered.
We also note that if g(0) = 0 (and only in this case) then solutions constructed in Theorem 2.2 may
be equal identically to zero.

The relaxation enhancing properties of Boussinesq flows

The families of flows constructed in Theorems 2.1 turn out to be relaxation enhancing.

Theorem 2.3 For any k > 0 the system (2.1) with the nonlinearity g(s) as in (2.3) has a relaxation-
enhancing family of solutions uρ(x), ρ > ρ0(k) in a smooth bounded domain Ω ⊂ R2. The same is
true for nonlinearities g(s) as in Theorem 2.2 with an additional assumption g(s) ≥ g0 > 0 in a
smooth bounded domain Ω ⊂ Rn, n = 2, 3.
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This theorem provides a large class of relaxation-enhancing families in two and three dimensions.
As we have mentioned, a single flow u(x) is relaxation-enhancing if and only if the principal

eigenvalue µ(A) of the operator −∆ + Au · ∇ with the Dirichlet boundary conditions on ∂Ω tends
to infinity [4, 12, 22]. In our situation a family of flows which have the principal eigenvalue tending
to infinity comes from the nonlinear eigenvalue problems of the form

−∆θ + u · ∇θ = µθ, (2.4)
−∆u+∇p = ρθêz, ∇ · u = 0,
θ ≥ 0 in Ω ⊂ R3, u = 0 and θ = 0 on ∂Ω.

Here Ω ⊂ R3 is a smooth domain and µ is a nonlinear eigenvalue which is to be determined as part
of the problem. The next theorem provides an analogue of the principal eigenvalue for the problem
with a prescribed flow.

Theorem 2.4 For each ρ > 0 and each M > 0 there exists an eigenvalue µ(ρ,M) > 0 so that
(2.4) has a solution θρ,M ≥ 0 with ‖θρ,M‖L2 = M . Moreover, for each fixed M > 0 we have
µ(ρ,M) → +∞.

Note that we have a simple scaling identity λθρ,M = θλρ,λM for any λ > 0 and therefore µ(λρ, λM) =
µ(ρ,M). As a consequence, the fact that µ(ρ,M) → +∞ as ρ→ +∞ for a fixed M is equivalent to
µ(ρ,M) → +∞ as M → 0 at a fixed ρ > 0. It is not clear to us at the moment whether the fact
that the principal eigenvalue tends to infinity as ρ→ +∞ is sufficient to ensure that the flows uρ(x)
form a relaxation enhancing flow.

The Boussinesq problem with a combustion nonlinearity

Here we consider a nonlinearity g(s) of the form g(s) = β(s)(1− s). The Lipschitz function β(s) is
non-decreasing and has an ignition cut-off:

β(s) = 0 for all s ∈ [0, θ0] and β(s) > 0 for all s > θ0. (2.5)

Such nonlinearities are commonly used in flame propagation problems. The steady problem with no
advection

−∆θ = kβ(θ)(1− θ), (2.6)

in a smooth bounded three-dimensional domain Ω ⊂ R3 with the Dirichlet boundary conditions
θ|∂Ω = 0 has a non-trivial (θ 6≡ 0) solution provided that the ignition cut-off θ0 < 2/3 and k ≥ k0 is
sufficiently large. The corresponding steady Boussinesq convective problem is

−∆θ + u · ∇θ = kβ(θ)(1− θ), (2.7)
−∆u+∇p = ρθêz, ∇ · u = 0

with the Dirichlet boundary conditions

u|∂Ω = 0, θ|∂Ω = 0. (2.8)

It turns out that (2.7)-(2.8) has no non-trivial solutions if convection is strong enough.

Theorem 2.5 For any k > 0 there exists ρ0(k) so that the only classical solution of (2.7)-(2.8) with
ρ > ρ0(k) is θ ≡ 0.
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The Cauchy problem for the convective problem is

∂θ

∂t
−∆θ + u · ∇θ = kβ(θ)(1− θ), (2.9)

∂u

∂t
−∆u = ρθêz −∇p, ∇ · u = 0,

supplemented by the boundary conditions (2.8) and the Cauchy data θ(0, x) = θ0(x) ∈ C∞(Ω),
0 ≤ θ0(x) ≤ 1, and u(0, x) = u0(x) ∈ C∞(Ω). The time-dependent version of Theorem 2.5 is the
following.

Theorem 2.6 For any smooth bounded domain Ω ⊂ R3 and any k > 0 there exists ρ0 so that for
any ρ > ρ0 and any initial data 0 ≤ θ0(x) ≤ 1 the solution of (2.9)-(2.8) satisfies

lim
t→+∞

‖θ(t)‖L∞(Ω) = 0. (2.10)

The time-dependent problem with u = 0 on the real line has been studied in the pioneering works
of Kanel [20] who has shown that if ‖θ0‖L1 is smaller than a critical value lcr then (2.10) holds.
These results have been recently sharpened in [38]. The Cauchy problem in prescribed flows has
been studied in [10, 17, 37] where it has been shown that the critical mass lcr(A) may tend to infinity
as A→ +∞ which comes from the additional mixing by the flow. Theorem 2.6 may be seen as the
Boussinesq version of the quenching results of [11, 17, 37] with the size of the domain serving as the
scale lcr – no matter how large the domain Ω is, solutions decay (the flame is extinguished) provided
that gravity is sufficiently strong.

3 Existence of solutions with strong convection

We prove Theorems 2.1 and 2.2 in this section.

A uniform bound for a linear advection-diffusion equation

We first recall a uniform bound for solutions of advection-diffusion equations with an incompressible
drift, which holds uniformly in the advecting flow (the only reference for this fact we are aware of is
[6] so we present the proof for the convenience of the reader).

Lemma 3.1 Let Ω ⊂ Rn be a bounded domain, and let φ(x) be the solution of the linear elliptic
problem

−∆φ+ u · ∇φ = f(x), x ∈ Ω, (3.1)

with the Dirichlet boundary conditions φ = 0 on ∂Ω. Assume that f ∈ Lp(Ω), p > n/2 and u is
incompressible: ∇ · u = 0. There exists a constant C > 0 which depends on Ω and p but not on the
flow u so that ‖φ‖L∞(Ω) ≤ C‖f‖Lp.

Proof. The function φ(x) can be represented as

φ(x) =
∫ ∞

0
ψ(t, x)dt. (3.2)

Here the function ψ(t, x) solves an auxiliary Cauchy problem

∂ψ

∂t
−∆ψ + u · ∇ψ = 0, x ∈ Ω, (3.3)

ψ(0, x) = f(x) for x ∈ Ω,
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with the boundary condition ψ(t, x) = 0 for x ∈ ∂Ω. As in the proof of Lemma 5.6 in [12], we have
the following bound for any ε > 0, t ≥ 0 and τ > 0:

‖ψ(t+ τ)‖L2 ≤
Cε

τn/4+ε
‖ψ(t)‖L1 ,

with the constant Cε which depends only on the domain Ω but not on the incompressible flow u(x).
In addition, due to incompressibility of u(x), there exists a constant α > 0 so that

‖ψ(t+ τ)‖L2 ≤ e−ατ‖ψ(t)‖L2 .

It follows that

‖ψ(t+ τ)‖L2 ≤
Cεe

−ατ

τn/4+ε
‖ψ(t)‖L1 ,

where here and below Cε and α are some new universal constants. Let Pτ be the evolution operator
Pτ [ψ(t)] = ψ(t+ τ). Since u is divergence-free, the adjoint operator P∗τ is the evolution operator for
(3.3) with the flow u(x) replaced by (−u(x)). Therefore, P∗τ obeys the same bound

‖P∗τ ‖L1→L2 ≤
Cεe

−ατ

τn/4+ε
.

As a consequence, we have

‖Pτ‖L2→L∞ ≤ Cεe
−ατ

τn/4+ε
.

Using the semi-group property Pτ = Pτ/2 ◦ Pτ/2, we obtain

‖Pτ‖L1→L∞ ≤ Cεe
−ατ

τn/2+ε
.

The maximum principle implies the trivial L∞ → L∞ bound ‖Pτ‖L∞→L∞ ≤ 1. Using the Riesz-
Thorin interpolation theorem, we conclude that for any 1 < p <∞ we have

‖Pτ‖Lp→L∞ ≤ Cεe
−ατ/p

τn/(2p)+ε
,

so that for ψ from (3.3) we have

|ψ(t, x)| ≤ Cεe
−αpt

tn/(2p)+ε
‖f‖Lp , (3.4)

for all x ∈ Ω and t > 0. Using this bound in (3.2) we deduce that for p > n/2 we may choose ε > 0
sufficiently small so that we have the required estimate

|φ(x)| ≤
∫ ∞

0
‖ψ(t)‖L∞dt ≤

∫ ∞

0

Cεe
−αpt

tn/(2p)+ε
‖f‖Lpdt = C‖f‖Lp .

This finishes the proof of Lemma 3.1. �
Lemma 3.1 can be generalized from elliptic boundary value problems such as (3.1) to parabolic

boundary value problems with smooth time-dependent velocity fields. Consider the Cauchy problem

∂φ

∂t
+ u · ∇φ = ∆φ+ f(t, x), (3.5)

φ(0, x) = g(x),
φ = 0 on ∂Ω,
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with a flow u(t, x) which may now be time-dependent. Then we can write, using the Duhamel
formula, for all t > 0:

φ(t, x) =
∫ t

0
ψ(t, x; s)ds+ η(t, x).

Here η(t, x) is the solution of the Cauchy problem (3.5) with f = 0, while the function ψ(t, x; s)
satisfies for t ≥ s

∂ψ

∂t
+ u · ∇ψ = ∆ψ, (3.6)

ψ(s, x; s) = f(s, x),
ψ = 0 on ∂Ω.

We can prove that we have, similarly to Lemma 3.1,

‖ψ(t, ·; s)‖L∞(Ω) ≤
Cεe

−αp(t−s)

(t− s)n/(2p)+ε
‖f(s, ·)‖Lp(Ω),

for all t > s ≥ 0. It follows from this estimate and (3.4) that for any p > n/2 we have, for all t > 0

‖φ(t, ·)‖L∞(Ω) ≤ Cp‖f‖L∞([0,t];Lp(Ω)) +
Cεe

−αpt

tn/(2p)+ε
‖g‖Lp(Ω),

with constants Cp and Cε that are independent of the flow u(t, x), or time t > 0.

The almost linear problem: existence and smallness

We first consider an almost linear problem with a prescribed heating fρ(x) (which may depend on
the parameter ρ as well)

−∆φ+ u · ∇φ = fρ(x), (3.7)
−∆u+∇p = ρφêz, ∇ · u = 0,

in a smooth domain Ω ⊂ Rn, n = 2, 3 with the Dirichlet boundary conditions (2.2): u|∂Ω = 0,
φ|∂Ω = 0.

Lemma 3.2 Suppose Ω ⊂ Rn, n = 2, 3, is a bounded domain, and fρ ∈ Lp(Ω), n/2 < p ≤ ∞. Then
there exists a solution φ ∈ H1

0 (Ω) ∩ L∞(Ω) to (3.7).

Proof. Consider the map F : L2(Ω) → H1
0 (Ω), where Θ = F (Θ0) is given by the solution of the

quasi-linear elliptic problem 
−∆Θ + u · ∇Θ = fρ(x),
−∆u+∇p = ρΘ0êz, ∇ · u = 0,
u|∂Ω = 0, Θ|∂Ω = 0.

(3.8)

As the flow u is incompressible, for any Θ0 ∈ L2(Ω), we multiply the first equation in (3.7) by
Θ and integrate over Ω. Let us choose q < 2n/(n − 2) (and hence ‖Θ‖Lq ≤ C‖Θ‖H1

0
) so that

q′ = q/(q − 1) < p – this is possible for n ≥ 2 provided that p > n/2. As Θ vanishes on the
boundary, this leads to a uniform bound:

‖∇Θ‖2
L2 ≤ C‖fρ‖Lq′‖Θ‖Lq ≤ C‖fρ‖Lp‖∇Θ‖L2 , 1/q′ + 1/q = 1,
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with the constant C > 0 which is independent of the function Θ0. Therefore, F maps L2(Ω) into a
fixed ball in H1

0 (Ω). In particular, for a ball BK = {||Θ0||L2 ≤ K} ⊂ L2(Ω) with a sufficiently large
radius K

F (BK) ⊂ {||Θ||H1
0
≤ C} ⊂⊂ BK .

Hence, F is a compact map from BK into itself so that by the Schauder’s fixed point theorem it has
a fixed point, which is a solution to (3.7) in H1

0 (Ω). The L∞-estimate for the solution φ(x) follows
from Lemma 3.1. �

Lemma 3.3 Let n/2 < p < ∞ and K > 0. Then for any ε > 0, there exists ρcr = ρcr(K, ε) such
that if ‖fρ‖Lp(Ω) ≤ K and ρ > ρcr(K, ε) then any solution φ(x) to (3.7) satisfies

‖φ‖H1
0
≤ ε. (3.9)

Proof. As in the proof of Lemma 3.2, we chose q < 2n/(n−2) so that p > q′ = q/(q−1). Integrating
by parts and using incompressibility of u(x) we obtain the following a priori estimates:

‖φ‖2
H1

0
≤ C‖fρ‖Lq′‖φ‖Lq ≤ C‖fρ‖Lp‖φ‖Lq , 1/q′ + 1/q = 1, (3.10)

as p > q′. In addition, we have ‖φ‖Lq ≤ C‖φ‖H1
0

for q < (2n)/(n− 2), and thus

‖u‖H1
0
≤ ρC‖φ‖L2 , ‖φ‖H1

0
≤ ‖fρ‖Lp . (3.11)

The first bound in (3.11) comes from the Stokes equation for u(x).
The proof of Lemma 3.3 is by contradiction. Suppose there exists a sequence (un, φn, ρn) of

solutions to (3.7) with ρ = ρn, such that ρn →∞ and ‖fρn‖Lp ≤ K but

‖φn‖H1
0
≥ ε0 > 0. (3.12)

Then for ‖un‖L2 we have two possibilities: either there exist C > 0 and a subsequence, still denoted
un, such that

‖un‖L2 ≥ Cρn, (3.13)

or

lim
n→∞

(
‖un‖L2

ρn

)
= 0. (3.14)

Suppose first that (3.13) is true. Then using (3.11) and rescaling ūn = un/ρn we find a sub-
sequence ūn that converges weakly in H1

0 (Ω) and strongly in L2(Ω) to ū0 ∈ H1
0 (Ω). Moreover, it

follows from Proposition 2.2 on p. 33 in [32] that

‖ūn‖H2 ≤ C‖φn‖2

and thus ū0 ∈ H2(Ω) and convergence of ūn is strong in H1
0 (Ω). The uniform lower bound (3.13)

implies that
‖ū0‖L2 ≥ C (3.15)

which, in turn, implies that ū0 6≡ 0. The sequence φn is uniformly bounded in H1
0 (Ω) and hence (up

to extraction of a subsequence) φn converges weakly in H1
0 (Ω) and strongly in L2(Ω) to a function

φ0 ∈ H1
0 (Ω). Let h(x) be a smooth test function with support contained inside Ω. We multiply the

first equation in (3.7) by h(x) and integrate over Ω:

1
ρn

∫
∇h · ∇φndx+

∫
h(ūn · ∇φn)dx =

1
ρn

∫
h(x)fρn(x)dx. (3.16)
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The uniform H1-bound for φn implies that the first term on the left vanishes as n → +∞ and so
does the right side of (3.16) as well. As for the second term on the left, the gradient ∇φn converges
weakly in L2(Ω) to ∇φ0, while vn = hūn converge strongly in H1

0 (Ω) to v0 = hū0. We conclude that
for any smooth function h(x) with the support inside Ω we have∫

h(ūn · ∇φn) →
∫
h(ū0 · ∇φ0).

Using this in (3.16) we obtain ∫
h(ū0 · ∇φ0) = 0, (3.17)

and thus, in particular,
ū0 · ∇φ0 = 0 a.e. (3.18)

The function ū0 · ∇φ0 lies in Lq(Ω) for some q > 1, as, using the Hölder inequality, we get∫
|ū0|q|∇φ0|qdx ≤

(∫
|∇φ0|2

)q/2 (∫
|ū0|2q/(2−q)

)(2−q)/2

≤ C‖φ0‖q
H1

0
‖ū0‖q

H1
0
≤ C

if q is sufficiently close to 1. Therefore, as compactly supported functions are dense in Lq′(Ω),
identity (3.17) holds for all h ∈ Lq′(Ω), 1/q + 1/q′ = 1.

In addition, ū0 and φ0 satisfy the Stokes equations

−∆ū0 +∇p = φ0êz, ∇ · ū0 = 0.

Multiplying the Stokes equation by ū0 and using the fact that ū0 ∈ H1
0 (Ω) we deduce that

‖∇ū0‖2
L2 =

∫
Ω
ū0,zφ0dx, (3.19)

where ū0,z is the third component of ū0. On the other hand, using the test function η(x) = z in
(3.17), we obtain

0 =
∫

Ω
(zū0 · ∇φ0) =

∫
Ω
ū0,zφ0dx.

It follows from (3.19) that ū0 = 0, which contradicts (3.15). Therefore, (3.13) is impossible.
However, if (3.14) holds then we may divide the Stokes equation by ρn and pass to the limit

n → ∞. As the sequence φn is still bounded in H1
0 , there exists a weakly converging subsequence

φn in H1
0 (Ω) (which converges strongly in any Lq(Ω), q < 2n/(n− 2)) with a limit φ0 ∈ H1

0 (Ω). As
ūn = un/ρn converges strongly to zero in L2(Ω), we obtain that

0 = φ0êz +∇p

holds weakly. Therefore φ0êz is a gradient and φ0 = h(z). Since φn → φ0 strongly in any Lq(Ω),
q < 2n/(n − 2), using (3.12) and (3.10) we have that ‖φ0‖Lq > 0 and ‖φ0‖H1

0
> 0. But this is

impossible if φ0 = h(z) ∈ H1
0 (Ω) is a function of z only and φ0|∂Ω = 0. �

Proof of Theorem 2.2. The ”smallness” part of Theorem 2.2 is an immediate consequence of
Lemma 3.3. The existence part in this theorem follows from an argument identical to that in the
proof of Lemma 3.2. �
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Proof of Theorem 2.1

Define a truncated nonlinearity

gM (s) =


M, g(s) ≥M,

g(s), −M ≤ f(x) ≤M,

−M, g(x) ≤ −M.

Since gM (Θ(x)) ∈ L∞(Ω), it follows from Theorem 2.2 that there exists a function θM (x) and the
corresponding flow uM (x) that satisfy the system

−∆θM + uM · ∇θM = kgM (θM ), (3.20)
−∆uM +∇p = ρθM êz, ∇ · uM = 0,

with the boundary conditions (2.2).
By Lemma 3.3, given any ε > 0, we can choose ρcr(ε,M) so that for any ρ > ρcr(ε,M) the

solution we have found satisfies the bound

‖θM‖H1
0
≤ ε.

By the Sobolev embedding we have

‖gM (θ)‖2
2 ≤ C

(
1 + (‖θ‖L2m)2m

)
≤ C

(
1 +

(
‖∇θ‖H1

0

)2m
)
≤ C(1 + ε2m).

If we take ε so small that C(1 + ε2m) < 2C and use Lemma 3.1 we conclude that

‖θM‖L∞ ≤ C‖gM‖L2 ≤ K,

with the constantK independent ofM . It follows that if we takeM > 5K then there is no truncation
and gM (θM ) = g(θM ). Hence, we have found a solution to (2.1), that satisfies ‖θ‖H1

0 (Ω) < ε. �

4 The mixing properties of the reactive convective flows

Proof of Theorem 2.3

We will prove only the first statement which is a simple consequence of Theorem 2.1. The second
is proved identically using the smallness of the solutions constructed in Theorem 2.2. Let us set
k = 1 in (2.1) for convenience. Take a function f ∈ L∞(Ω) with ‖f‖L∞ = 1, assume without loss of
generality that f ≥ 0, and let the function ζρ(t, x) be the solution of the Cauchy problem

∂ζρ
∂t

+ uρ(x) · ∇ζρ = ∆ζρ (4.1)

with the Dirichlet boundary conditions ζρ(t, x) = 0 for all x ∈ ∂Ω, and the initial data ζρ(0, x) = f(x).
Given any δ > 0 we can find ρcr(δ) and a family of solutions (θρ, uρ) of (2.1) such that ‖θρ‖H1

0
< δ

for all ρ > ρcr(δ). Consider now the functions ψρ which solve

−∆ψρ + uρ · ∇ψρ = f(x) for x ∈ Ω,
ψρ = 0 for x ∈ ∂Ω.
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The maximum principle implies that 0 ≤ ψρ(x) ≤ θρ(x)/g0. Hence, it follows from Theorem 2.1 that
‖ψρ‖L2 ≤ δ/g0 for all ρ ≥ ρcr(δ). However, the function ψρ(x) may be written as

ψρ(x) =
∫ ∞

0
ζρ(t, x)dt.

Therefore, we have ∫ ∞

0
‖ζρ(t)‖L2dt ≤ δ/g0.

As the function s(t) = ‖ζρ(t)‖L2 is monotonically decreasing in time and δ is arbitrary, it follows that
for any τ > 0 any any ε > 0 we can find ρcr(τ, ε) so that ‖ζρ(τ/2)‖L2 < ετ3/4+1 for all ρ > ρcr(τ, ε).
Then Lemma 5.6 in [12] (uniform in the flow L2 − L∞ decay for solutions of advection-diffusion
equations in an incompressible flows) implies that ‖ζρ(τ)‖L∞ < ε. Thus, the flows uρ(x) indeed form
a relaxation enhancing family. �

An alternative definition of the relaxation enhancing families is in terms of the exit times. Let
us recall that the solution τ(x) of a boundary value problem

−∆τ + u · ∇τ = 1 in Ω,
τ = 0 on ∂Ω,

has the following probabilistic interpretation: τ(x) is the expected time a diffusion X(t) (with the
generator ∆− u · ∇) which starts at a point x ∈ Ω, spends in Ω before hitting the boundary ∂Ω.

The following proposition generalizes the corresponding results from [22] for a multiple of a single
flow: uρ(x) = ρu(x).

Proposition 4.1 Let Ω ⊂ Rn, n = 2, 3 be a smooth bounded domain and let τρ be the exit time,
solution of

−∆τρ + uρ · ∇τρ = 1 for x ∈ Ω, (4.2)
τρ = 0 for x ∈ ∂Ω.

The family uρ(x) of incompressible flows is relaxation enhancing if and only if

lim
ρ→+∞

‖τρ‖L∞ = 0. (4.3)

Proof. Once again, we write

τρ(x) =
∫ ∞

0
ψρ(t, x)dt, (4.4)

with the function ψρ(t, x) which solves

∂ψρ

∂t
+ uρ(x) · ∇ψρ = ∆ψρ (4.5)

with the Dirichlet boundary conditions ψρ(t, x) = 0 for x ∈ ∂Ω, and the Cauchy data ψρ(0, x) = 1.
It follows from (3.4) with n = p that for any ε > 0 there exist C > 0 and α > 0 that do not depend
on the flow uρ so that

‖ψρ(t+ s)‖L∞ ≤ Ce−αt

t1/2+ε
‖ψρ(s)‖Lp ≤ Ce−αt

t1/2+ε
‖ψρ(s)‖L∞ .
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Assume first that uρ is relaxation enhancing. Then for any t > 0 there exists ρcr so that for all
ρ > ρcr we have ‖ψρ(t)‖L∞ ≤ ε. The exit time can be then estimated as

‖τρ‖L∞ ≤
∫ t

0
‖ψρ(s)‖L∞ds+ ε

∫ ∞

t

Ce−α(s−t)

(s− t)1/2+ε
ds ≤ t+ Cε ≤ δ

if we choose t > 0 and ε > 0 sufficiently small. Therefore, (4.3) holds.
On the other hand, as ‖ψρ(t)‖L∞ is decreasing in time, it follows from (4.3) and (4.4) that for

any ε > 0 and any t > 0 we have for a sufficiently large ρ > ρ0(ε, t) and δ = tε:

t‖ψρ(t)‖L∞ ≤ ‖τρ‖L∞ ≤ δ = tε,

so that ‖ψρ(t)‖L∞ ≤ ε. Therefore, uρ is a relaxation enhancing family. �
As a consequence of Theorem 2.3 and Proposition 4.1 we conclude that the exit times for the

flows generated by Stokes-Boussinesq systems (2.1) tend to zero in the limit of the large Rayleigh
number. This is one way to formalize the fact that any point in the domain Ω is nearly connected
to the boundary by such flows.

The nonlinear eigenvalue problem

Next, we prove Theorem 2.4.
Proof of Theorem 2.4. Let us fix M > 0 and ρ ≥ 0 and consider the map K : L2(Ω) → L2(Ω)

defined as follows: given a function θ ∈ L2(Ω) construct the flow u(x) ∈ H2(Ω) by solving the Stokes-
Boussinesq problem

−∆u+∇p = ρθêz, ∇ · u = 0 in Ω,

with the no-slip boundary conditions u = 0 on ∂Ω. Then ψ = Kθ is the positive in Ω eigenfunction
of the operator

−∆ψ + u · ∇ψ = µψ, ψ > 0 in Ω,

with the Dirichlet boundary conditions ψ = 0 on ∂Ω, normalized so that ‖ψ‖L2 = M . The operator
K is compact. This is seen as follows: take any ball BK = {θ ∈ L2(Ω) : ‖θ‖L2 ≤ K}, then
‖u(θ)‖H2 ≤ CK for any θ ∈ BK [32]. Therefore, we have |µ| ≤ C(K) and thus there exists a
constant C0(K) such that ‖ψ‖H1

0
≤ C0(K) for any θ ∈ BK – therefore, K is compact. The Schauder

fixed point theorem implies that the operator K : BK → BK has a fixed point θ for any K ≥ M .
However, a fixed point of K is a solution to the nonlinear eigenvalue problem (2.4).

Now, we show that µ(ρ,M) → +∞ as ρ→ +∞ for any fixed M > 0. Let us assume that this is
not the case. Then there exists a sequence ρn → +∞ such that µ(ρn) < K0 for some fixed K0 > 0.
It follows from Lemma 3.1 that ‖θρn‖L∞ ≤ CK0M for all n ∈ N since

‖θρn‖L2 = M, (4.6)

and dimension n ≤ 3. Lemma 3.3 implies then that there exists N0 so that ‖θρn‖H1
0
≤ M/10 for

n ≥ N0. This is a contradiction to (4.6), therefore we have µ(ρ,M) → +∞ as ρ→ +∞. �

5 Reactive convection with an ignition nonlinearity

In this section we consider the reaction-diffusion-convection problems with an ignition nonlinearity
satisfying (2.5). Throughout this section Ω is a smooth bounded domain in R3.
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The non-convective steady problem

First, we recall the following result for the steady problem without convection.

Lemma 5.1 Let the function β(s) satisfy (2.5) and assume that the ignition cut-off θ0 < 2/3. There
exists κ0 > 0 so that the semi-linear elliptic problem{

−∆Θ = κβ(Θ)(1−Θ),
Θ|∂Ω = 0

(5.1)

has a non-negative solution Θ(x), which is not identically equal to zero, for all κ ≥ κ0.

Proof. Let us first build a nontrivial positive sub-solution of (5.1). Choose Θ1 and Θ2 so that
Θ1 < 2Θ2/3 and θ0 < Θ1 < Θ2 < 1 and then find α > 0 such that

g(s) := β(s)(1− s) ≥ α, for Θ1 ≤ s ≤ Θ2. (5.2)

Now, set

g̃(s) =

{
0 s ≤ Θ1,

α s ≥ Θ1.

We construct a sub-solution, which is radially symmetric with respect to a point x0 inside the domain
Ω – we set x0 = 0 without loss of generality. Let us define the function φ(r) as

φ(r) = Θ2 −
καr2

2

for 0 ≤ r ≤ r0, where r0 = (2(Θ2 −Θ1)/(ακ))1/2, that is, φ(r0) = Θ1, and we also set

φ(r) =
καr30
r

− (2Θ2 − 3Θ1)

for r ≥ r0. Then both φ and φ′ are continuous at r0 and, in addition, φ satisfies

−∆φ = κg̃(φ) ≤ κg(φ).

Moreover, we have φ(R0) = 0, where

R0 =
καr30

(2Θ2 − 3Θ1)
=

2
√

2(Θ2 −Θ1)3/2

(ακ)1/2(Θ2 −Θ1)
.

Now, with the sub-solution φ(x) in hand, we let ψ(t, x) be the solution of the Cauchy problem
∂ψ

∂t
−∆ψ = κg(ψ),

ψ|∂Ω = 0,
ψ(0, x) = φ0(x) = max{φ(x), 0}.

(5.3)

The maximum principle implies that the solution ψ(t, x) satisfies 0 ≤ ψ(x) ≤ 1 and, in addition, as
φ(x) is a sub-solution for the elliptic problem, ψ(t, x) is increasing in t, point-wise in x. Therefore,
as t→ +∞ the function ψ(t, x) converges to a steady solution for (5.1). �
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The convective steady problem

We may now prove Theorem 2.5.
Proof of Theorem 2.5. Let θ(x) and u(x) be a solution of

−∆θ + u · ∇θ = kβ(θ)(1− θ), (5.4)
−∆u+∇p = ρθêz, ∇ · u = 0

with the Dirichlet boundary conditions

u|∂Ω = 0, θ|∂Ω = 0, (5.5)

and assume that θ 6≡ 0. The maximum principle implies that 0 ≤ θ ≤ 1 and hence ‖g(θ)‖L∞ ≤ K,
g = kβ(θ)(1 − θ) with a constant K which depends only on the nonlinearity g and the domain Ω.
Lemma 3.3 implies that for any ε > 0, there exists ρcr such that ‖θ‖H1

0
≤ ε for all ρ ≥ ρcr. We

know, however, from Lemma 3.1 that in three dimensions

‖θ‖L∞ ≤ C‖g(θ)‖L2 ≤ C‖θ‖H1
0
≤ Cε.

Hence, choosing ε so that Cε < θ0 we have that ‖θ‖L∞ < θ0. It means that the right-hand side of the
first equation in (5.4) is identically equal to zero. The only solution then must be equal identically
to zero. �

Quenching in reactive convection

Here we prove Theorem 2.6. Let us recall the system (2.9):

∂θ

∂t
−∆θ + u · ∇θ = kg(θ), (5.6)

∂u

∂t
−∆u+∇p = ρθêz, ∇ · u = 0,

with the Dirichlet and no-slip boundary conditions:

u|∂Ω = 0, θ|∂Ω = 0, (5.7)

and the Cauchy data θ(0, x) = θ0(x) ∈ C∞(Ω), 0 ≤ θ0(x) ≤ 1, and u(0, x) = u0(x) ∈ C∞(Ω). The
maximum principle implies an a priori bound:

0 ≤ θ(t, x) ≤ 1. (5.8)

The first step is to prove the following lemma.

Lemma 5.2 For any ε > 0 there exists ρcr such that for any ρ ≥ ρcr we have

inf
τ∈[0,1]

‖θ(τ)‖L2 ≤ ε.

Proof. Consider any time 0 < t ≤ 1. First, multiplying the Stokes equation by u and integrating
by parts, we obtain the usual bound

1
2
d

dt

∫
Ω
|u|2dx+

∫
|∇u|2dx = ρ

∫
Ω
(u · êz)θdx,
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so that, as u vanishes on the boundary and 0 ≤ Θ ≤ 1,∫ t

0

∫
|∇u(s, x)|2dxds ≤ C(ρ2 + 1).

Next, we multiply the Stokes equation by ut and integrate by parts:∫ t

0

∫
Ω
|us|2dxds = ρ

∫ t

0

∫
Ω
(us · êz)θdxds+

∫ t

0

∫
Ω
(∆u · us)dxds

≤ 1
2

∫ t

0

∫
Ω
|us|2dxds+

ρ2

2

∫ t

0

∫
Ω
θ2dxds− 1

2

∫ t

0

d

ds

(∫
Ω
|∇u(s, x)|2dx

)
ds.

Hence, we have∫ t

0

∫
Ω
|us|2(s, x)dxds+

∫
Ω
|∇u(t, x)|2dx ≤ Cρ2

∫ t

0

∫
Ω
θ2(s, x)dxds+ C0 ≤ C(1 + ρ2)

and thus ∫ t

0

∫
Ω

(
u2

t + |∇u|2
)
dxdt ≤ C(1 + ρ2). (5.9)

We also know that θ ∈ L2(Ω× [0, 1]). Therefore, we can use the argument presented in Lemma 3.3.
Let us show that for any ε0 there exists ρcr such that for any ρ ≥ ρcr we can find a time τ(ρ) ∈ [0, 1]
such that ‖θ(τ)‖H1

0
≤ ε0. Suppose, by contradiction, that for some ε0 > 0 and a sequence (un, θn, ρn)

of solutions to (5.6) with ρ = ρn, such that ρn →∞, we have, for all t ∈ [0, 1],

‖θn(t)‖L2 ≥ ε0 > 0. (5.10)

Then, as in the proof of Lemma 3.3, we have two possibilities: either there exist C > 0 and a
subsequence, which we still denote un, such that∫ 1

0
‖un(t)‖2

L2dt ≥ Cρ2
n, (5.11)

or

lim
n→∞

∫ 1

0
‖un(t)‖2

L2dt/ρ
2
n = 0. (5.12)

Assume first that (5.11) holds. As a consequence of (5.9) we have

‖un‖H1(Ω×[0,1]) ≤ C(1 + ρ2).

Then, rescaling ūn = un/ρn we find a subsequence ūn that converges weakly in H1(Ω × [0, 1]) and
strongly in L2(Ω × [0, 1]) to a limit ū0 ∈ H1(Ω × [0, 1]). Moreover, convergence of ūn is strong in
Lp(Ω× [0, 1]), for some p > 2. From the uniform bound (5.11) we have that

‖ū0‖L2(Ω×[0,1]) ≥ C (5.13)

which implies that ū0 6≡ 0. Next, the sequence θn converges weakly (after extraction of a subse-
quence) in L2(Ω × [0, 1]) to θ0 and ∇θn converges weakly to ∇θ0 ∈ L2(Ω × [0, 1]). It follows that
the product ūn · ∇θn converges weakly to the corresponding product in the sense that for any test
function h ∈ C∞(Ω× [0, 1]) we have∫ 1

0

∫
Ω
h(x, t)(ūn · ∇θn)dxdt→

∫ 1

0

∫
Ω
h(x, t)(ū0 · ∇θ0)dxdt.
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From (5.6) we have that for any h ∈ C∞0 (Ω× [0, 1])

1
ρn

∫ 1

0

∫
θnhtdxdt+

1
ρn

∫ 1

0

∫
Ω
∇h · ∇θndxdt+

∫ 1

0

∫
Ω
h(ūn · ∇θn)dxdt =

k

ρn

∫ 1

0

∫
Ω
h(x, t)g(θn)dxdt.

Passing to the limit ρn → +∞ we obtain∫ 1

0

∫
Ω
h(t, x)(ū0 · ∇θ0)dxdt = 0, for any h ∈ C∞0 (Ω× [0, 1]).

Since C∞0 (Ω× [0, 1]) is dense in Lq′(Ω× [0, 1]) for 1 ≤ q′ <∞ we have

ū0 · ∇θ0 = 0 a.e., (5.14)

or ∫ 1

0

∫
Ω
hū0 · ∇θ0dxdt = 0 (5.15)

for any test function h ∈ Lq′(Ω× [0, 1]). In addition, ū0 and θ0 satisfy the Stokes equation with the
unit Rayleigh number:

∂ū0

∂t
−∆ū0 +∇p = θ0êz, ∇ · ū0 = 0.

Multiplying the Stokes equation by ū0 and using the fact that ū0 = 0 on ∂Ω we deduce that∫ 1

0
‖∇ū0(t)‖2

L2dt+ ‖ū0(t = 1)‖2
L2dt =

∫ 1

0

∫
Ω
ū0,zθ0dxdt.

On the other hand, as before, using the test function η(x) = z in (5.15), we obtain

0 =
∫ 1

0

∫
Ω
(zū0 · ∇θ0) =

∫ 1

0

∫
Ω
ū0,zθ0dx.

It follows that ū0 = 0, which contradicts (5.13). Therefore, (5.11) is impossible.
Assume now that (5.12) holds. Then we may divide the Stokes equation by ρn and pass to the

limit n → ∞. As the sequence θn is positive and is bounded by 1 in L∞(Ω × [0, 1]), there exists a
weakly converging subsequence θn in L2(Ω× [0, 1])) with a limit θ0 6≡ 0 because of (5.10) and since
0 ≤ θn ≤ 1. In particular, using (5.10) we obtain∫ 1

0

∫
Ω
θndxdt→

∫ 1

0

∫
Ω
θ0dxdt = C > 0. (5.16)

Let us set

ψn(x) =
∫ 1

0
θn(t, x)dt.

Then we have

‖∇ψn(x)‖L2(Ω) ≤
∫ 1

0
‖∇θn‖L2dtdx ≤ C

(∫ 1

0

∫
Ω
|∇θn|2dxdt

)1/2

≤ C.

Therefore, the sequence ψn(x) is uniformly bounded in H1
0 (Ω), and thus has a subsequence that

converges strongly in L2(Ω) and weakly in H1
0 (Ω) to

ψ0(x) =
∫ 1

0
θ0(t, x)dt.
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As ūn = un/ρn converges strongly to zero in L2(Ω× [0, 1]) because of (5.12), we obtain that

0 = θ0êz +∇P

holds in the weak sense. Therefore, ψ0 satisfies

0 = ψ0êz +∇P̄ , P̄ (x) =
∫ 1

0
P (t, x)dt

and hence ψ0êz is a gradient: ψ0 = h(z). It follows from (5.16) that ‖ψ0‖L2 > 0. But this is
impossible if ψ0 = h(z), ψ0 ∈ H1

0 (Ω) and ψ0|∂Ω = 0. This finishes the proof of Lemma 5.2. �
Proof of Theorem 2.6. Let us use Lemma 5.2 to choose ρcr so that for any ρ > ρcr we can find

some time τ ∈ [0, 1] such that ‖θ(τ)‖L2 ≤ c0θ0, where c0 is an appropriately small constant. The
maximum principle implies that for t ≥ τ we have θ(t, x) ≤ eM(t−τ)ζ(t, x). The constant M is chosen
so that g(s) ≤ Ms for all s ≥ 0, and the function ζ(t, x) is the solution of the advection-diffusion
problem with the flow u(t, x) which solves (5.6):

∂ζ

∂t
−∆ζ + u(t, x) · ∇ζ = 0, t ≥ τ, (5.17)

ζ|∂Ω = 0, ζ(τ, x) = θ(τ, x).

Using Lemma 5.6 of [12] (which applies also to time-dependent incompressible flows as well since it
uses only integration by parts) we obtain that

‖ζ(t = τ + 1)‖L∞ ≤ C‖ζ(τ)‖L2 ,

with the constant C independent of the flow u(t, x). Therefore, if we choose c0 so that c0CeM < 1/2
then ‖θ(τ+1)‖L∞ < θ0/2. It follows from the maximum principle that θ(t, x) ≤ θ0/2 for all t ≥ τ+1
and all x ∈ Ω. Thus, in particular, g(θ) ≡ 0 for t ≥ τ + 1. As a consequence, θ and u solve the
Boussinesq system without any reaction for t > τ + 1 and hence (2.10) holds. �
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