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Diffusion and mixing in fluid flow

By P. Constantin, A. Kiselev, L. Ryzhik, and A. Zlatoš

Abstract

We study enhancement of diffusive mixing on a compact Riemannian man-
ifold by a fast incompressible flow. Our main result is a sharp description of
the class of flows that make the deviation of the solution from its average arbi-
trarily small in an arbitrarily short time, provided that the flow amplitude is
large enough. The necessary and sufficient condition on such flows is expressed
naturally in terms of the spectral properties of the dynamical system associated
with the flow. In particular, we find that weakly mixing flows always enhance
dissipation in this sense. The proofs are based on a general criterion for the
decay of the semigroup generated by an operator of the form Γ + iAL with
a negative unbounded self-adjoint operator Γ, a self-adjoint operator L, and
parameter A À 1. In particular, they employ the RAGE theorem describing
evolution of a quantum state belonging to the continuous spectral subspace
of the hamiltonian (related to a classical theorem of Wiener on Fourier trans-
forms of measures). Applications to quenching in reaction-diffusion equations
are also considered.

1. Introduction

Let M be a smooth compact d-dimensional Riemannian manifold. The
main objective of this paper is the study of the effect of a strong incompressible
flow on diffusion on M. Namely, we consider solutions of the passive scalar
equation

(1.1) φA
t (x, t) + Au · ∇φA(x, t)−∆φA(x, t) = 0, φA(x, 0) = φ0(x).

Here ∆ is the Laplace-Beltrami operator on M, u is a divergence free vector
field, ∇ is the covariant derivative, and A ∈ R is a parameter regulating the
strength of the flow. We are interested in the behavior of solutions of (1.1) for
A À 1 at a fixed time τ > 0.
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It is well known that as time tends to infinity, the solution φA(x, t) will
tend to its average,

φ ≡ 1
|M |

∫

M

φA(x, t) dµ =
1
|M |

∫

M

φ0(x) dµ,

with |M | being the volume of M . We would like to understand how the speed of
convergence to the average depends on the properties of the flow and determine
which flows are efficient in enhancing the relaxation process.

The question of the influence of advection on diffusion is very natural and
physically relevant, and the subject has a long history. The passive scalar
model is one of the most studied PDEs in both mathematical and physical
literature. One important direction of research focused on homogenization,
where in a long time–large propagation distance limit the solution of a passive
advection-diffusion equation converges to a solution of an effective diffusion
equation. Then one is interested in the dependence of the diffusion coefficient
on the strength of the fluid flow. We refer to [29] for more details and references.
The main difference in the present work is that here we are interested in the
flow effect in a finite time without the long time limit.

On the other hand, the Freidlin-Wentzell theory [16], [17], [18], [19] studies
(1.1) in R2 and, for a class of Hamiltonian flows, proves the convergence of
solutions as A →∞ to solutions of an effective diffusion equation on the Reeb
graph of the hamiltonian. The graph, essentially, is obtained by identifying all
points on any streamline. The conditions on the flows for which the procedure
can be carried out are given in terms of certain non-degeneracy and growth
assumptions on the stream function. The Freidlin-Wentzell method does not
apply, in particular, to ergodic flows or in odd dimensions.

Perhaps the closest to our setting is the work of Kifer and more recently a
result of Berestycki, Hamel and Nadirashvili. Kifer’s work (see [21], [22], [23],
[24] where further references can be found) employs probabilistic methods and
is focused, in particular, on the estimates of the principal eigenvalue (and, in
some special situations, other eigenvalues) of the operator −ε∆ + u · ∇ when ε

is small, mainly in the case of the Dirichlet boundary conditions. In particular,
the asymptotic behavior of the principal eigenvalue λε

0 and the corresponding
positive eigenfunction φε

0 for small ε has been described in the case where the
operator u · ∇ has a discrete spectrum and sufficiently smooth eigenfunctions.
It is well known that the principal eigenvalue determines the asymptotic rate
of decay of the solutions of the initial value problem, namely

(1.2) lim
t→∞ t−1 log ‖φε(x, t)‖L2 = −λε

0

(see e.g. [22]). In a related recent work [2], Berestycki, Hamel and Nadirashvili
utilize PDE methods to prove a sharp result on the behavior of the principal
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eigenvalue λA of the operator −∆ + Au · ∇ defined on a bounded domain
Ω ⊂ Rd with the Dirichlet boundary conditions.

The main conclusion is that λA stays bounded as A →∞ if and only if u

has a first integral w in H1
0 (Ω) (that is, u · ∇w = 0). An elegant variational

principle determining the limit of λA as A →∞ is also proved. In addition, [2]
provides a direct link between the behavior of the principal eigenvalue and the
dynamics which is more robust than (1.2): it is shown that ‖φA(·, 1)‖L2(Ω) can
be made arbitrarily small for any initial datum by increasing A if and only if
λA → ∞ as A → ∞ (and, therefore, if and only if the flow u does not have a
first integral in H1

0 (Ω)). We should mention that there are many earlier works
providing variational characterization of the principal eigenvalues, and refer to
[2], [24] for more references.

Many of the studies mentioned above also apply in the case of a compact
manifold without boundary or Neumann boundary conditions, which are the
primary focus of this paper. However, in this case the principal eigenvalue
is simply zero and corresponds to the constant eigenfunction. Instead one
is interested in the speed of convergence of the solution to its average, the
relaxation speed. A recent work of Franke [15] provides estimates on the heat
kernels corresponding to the incompressible drift and diffusion on manifolds,
but these estimates lead to upper bounds on ‖φA(1) − φ‖ which essentially
do not improve as A → ∞. One way to study the convergence speed is to
estimate the spectral gap – the difference between the principal eigenvalue and
the real part of the next eigenvalue. To the best of our knowledge, there is very
little known about such estimates in the context of (1.1); see [22] p. 251 for
a discussion. Neither probabilistic methods nor PDE methods of [2] seem to
apply in this situation, in particular because the eigenfunction corresponding
to the eigenvalue(s) with the second smallest real part is no longer positive and
the eigenvalue itself does not need to be real.

Moreover, even if the spectral gap estimate were available, generally it
only yields a limited asymptotic in time dynamical information of type (1.2),
and how fast the long time limit is achieved may depend on A. Part of our
motivation for studying the advection-enhanced diffusion comes from the ap-
plications to quenching in reaction-diffusion equations (see e.g. [4], [12], [27],
[34], citeZ), which we discuss in Section 7. For these applications, one needs
estimates on the A-dependent L∞ norm decay at a fixed positive time, the
type of information the bound like (1.2) does not provide. We are aware of
only one case where enhanced relaxation estimates of this kind are available. It
is the recent work of Fannjiang, Nonnemacher and Wolowski [10], [11], where
such estimates are provided in the discrete setting (see also [22] for some re-
lated earlier references). In these papers a unitary evolution step (a certain
measure-preserving map on the torus) alternates with a dissipation step, which,
for example, acts simply by multiplying the Fourier coefficients by damping



4 P. CONSTANTIN, A. KISELEV, L. RYZHIK, AND A. ZLATOŠ

factors. The absence of sufficiently regular eigenfunctions appears as a key for
the lack of enhanced relaxation in this particular class of dynamical systems.
In [10], [11], the authors also provide finer estimates of the dissipation time
for particular classes of toral automorphisms (that is, they estimate how many
steps are needed to reduce the L2 norm of the solution by a factor of two if
the diffusion strength is ε).

Our main goal in this paper is to provide a sharp characterization of
incompressible flows that are relaxation enhancing, in a quite general setup.
We work directly with dynamical estimates, and do not discuss the spectral
gap. The following natural definition will be used in this paper as a measure
of the flow efficiency in improving the solution relaxation.

Definition 1.1. Let M be a smooth compact Riemannian manifold. The
incompressible flow u on M is called relaxation enhancing if for every τ > 0 and
δ > 0, there exist A(τ, δ) such that for any A > A(τ, δ) and any φ0 ∈ L2(M)
with ‖φ0‖L2(M) = 1,

(1.3) ‖φA(·, τ)− φ‖L2(M) < δ,

where φA(x, t) is the solution of (1.1) and φ the average of φ0.

Remarks. 1. In Theorem 5.5 we show that the choice of the L2 norm
in the definition is not essential and can be replaced by any Lp-norm with
1 ≤ p ≤ ∞.

2. It follows from the proofs of our main results that the relaxation-en-
hancing class is not changed even when we allow the flow strength that ensures
(1.3) to depend on φ0, that is, if we require (1.3) to hold for all φ0 ∈ L2(M)
with ‖φ0‖L2(M) = 1 and all A > A(τ, δ, φ0).

Our first result is as follows.

Theorem 1.2. Let M be a smooth compact Riemannian manifold. A
Lipschitz continuous incompressible flow u ∈ Lip(M) is relaxation-enhancing
if and only if the operator u · ∇ has no eigenfunctions in H1(M), other than
the constant function.

Any incompressible flow u ∈ Lip(M) generates a unitary evolution group
U t on L2(M), defined by U tf(x) = f(Φ−t(x)). Here Φt(x) is a measure-preserv-
ing transformation associated with the flow, defined by d

dtΦt(x) = u(Φt(x)),
Φ0(x) = x. Recall that a flow u is called weakly mixing if the corresponding op-
erator U has only continuous spectrum. The weakly mixing flows are ergodic,
but not necessarily mixing (see e.g. [5]). There exist fairly explicit examples of
weakly mixing flows [1], [13], [14], [28], [35], [33], some of which we will discuss
in Section 6. A direct consequence of Theorem 1.2 is the following corollary.
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Corollary 1.3. Any weakly mixing incompressible flow u ∈ Lip(M) is
relaxation enhancing.

Theorem 1.2, as we will see in Section 5, in its turn follows from a quite
general abstract criterion, which we are now going to describe. Let Γ be
a self-adjoint, positive, unbounded operator with a discrete spectrum on a
separable Hilbert space H. Let 0 < λ1 ≤ λ2 ≤ . . . be the eigenvalues of Γ,

and ej the corresponding orthonormal eigenvectors forming a basis in H. The
(homogeneous) Sobolev space Hm(Γ) associated with Γ is formed by all vectors
ψ =

∑
j cjej such that

‖ψ‖2
Hm(Γ) ≡

∑

j

λm
j |cj |2 < ∞.

Note that H2(Γ) is the domain D(Γ) of Γ. Let L be a self-adjoint operator
such that, for any ψ ∈ H1(Γ) and t > 0,

(1.4) ‖Lψ‖H ≤ C‖ψ‖H1(Γ) and ‖eiLtψ‖H1(Γ) ≤ B(t)‖ψ‖H1(Γ)

with both the constant C and the function B(t) < ∞ independent of ψ and
B(t) ∈ L2

loc(0,∞). Here eiLt is the unitary evolution group generated by the
self-adjoint operator L. One might ask whether one of the two conditions in
(1.4) does not imply the other. We show at the end of Section 2, by means of
an example, that this is not the case in general.

Consider a solution φA(t) of the Bochner differential equation

(1.5)
d

dt
φA(t) = iALφA(t)− ΓφA(t), φA(0) = φ0.

Theorem 1.4. Let Γ be a self-adjoint, positive, unbounded operator with
a discrete spectrum and let a self-adjoint operator L satisfy conditions (1.4).
Then the following two statements are equivalent :

• For any τ, δ > 0 there exists A(τ, δ) such that for any A > A(τ, δ) and
any φ0 ∈ H with ‖φ0‖H = 1, the solution φA(t) of the equation (1.5)
satisfies ‖φA(τ)‖2

H < δ.

• The operator L has no eigenvectors lying in H1(Γ).

Remark. Here L corresponds to iu · ∇ (or, to be precise, a self-adjoint
operator generating the unitary evolution group U t which is equal to iu · ∇
on H1(M)), and Γ to −∆ in Theorem 1.2, with H ⊂ L2(M) the subspace of
mean zero functions.

Theorem 1.4 provides a sharp answer to the general question of when a
combination of fast unitary evolution and dissipation produces a significantly
stronger dissipative effect than dissipation alone. It can be useful in any model
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describing a physical situation which involves fast unitary dynamics with dis-
sipation (or, equivalently, unitary dynamics with weak dissipation). We prove
Theorem 1.4 in Section 3. The proof uses ideas from quantum dynamics, in
particularly the RAGE theorem (see e.g., [6]) describing evolution of a quantum
state belonging to the continuous spectral subspace of a self-adjoint operator.

A natural concern is the consistency of the existence of rough eigenvec-
tors of L and condition (1.4) which says that the dynamics corresponding to
L preserves H1(Γ). In Section 4 we establish this consistency by providing ex-
amples where rough eigenfunctions exist yet (1.4) holds. One of them involves
a discrete version of the celebrated Wigner-von Neumann construction of an
imbedded eigenvalue of a Schrödinger operator [32]. Moreover, in Section 6
we describe an example of a smooth flow on the two dimensional torus T2

with discrete spectrum and rough (not H1(T2)) eigenfunctions – this example
essentially goes back to Kolmogorov [28]. Thus, the result of Theorem 1.4 is
precise.

In Section 7, we discuss the application of Theorem 1.2 to quenching for
reaction-diffusion equations on compact manifolds and domains. This corre-
sponds to adding a non-negative reaction term f(T ) on the right-hand side of
(1.1), with f(0) = f(1) = 0. Then the long-term dynamics can lead to two
outcomes: φA → 1 at every point (complete combustion), or φA → c < 1
(quenching). The latter case is only possible if f is of the ignition type; that
is, there exists θ0 such that f(T ) = 0 for T ≤ θ0, and c ≤ θ0. The question is
then how the presence of strong fluid flow may aid the quenching process. We
note that quenching/front propagation in infinite domains is also of consider-
able interest. Theorem 1.2 has applications in that setting as well, but they
will be considered elsewhere.

2. Preliminaries

In this section we collect some elementary facts and estimates for the
equation (1.5). Henceforth we are going to denote the standard norm in the
Hilbert space H by ‖ · ‖, the inner product in H by 〈·, ·〉, the Sobolev spaces
Hm(Γ) simply by Hm and norms in these Sobolev spaces by ‖ · ‖m. We have
the following existence and uniqueness theorem.

Theorem 2.1. Assume that for any ψ ∈ H1,

(2.1) ‖Lψ‖ ≤ C‖ψ‖1.

Then for any T > 0, there exists a unique solution φ(t) of the equation

φ′(t) = (iL− Γ)φ(t), φ(0) = φ0 ∈ H1.

This solution satisfies

(2.2) φ(t) ∈ L2([0, T ],H2) ∩ C([0, T ],H1), φ′(t) ∈ L2([0, T ], H).
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Remarks. 1. The proof of Theorem 2.1 is standard, and can proceed by
construction of a weak solution using Galerkin approximations and then estab-
lishing uniqueness and regularity. We refer, for example, to Evans [8] where
the construction is carried out for parabolic PDEs but, given the assumption
(2.1), can be applied verbatim in the general case.

2. The existence theorem is also valid for initial data φ0 ∈ H, but the
solution has rougher properties at intervals containing t = 0, namely

(2.3) φ(t) ∈ L2([0, T ],H1) ∩ C([0, T ],H), φ′(t) ∈ L2([0, T ],H−1).

The existence of a rougher solution can also be derived from the general semi-
group theory, by checking that iL−Γ satisfies the conditions of the Hille-Yosida
theorem and thus generates a strongly continuous contraction semigroup in H

(see, e.g. [7]).

Next we establish a few properties that are more specific to our particular
problem. It will be more convenient for us, in terms of notation, to work with
an equivalent reformulation of (1.5), by setting ε = A−1 and rescaling time by
the factor ε−1, thus arriving at the equation

(2.4) (φε)′(t) = (iL− εΓ)φε(t), φε(0) = φ0.

Lemma 2.2. Assume (2.1); then for any initial data φ0 ∈ H, ‖φ0‖ = 1,
the solution φε(t) of (2.4) satisfies

(2.5) ε

∞∫

0

‖φε(t)‖2
1dt ≤ 1

2
.

Proof. Recall that if φ ∈ H1(Γ), then Γφ ∈ H−1(Γ) and 〈Γφ, φ〉 = ‖φ‖2
1.

The regularity conditions (2.2)-(2.3) and the fact that L is self-adjoint allow
us to compute

(2.6)
d

dt
‖φε‖2 = 〈φε, φε

t〉+ 〈φε
t, φ

ε〉 = −2ε‖φε‖2
1.

Integrating in time and taking into account the normalization of φ0, we obtain
(2.5).

An immediate consequence of (2.6) is the following result, that we state
here as a separate lemma for convenience.

Lemma 2.3. Suppose that for all times t ∈ (a, b) we have ‖φε(t)‖2
1 ≥

N‖φε(t)‖2. Then the following decay estimate holds:

‖φε(b)‖2 ≤ e−2εN(b−a)‖φε(a)‖2.

Next we need an estimate on the growth of the difference between solutions
corresponding to ε > 0 and ε = 0 in the H-norm.
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Lemma 2.4. Assume, in addition to (2.1), that for any ψ ∈ H1 and t > 0,

(2.7) ‖eiLtψ‖1 ≤ B(t)‖ψ‖1

for some B(t) ∈ L2
loc[0,∞). Let φ0(t), φε(t) be solutions of

(φ0)′(t) = iLφ0(t), (φε)′(t) = (iL− εΓ)φε(t),

satisfying φ0(0) = φε(0) = φ0 ∈ H1. Then

(2.8)
d

dt
‖φε(t)− φ0(t)‖2 ≤ 1

2
ε‖φ0(t)‖2

1 ≤
1
2
εB2(t)‖φ0‖2

1.

Remark. Note that φ0(t) = eiLtφ0 by definition. Assumption (2.7) says
that this unitary evolution is bounded in the H1(Γ) norm.

Proof. The regularity guaranteed by conditions (2.1), (2.7) and Theo-
rem 2.1 allows us to multiply the equation

(φε − φ0)′ = iL(φε − φ0)− εΓφε

by φε − φ0. We obtain

d

dt
‖φε − φ0‖2 ≤ 2ε(‖φε‖1‖φ0‖1 − ‖φε‖2

1) ≤
1
2
ε‖φ0‖2

1,

which is the first inequality in (2.8). The second inequality follows simply from
assumption (2.7).

The following corollary is immediate.

Corollary 2.5. Assume that (2.1) and (2.7) are satisfied, and the initial
data φ0 ∈ H1. Then the solutions φε(t) and φ0(t) defined in Lemma 2.4 satisfy

‖φε(t)− φ0(t)‖2 ≤ 1
2
ε‖φ0‖2

1

∫ τ

0
B2(t) dt

for any time t ≤ τ.

Finally, we observe that conditions (2.1) and (2.7) are independent. Tak-
ing L = Γ shows that (2.7) does not imply (2.1), because in this case the
evolution eiLt is unitary on H1 but the domain of L is H2 ( H1. On the other
hand, (2.1) does not imply (2.7), as is the case in the following example. Let
H ≡ L2(0, 1), define the operator Γ by Γf(x) ≡ ∑

n en2
f̂(n)e2πinx for all f ∈ H

such that en2
f̂(n) ∈ `2(Z), and take Lf(x) ≡ xf(x). Then L is bounded on H

and so (2.1) holds automatically, but
[
eitLf

]
(x) = f(x)eitx

so that e2πiLe2πinx = e2πi(n+1)x. It follows that e2πiL is not bounded on H1

(and neither is eiLt for any t 6= 0).
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3. The abstract criterion

One direction in the proof of Theorem 1.4 is much easier. We start by
proving this easy direction: that existence of H1(Γ) eigenvectors of L ensures
existence of τ, δ > 0 and φ0 with ‖φ0‖ = 1 such that ‖φA(τ)‖ > δ for all
A – that is, if such eigenvectors exist, then the operator L is not relaxation
enhancing.

Proof of the first part of Theorem 1.4. Assume that the initial datum
φ0 ∈ H1 for (1.5) is an eigenvector of L corresponding to an eigenvalue E,
normalized so that ‖φ0‖ = 1. Take the inner product of (1.5) with φ0. We
arrive at

d

dt
〈φA(t), φ0〉 = iAE〈φA(t), φ0〉 − 〈ΓφA(t), φ0〉.

This and the assumption φ0 ∈ H1 lead to

∣∣∣∣
d

dt

(
e−iAEt〈φA(t), φ0〉

)∣∣∣∣ ≤
1
2

(‖φA(t)‖2
1 + ‖φ0‖2

1

)
.

Note that the value of the expression being differentiated on the left-hand
side is equal to one at t = 0. By Lemma 2.2 (with a simple time rescaling)
we have

∫∞
0 ‖φA(t)‖2

1 dt ≤ 1/2. Therefore, for t ≤ τ = (2‖φ0‖2
1)
−1 we have

|〈φA(t), φ0〉| ≥ 1/2. Thus, ‖φA(τ)‖ ≥ 1/2, uniformly in A.

Note also that we have proved that in the presence of an H1 eigenvector
of L, enhanced relaxation does not happen for some φ0 even if we allow A(τ, δ)
to be φ0-dependent as well. This explains Remark 2 after Definition 1.1.

The proof of the converse is more subtle, and will require some prepara-
tion. We switch to the equivalent formulation (2.4). We need to show that if
L has no H1 eigenvectors, then for all τ, δ > 0 there exists ε0(τ, δ) > 0 such
that if ε < ε0, then ‖φε(τ/ε)‖ < δ whenever ‖φ0‖ = 1. The main idea of
the proof can be naively described as follows. If the operator L has purely
continuous spectrum or its eigenfunctions are rough then the H1-norm of the
free evolution (with ε = 0) is large most of the time. However, the mechanism
of this effect is quite different for the continuous and point spectra. On the
other hand, we will use Corollary 2.5 to show that for small ε the full evolution
is close to the free evolution for a sufficiently long time. This clearly leads to
dissipation enhancement.

The first ingredient that we need to recall is the so-called RAGE theorem.

Theorem 3.1 (RAGE). Let L be a self-adjoint operator in a Hilbert
space H. Let Pc be the spectral projection on its continuous spectral subspace.
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Let C be any compact operator. Then for any φ0 ∈ H,

lim
T→∞

1
T

T∫

0

‖CeiLtPcφ0‖2 dt = 0.

Clearly, the result can be equivalently stated for a unitary operator U ,
replacing eiLt with U t. The proof of the RAGE theorem can be found, for
example, in [6].

A direct consequence of the RAGE theorem is the following lemma. Recall
that we denote by 0 < λ1 ≤ λ2 ≤ . . . the eigenvalues of the operator Γ
and by e1, e2, . . . the corresponding orthonormal eigenvectors. Let us also
denote by PN the orthogonal projection on the subspace spanned by the first
N eigenvectors e1, . . . , eN and by S = {φ ∈ H : ‖φ‖ = 1} the unit sphere
in H. The following lemma shows that if the initial data lie in the continuous
spectrum of L then the L-evolution will spend most of its time in the higher
modes of Γ.

Lemma 3.2. Let K ⊂ S be a compact set. For any N, σ > 0, there exists
Tc(N,σ,K) such that for all T ≥ Tc(N,σ,K) and any φ ∈ K,

(3.1)
1
T

T∫

0

‖PNeiLtPcφ‖2 dt ≤ σ.

Remark. The key observation of Lemma 3.2 is that the time Tc(N, σ,K)
is uniform for all φ ∈ K.

Proof. Since PN is compact, we see that for any vector φ ∈ S, there
exists a time Tc(N, σ, φ) that depends on the function φ such that (3.1) holds
for T > Tc(N, σ, φ) – this is assured by Theorem 3.1. To prove the uniformity
in φ, note that the function

f(T, φ) =
1
T

T∫

0

‖PNeiLtPcφ‖2 dt

is uniformly continuous on S for all T (with constants independent of T ):

|f(T, φ)− f(T, ψ)|

≤ 1
T

T∫

0

∣∣‖PNeiLtPcφ‖ − ‖PNeiLtPcψ‖
∣∣ (‖PNeiLtPcφ‖+ ‖PNeiLtPcψ‖

)
dt

≤ (‖φ‖+ ‖ψ‖) 1
T

T∫

0

‖PNeiLtPc(φ− ψ)‖dt ≤ 2‖φ− ψ‖.
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Now, existence of a uniform Tc(N,σ,K) follows from compactness of K by
standard arguments.

We also need a lemma which controls from below the growth of the H1

norm of free solutions corresponding to rough eigenfunctions. We denote by
Pp the spectral projection on the pure point spectrum of the operator L.

Lemma 3.3. Assume that not a single eigenvector of the operator L be-
longs to H1(Γ). Let K ⊂ S be a compact set. Consider the set K1 ≡
{φ ∈ K | ‖Ppφ‖ ≥ 1/2}. Then for any B > 0 we can find Np(B, K) and
Tp(B,K) such that for any N ≥ Np(B, K), any T ≥ Tp(B, K) and any φ ∈ K1,

(3.2)
1
T

T∫

0

‖PNeiLtPpφ‖2
1 dt ≥ B.

Remark. Note that unlike (3.1), we have the H1 norm in (3.2).

Proof. The set K1 may be empty, in which case there is nothing to prove.
Otherwise, denote by Ej the eigenvalues of L (distinct, without repetitions) and
by Qj the orthogonal projection on the space spanned by the eigenfunctions
corresponding to Ej . First, let us show that for any B > 0 there is N(B, K)
such that for any φ ∈ K1,

(3.3)
∑

j

‖PNQjφ‖2
1 ≥ 2B

if N ≥ N(B, K). It is clear that for each fixed φ with Ppφ 6= 0 we can find
N(B,φ) so that (3.3) holds, since by assumption Qjφ does not belong to H1

whenever Qjφ 6= 0. Assume that N(B,K) cannot be chosen uniformly for
φ ∈ K1. This means that for any n, there exists φn ∈ K1 such that

∑

j

‖PnQjφn‖2
1 < 2B.

Since K1 is compact, we can find a subsequence nl such that φnl
converges to

φ̃ ∈ K1 in H as nl →∞. For any N and any nl1 > N we have
∑

j

‖PNQjφ̃‖2
1 ≤

∑

j

‖Pnl1
Qjφ̃‖2

1 ≤ lim inf
l→∞

∑

j

‖Pnl1
Qjφnl

‖2
1.

The last inequality follows by Fatou’s lemma from the convergence of φnl
to

φ̃ in H and the fact that ‖Pnl1
Qjψ‖1 ≤ λ

1/2
nl1
‖ψ‖ for any nl1 . But now the

expression on the right-hand side is less than or equal to

lim inf
l→∞

∑

j

‖Pnl
Qjφnl

‖2
1 ≤ 2B.

Thus
∑
j
‖PNQjφ̃‖2

1 ≤ 2B for any N, a contradiction since φ̃ ∈ K1.
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Next, take φ ∈ K1 and consider

(3.4)
1
T

T∫

0

‖PNeiLtPpφ‖2
1 dt =

∑

j,l

ei(Ej−El)T − 1
i(Ej −El)T

〈ΓPNQjφ, PNQlφ〉.

In (3.4), we set (ei(Ej−El)T − 1)/i(Ej −El)T ≡ 1 if j = l. Notice that the sum
above converges absolutely. Indeed, PNQjφ =

∑N
i=1〈Qjφ, ei〉ei, and 〈Γei, ek〉 =

λiδik; therefore

〈ΓPNQjφ, PNQlφ〉 =
N∑

i=1

λi〈Qjφ, ei〉〈Qlφ, ei〉

and further, the sum on the right-hand side of (3.4) does not exceed

N∑

i=1

λi

∑

j,l

|〈Qjφ, ei〉〈Qlφ, ei〉|(3.5)

≤ λN

N∑

i=1

∑

j,l

‖Qjφ‖‖Qlφ‖|〈Qjφ/‖Qjφ‖, ei〉〈Qlφ/‖Qlφ‖, ei〉|

≤ λN

N∑

i=1

∑

j,l

‖Qlφ‖2|〈Qjφ/‖Qjφ‖, ei〉|2 ≤ λNN,

with the second step obtained from the Cauchy-Schwartz inequality, and the
third by ‖φ‖ = ‖ei‖ = 1. Then for each fixed N, we have by the dominated con-
vergence theorem that the expression in (3.4) converges to

∑
j ‖Γ1/2PNQjφ‖2 =∑

j ‖PNQjφ‖2
1 as T → ∞. Now assume N ≥ Np(B,K) ≡ N(B, K), so that

(3.3) holds. We claim that we can choose Tp(B,K) so that for any T ≥
Tp(B,K) we have

(3.6)

∣∣∣∣∣∣
1
T

∫ T

0
‖PNeiLtPpφ‖2

1 dt−
∑

j

‖PNQjφ‖2
1

∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑

l 6=j

ei(Ej−El)T − 1
i(Ej −El)T

〈ΓPNQjφ, PNQlφ〉
∣∣∣∣∣∣
≤ B

for all φ ∈ K1. Indeed, this follows from convergence to zero for each individual
φ as T →∞, compactness of K1, and uniform continuity of the expression in
the middle of (3.6) in φ for each T (with constants independent of T ). The
latter is proved by estimating the difference of these expressions for φ, ψ ∈ K1

and any T by
∑

l 6=j

|〈ΓPNQjφ, PNQl(φ− ψ)〉|+ |〈ΓPNQj(φ− ψ), PNQlψ〉|,
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which is then bounded by 2λNN‖φ − ψ‖ when we use the trick from (3.5).
Combining (3.3) and (3.6) proves the lemma.

We can now complete the proof of Theorem 1.4.

Proof of Theorem 1.4. Recall that given any τ, δ > 0, we need to show
the existence of ε0 > 0 such that if ε < ε0, then ‖φε(τ/ε)‖ < δ for any initial
datum φ0 ∈ H, ‖φ0‖ = 1. Here φε(t) is the solution of (2.4). Let us outline the
idea of the proof. Lemma 2.3 tells us that if the H1 norm of the solution φε(t)
is large, relaxation is happening quickly. If, on the other hand, ‖φε(τ0)‖2

1 ≤
λM‖φε(τ0)‖2, where M is to be chosen depending on τ, δ, then the set of all unit
vectors satisfying this inequality is compact, and so we can apply Lemma 3.2
and Lemma 3.3. Using these lemmas, we will show that even if the H1 norm
is small at some moment of time τ0, it will be large on the average in some
time interval after τ0. Enhanced relaxation will follow.

We now provide the details. Since Γ is an unbounded positive operator
with a discrete spectrum, we know that its eigenvalues λn → ∞ as n → ∞.

Let us choose M large enough, so that e−λMτ/80 < δ. Define the sets K ≡
{φ ∈ S | ‖φ‖2

1 ≤ λM} ⊂ S and as before, K1 ≡ {φ ∈ K | ‖Ppφ‖ ≥ 1/2}. It is
easy to see that K is compact. Choose N so that N ≥ M and N ≥ Np(5λM ,K)
from Lemma 3.3. Define

τ1 ≡ max
{

Tp(5λM ,K), Tc(N, λM

20λN
,K)

}
,

where Tp is from Lemma 3.3, and Tc from Lemma 3.2. Finally, choose ε0 > 0
so that τ1 < τ/2ε0, and

(3.7) ε0

τ1∫

0

B2(t) dt ≤ 1
20λN

,

where B(t) is the function from condition (2.7).
Take any ε < ε0. If we have ‖φε(s)‖2

1 ≥ λM‖φε(s)‖2 for all s ∈ [0, τ ] then
Lemma 2.3 implies that ‖φε(τ/ε)‖ ≤ e−2λMτ ≤ δ by the choice of M and we
are done. Otherwise, let τ0 be the first time in the interval [0, τ/ε] such that
‖φε(τ0)‖2

1 ≤ λM‖φε(τ0)‖2 (it may be that τ0 = 0, of course). We claim that the
following estimate holds for the decay of ‖φε(t)‖ on the interval [τ0, τ0 + τ1]:

(3.8) ‖φε(τ0 + τ1)‖2 ≤ e−λM ετ1/20‖φε(τ0)‖2.

For the sake of transparency, henceforth we will denote φε(τ0) = φ0. On
the interval [τ0, τ0+τ1], consider the function φ0(t) satisfying d

dtφ
0(t) = iLφ0(t),

φ0(τ0) = φ0. Note that by the choice of ε0, (3.7) and Corollary 2.5, we have

(3.9) ‖φε(t)− φ0(t)‖2 ≤ λM

40λN
‖φ0‖2
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for all t ∈ [τ0, τ0 + τ1]. Split φ0(t) = φc(t)+φp(t), where φc,p also solve the free
equation d

dtφc,p(t) = iLφc,p(t), but with initial data Pcφ0 and Ppφ0 at t = τ0,

respectively. We will now consider two cases.

Case I. Assume that ‖Pcφ0‖2 ≥ 3
4‖φ0‖2, or, equivalently, ‖Ppφ0‖2 ≤

1
4‖φ0‖2. Note that since φ0/‖φ0‖ ∈ K by the hypothesis, we can apply
Lemma 3.2. Our choice of τ1 implies

(3.10)
1
τ1

τ0+τ1∫

τ0

‖PNφc(t)‖2 dt ≤ λM

20λN
‖φ0‖2.

By elementary considerations,

‖(I − PN )φ0(t)‖2≥ 1
2
‖(I − PN )φc(t)‖2 − ‖(I − PN )φp(t)‖2

≥ 1
2
‖φc(t)‖2 − 1

2
‖PNφc(t)‖2 − ‖φp(t)‖2.

Taking into account the fact that the free evolution eiLt is unitary, λN ≥ λM ,
and our assumptions on ‖Pc,pφ0‖ and (3.10), we obtain

(3.11)
1
τ1

τ0+τ1∫

τ0

‖(I − PN )φ0(t)‖2 dt ≥ 1
10
‖φ0‖2.

Using (3.9), we conclude that

(3.12)
1
τ1

τ0+τ1∫

τ0

‖(I − PN )φε(t)‖2 dt ≥ 1
40
‖φ0‖2.

This estimate implies

(3.13)

τ0+τ1∫

τ0

‖φε(t)‖2
1 dt ≥ λNτ1

40
‖φ0‖2.

Combining (3.13) with (2.6) yields

(3.14) ‖φε(τ0 + τ1)‖2 ≤
(

1− λN ετ1

20

)
‖φε(τ0)‖2 ≤ e−λN ετ1/20‖φε(τ0)‖2.

This finishes the proof of (3.8) in the first case since λN ≥ λM .

Case II. Now suppose that ‖Ppφ0‖2 ≥ 1
4‖φ0‖2. In this case φ0/‖φ0‖ ∈ K1,

and we can apply Lemma 3.3. In particular, by the choice of N and τ1,

(3.15)
1
τ1

τ0+τ1∫

τ0

‖PNφp(t)‖2
1 dt ≥ 5λM‖φ0‖2.
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Since (3.10) still holds because of our choice of τ0 and τ1, it follows that

(3.16)
1
τ1

τ0+τ1∫

τ0

‖PNφc(t)‖2
1 dt ≤ λM

20
‖φ0‖2.

Note that the H-norm in (3.10) has been replaced in (3.16) by the H1-norm
at the expense of the factor of λN . Together, (3.15) and (3.16) imply

(3.17)
1
τ1

τ0+τ1∫

τ0

‖PNφ0(t)‖2
1 dt ≥ 2λM‖φ0‖2.

Finally, (3.17) and (3.9) give

(3.18)

τ0+τ1∫

τ0

‖PNφε(t)‖2
1 dt ≥ λMτ1

2
‖φ0‖2

since ‖PNφε − PNφ0‖2
1 ≤ λN‖φε − φ0‖2. As before, (3.18) implies

(3.19) ‖φε(τ0 + τ1)‖2 ≤ e−λM ετ1‖φε(τ0)‖2,

which finishes the proof of (3.8) in the second case.
Summarizing, we see that if ‖φε(τ0)‖2

1 ≤ λM‖φε(τ0)‖2, then

(3.20) ‖φε(τ0 + τ1)‖2 ≤ e−λM ετ1/20‖φε(τ0)‖2.

On the other hand, for any interval I = [a, b] such that ‖φε(t)‖2
1 ≥ λM‖φε(t)‖2

on I, we have by Lemma 2.3 that

(3.21) ‖φε(b)‖2 ≤ e−2λM ε(b−a)‖φε(a)‖2.

Combining all the decay factors gained from (3.20) and (3.21), and using τ1 <

τ/2ε, we find that there is τ2 ∈ [τ/2ε, τ/ε] such that

‖φε(τ2)‖2 ≤ e−λM ετ2/20 ≤ e−λMτ/40 < δ2

by our choice of M. Then (2.6) gives ‖φε(τ/ε)‖ ≤ ‖φε(τ2)‖ < δ, which finishes
the proof of Theorem 1.4.

4. Examples with rough eigenvectors

It is not immediately obvious that condition (2.7), ‖eiLtφ‖1 ≤ B(t)‖φ‖1

for any φ0 ∈ H1, is consistent with the existence of eigenvectors of L which
are not in H1. The purpose of this section is to show that, in general, rough
eigenvectors may indeed be present under the conditions of Theorem 1.4. We
provide here two simple examples of operators Γ and L in which (2.7) is sat-
isfied and L has only rough eigenfunctions. In both cases L will be a discrete
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Schrödinger operator on Z+ resp., more generally, a Jacobi matrix, and Γ a
multiplication operator. One more example with rough eigenfunctions will deal
with an actual fluid flow and will be discussed in Section 6.

The first is an explicit example with one rough eigenvector that is a dis-
crete version of the celebrated Wigner-von Neumann construction [32] of an
imbedded eigenvalue of a Schrödinger operator with a decaying potential. The
second example is implicit, its existence being guaranteed by a result of Killip
and Simon [25], and demonstrates that all eigenvectors of L can be rough while
at the same time the eigenvalues can be dense in the spectrum of L.

Example 1. Let Γ̃ be the operator of multiplication by n on l2(Z+),
Z+ = {1, 2, . . . , }. Furthermore, let L̃ be the discrete Schrödinger operator on
l2(Z+):

L̃un = un+1 + un−1 + vnun

for n ≥ 1, with the potential

vn ≡





− 2
n+2 n even,
2

n−1 n > 1 odd,

−1 n = 1,

and the self-adjoint boundary condition u0 ≡ 0. Then L̃ has eigenvalue zero
with eigenfunction u given by

u2n−1 = u2n = (−1)n

n

for n ≥ 1, because then L̃u ≡ 0 and u ∈ `2(Z+). Note that u does not belong
to H1(Γ̃).

It is not difficult to show that L̃ has no more eigenvalues in its essential
spectrum [−2, 2] (for example, using the so-called EFGP transform, see [26]
for more details). The eigenvalue zero is a consequence of a resonant structure
of the potential which is tuned to this energy. There may be (and there are)
other eigenvalues outside [−2, 2], with eigenfunctions that are exponentially
decaying and so do belong to H1(Γ̃). It is also known that L̃ has no singular
continuous spectrum and that it has absolutely continuous spectrum that fills
[−2, 2]. More precisely, the absolutely continuous part of the spectral measure
gives positive weight to any set of positive Lebesgue measure lying in [−2, 2]
(see, e.g., [25]).

To get an example where we have only rough eigenfunctions, we will
project away the eigenfunctions lying in H1. Namely, denote by D the subspace
spanned by all eigenfunctions of L̃, with the exception of u. Denote P the pro-
jection on the orthogonal complement of D, and set Γ = P Γ̃P, L = PL̃P. Then
Γ, L are self-adjoint on the infinite dimensional Hilbert space H = Pl2(Z+),
and by construction L has absolutely continuous spectrum filling [−2, 2] as well
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as a single eigenvalue equal to zero. The corresponding eigenfunction is u and
it does not belong to H1(Γ) because

〈Γu, u〉 = 〈P Γ̃Pu, u〉 = 〈Γ̃u, u〉 ≥
∑

n

|n|(n−1)2 = ∞.

Let us check the conditions of Theorem 1.4. First, Γ is positive because
Γ̃ is. It is also unbounded and has a discrete spectrum. Indeed, let HR ⊂ H

be the subspace of all vectors φ ∈ H such that

(4.1) 〈Γφ, φ〉 ≤ R〈φ, φ〉.
Then for each such φ we also have (4.1) with Γ̃ instead of Γ. By the minimax
principle for self-adjoint operators this implies that λn ≥ λ̃n = n, where λn,

λ̃n are the n-th eigenvalues of Γ and Γ̃, respectively (counting multiplicities).
Also, L is a bounded operator on H (since L̃ is) and so (2.1) is satisfied

automatically. Finally, observe that for any φ ∈ H1(Γ),

(4.2) |〈ΓLφ, φ〉| = |〈P Γ̃PL̃Pφ, φ〉| = |〈Γ̃L̃φ, φ〉| ≤ C‖φ‖2
1.

The second equality in (4.2) follows from the fact that L̃ and P commute
by construction and Pφ = φ for φ ∈ H. The inequality in (4.2) holds since
‖L̃φ‖1 ≤ C‖φ‖1, which follows from the fact that L̃ is tridiagonal and both
λ̃n+1/λ̃n and vn are bounded. Now given φ ∈ H1(Γ), set φ(t) = eiLtφ. Then

∣∣∣∣
d

dt
‖φ(t)‖2

1

∣∣∣∣ ≤ 2|〈ΓLφ(t), φ(t)〉| ≤ C‖φ(t)‖2
1

by (4.2). This a priori estimate and Gronwall’s lemma allow one to conclude
that (2.7) holds with B(t) = eCt/2. This concludes our first example.

Example 2. We let H ≡ `2(Z+) and define Γ to be the multiplication by
en. In order to provide an example with a much richer set of rough eigenfunc-
tions, we will now consider L to be a Jacobi matrix

Lun = anun+1 + an−1un−1 + vnun,

with an > 0, vn ∈ R and boundary condition u0 ≡ 0. We choose ν to be a pure
point measure of total mass 1

2 , whose mass points are contained and dense
in (−2, 2), and define the probability measure dµ(x) ≡ dν(x) + 1

8χ[−2,2](x)dx.
By the Killip-Simon [25] characterization of spectral measures of Jacobi ma-
trices that are Hilbert-Schmidt perturbations of the free half-line Schrödinger
operator (with an = 1, vn = 0), there is a unique Jacobi matrix L such that
an−1, vn ∈ `2(Z+), and its spectral measure is µ. In particular, the eigenvalues
of L are dense in its spectrum σ(L) = [−2, 2].

The conditions of Theorem 1.4 are again satisfied, with the key estimate
‖Lφ‖1 ≤ C‖φ‖1 holding because λn+1/λn, an, vn are bounded. Moreover, it is
easy to show (see below) that the fact that eigenvalues of L are inside (−2, 2)
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and an − 1, vn ∈ `2 imply that eigenfunctions of L decay slower than e−C
√

n

for some C. More precisely, if u is an eigenfunction of L, then

lim
n

(u2
n + u2

n−1)e
C
√

n = ∞,

and so obviously u /∈ H1(Γ) (actually, u /∈ Hs(Γ) for any s > 0).
To obtain the well-known bound on the eigenfunction decay, let u be an

eigenfunction of L corresponding to eigenvalue E ∈ (−2, 2); that is,

(4.3) Eun = anun+1 + an−1un−1 + vnun

for n ≥ 1. Define the square of the Prüfer amplitude of u by

Rn ≡ u2
n + u2

n−1 −Eunun−1 =
2− |E|

2
(u2

n + u2
n−1) +

|E|
2

(un − un−1)2 > 0

and cn ≡ |an − 1| + |an−1 − 1| + |vn| ∈ `2. After expressing un+1 in terms of
un and un−1 using (4.3), one obtains (with each |O(cn)| ≤ CEcn)

Rn+1

Rn
= (1 + O(cn))

·
2−|E|

2 ((1 + O(cn))u2
n + (1 + O(cn))u2

n−1) + |E|
2 (1 + O(cn))(un − un−1)2

2−|E|
2 (u2

n + u2
n−1) + |E|

2 (un − un−1)2

if E 6= 0 and

Rn+1

Rn
= (1 + O(cn))

(1 + O(cn))u2
n + (1 + O(cn))u2

n−1 + O(cn)unun−1

u2
n + u2

n−1

if E = 0. In either case, Rn+1/Rn = 1 + O(cn), which means that

Rn ≥ Rn0

n∏

k=n0+1

(1− CEck)≥Rn0 exp(−2CE

n∑

k=n0+1

ck)

≥Rn0 exp(−2CE‖ck‖2

√
n)

if n0 is chosen so that CEck < 1
2 for k > n0. But then the definition of Rn

shows that limn(u2
n + u2

n−1)e
C
√

n = ∞ for some C < ∞. This concludes the
example.

We have thus proved

Theorem 4.1. There exist a self-adjoint, positive, unbounded operator Γ
with a discrete spectrum and a self-adjoint operator L such that the following
conditions are satisfied.

• ‖Lφ‖ ≤ C‖φ‖1 and ‖eiLtφ‖1 ≤ B(t)‖φ‖1 for some C < ∞, B(t) ∈
L1

loc[0,∞) and any φ ∈ H1(Γ);

• L has eigenvectors but not a single one belongs to Hs(Γ) for any s > 0.
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Later we will discuss examples of relaxation enhancing flows on manifolds.
One of our examples is derived from a construction going back to Kolmogorov
[28], and yields a smooth flow with discrete spectrum and rough eigenfunctions.
This example is even more striking than the ones we discussed here since
the spectrum is discrete. However, the construction is more technical and is
postponed till Section 6.

5. The fluid flow theorem

In this section we discuss applications of the general criterion to various
situations involving diffusion in a fluid flow. First, we are going to prove
Theorem 1.2. Most of the results we need regarding the evolution generated
by incompressible flows are well-known and can be found, for example, in [30]
in the Euclidean space case. There are no essential changes in the more general
manifold setting.

Proof of Theorem 1.2. It is well known that the Laplace-Beltrami opera-
tor ∆ on a compact smooth Riemannian manifold is self-adjoint, nonpositive,
unbounded, and has a discrete spectrum (see e.g. [3]). Moreover, it is negative
when considered on the invariant subspace of mean zero L2 functions. Hence-
forth, this will be our Hilbert space: H ≡ L2(M)ª1. Obviously it is sufficient
to prove Theorem 1.2 for φ0 ∈ H (i.e., when φ = 0). The Lipschitz class
divergence-free vector field u generates a volume measure-preserving transfor-
mation Φt(x), defined by

(5.1)
d

dt
Φt(x) = u(Φt(x)), Φ0(x) = x

(see, e.g. [30]). The existence and uniqueness of solutions to the system (5.1)
follows from the well-known theorems on existence and uniqueness of solutions
to first order systems of ODEs involving Lipschitz class functions. With this
transformation we can associate a unitary evolution group U t in L2(M) where
U tf(x) = f(Φ−t(x)). It is easy to see that H is an invariant subspace for this
group. The group U t corresponds to eiLt in the abstract setting of Section 3.
Since d

dt(U
tf) = −u · ∇(U tf) for all f ∈ H1(M) (the usual Sobolev space on

M), we see that the group’s self-adjoint generator, L, is defined by L = iu · ∇
on functions from H1(M). It is clear that condition (2.1) is satisfied, since
‖u · ∇f‖ ≤ C‖f‖1 for all f ∈ H1. It remains to check that the condition (2.7)
is satisfied, that is, ‖eiLtf‖1 ≤ B(t)‖f‖1. Notice that if u(x) is Lipschitz, so is
Φt(x) for any t. This follows from the estimate (in the local coordinates and
for a sufficiently small time t)

|Φt(x)− Φt(y)| ≤ |x− y|+
t∫

0

|u(Φs(x))− u(Φs(y)| ds.
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Applying Gronwall’s lemma, we get

|Φt(x)− Φt(y)| ≤ |x− y|e‖u‖Lipt

for any x, y. Now by the well-known results on change of variables in Sobolev
functions (see e.g. [37]) and by the fact that Φt is measure-preserving, we have
that

‖U tf‖1 ≤ C‖Φt‖Lip‖f‖1.

This is exactly (2.7), and the application of Theorem 1.4 finishes the proof.

The criterion of Theorem 1.4 can be applied to boundary value problems
as well. For the sake of simplicity, consider a bounded domain Ω ⊂ Rd with a
C2 boundary ∂Ω. Let u ∈ Lip(Ω) be a Lipschitz incompressible flow such that
its normal component is zero on the boundary: u(x) · n̂(x) = 0 for x ∈ ∂Ω,
with n̂(x) the outer normal at x. Let φA(x, t) be the solution of

∂tφ
A(x, t) + Au · ∇φA(x, t)−∆φA(x, t) = 0,(5.2)

φA(x, 0) = φ0(x),
∂φA

∂n
= 0 if x ∈ ∂Ω,

where the Neumann boundary condition is satisfied in the trace sense for almost
every t > 0. The existence of a solution to (5.2) can be proved similarly to
Theorem 2.1.

Theorem 5.1. In the Neumann boundary conditions setting, the flow u ∈
Lip(Ω) is relaxation-enhancing according to the Definition 1.1 if and only if the
operator u·∇ has no eigenfunctions in H1(Ω) other than the constant function.

Proof. The proof is essentially identical to that of Theorem 1.2. The
Laplacian operator with Neumann boundary conditions restricted to mean zero
functions plays a role of the self-adjoint operator Γ. The condition u · n̂ = 0
ensures that the vector field u generates a measure-preserving flow Φt(x) via
(5.1), and thus the corresponding evolution group is unitary. The estimates
necessary for Theorem 1.4 to apply are verified in the same way as in the proof
of Theorem 1.2.

To treat other types of boundary conditions, such as Dirichlet, one needs
to modify the relaxation enhancement definition. This is due to the fact that in
this case the solution of (1.1) always tends to zero, rather than to the average
of the initial datum.

Definition 5.2. Let φA(x, t) solve evolution equation (5.2), but with Dirich-
let or more general heat loss type boundary conditions

(5.3)
∂φA

∂n
(x, t) + σ(x)φA(x, t) = 0, x ∈ ∂Ω, σ(x) ∈ C(∂Ω), σ(x) > 0
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where n is the outer normal to ∂Ω. Then we call the divergence-free flow
u ∈ Lip(Ω) relaxation enhancing if for every τ and δ there exists A(τ, δ) such
that for A > A(τ, δ) and ‖φ0‖L2(Ω) = 1 we have ‖φA(x, τ)‖L2(Ω) < δ.

Remarks. 1. Note that σ(x) = ∞ is not excluded and may lead to the
Dirichlet boundary conditions on a part of the boundary.

2. The more general definition encompassing both Definitions 1.1 and
5.2 would assume that the solution tends to a certain limit and would define
relaxation enhancement in terms of speed-up in reaching this limit.

It is well known that the Laplace operator with boundary conditions (5.3)
is self-adjoint on the domain of H2(Ω) functions satisfying (5.3) in the trace
sense in L2(∂Ω). We denote this operator ∆σ. The corresponding H1

σ(Ω) space
is the domain of the quadratic form of ∆σ, consisting of all functions φ ∈ H1(Ω)
such that

∫
∂Ω σ(x)|φ(x)|2ds is finite. In the Dirichlet boundary condition case,

formally corresponding to σ(x) ≡ ∞, we obtain the standard space H1
0 (Ω).

Then we have

Theorem 5.3. In the case of the heat loss boundary condition (5.3), the
flow u ∈ Lip(Ω) satisfying u · n̂ = 0 on the boundary is relaxation enhancing
according to Definition 5.2 if and only if the operator u·∇ has no eigenfunctions
in H1

σ(Ω).

Proof. In the case of heat loss boundary conditions, it is well-known that
the principal eigenvalue of ∆σ is positive, and so we can set Γ = −∆σ. Our
space H is now equal to L2(Ω). The rest of the proof remains the same as in
Theorem 5.1.

We note that the case of Dirichlet boundary conditions has been treated in
[2] in a more general setting u ∈ L∞(Ω) and without the assumption u · n̂ = 0.

The methods of [2] are completely different from ours, and rely on the estimates
of the principal eigenvalue of −∆ + Au · ∇ and positivity of the corresponding
eigenfunction. In particular, as described in the introduction, these methods
do not seem to be directly applicable to the study of the enhanced relaxation
in the case of a compact manifold without boundary or Neumann boundary
conditions, where the principal eigenvalue is always zero. The results of [2]
show that in the Dirichlet boundary condition case, the flow u is relaxation
enhancing in the sense of Definition 5.2 if and only if u does not have a first
integral in H1

0 (Ω). In other words, if and only if the operator u·∇ does not have
an H1

0 (Ω) eigenfunction corresponding to the eigenvalue zero. The discrepancy
between this result and Theorem 5.3 may seem surprising, but in fact the
explanation is simple.
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Proposition 5.4. Let u ∈ Lip(Ω). If φ ∈ H1(Ω) (H1
σ(Ω)) is an eigen-

function of the operator u · ∇ corresponding to the eigenvalue iλ, then |φ| ∈
H1(Ω) (H1

σ(Ω)) and it is a first integral of u, that is, u · ∇|φ| = 0.

Proof. The fact that |φ| ∈ H1 follows from the well-known properties of
Sobolev functions (see e.g. [8]). A direct computation using u · ∇φ = iλφ then
verifies that u · ∇|φ| = 0.

As a consequence, when σ 6≡ 0, the condition of no H1
σ eigenfunctions

in the statement of Theorem 5.3 can be replaced by the condition of no first
integrals in H1

σ. In the settings of Theorems 1.2 and 5.1, the above argument
still applies but does not allow change of their statements. Indeed — on one
hand the operator u · ∇ always has eigenvalue zero with an eigenfunction that
is smooth, namely a constant. Existence of this first integral, however, tells us
nothing about relaxation enhancement. On the other hand, existence of mean
zero H1 eigenfunctions need not guarantee the existence of a mean zero first
integral, as can be seen in the following well-known example.

Example. Let M ≡ T d be the flat d-dimensional torus with period one.
Let α be a d dimensional constant vector generating irrational rotation on the
torus (that is, we assume that components of α are independent over the field of
rationals). It is well-known that the flow generated by the constant vector field
α is ergodic but not weakly mixing. The self-adjoint operator L = iα · ∇ has
eigenvalues 2πα · k, where k are all possible vectors with integer components.
The corresponding eigenfunctions are e−2πik·x, x ∈ T d. Their absolute value
is 1, which is a first integral of α, but there are no other first integrals. In
particular, every non-constant eigenfunction of L corresponds to a non-zero
eigenvalue. Thus, this flow is not relaxation enhancing even though it has no
first integrals other than a constant function.

Finally, we show that the L2 norm in the Definitions 1.1, 5.2 can be
replaced by other Lp norms with 1 ≤ p ≤ ∞ without any change to the
statements of Theorems 1.2, 5.1, 5.3. This result is important for applications
to quenching in reaction-diffusion equations.

Theorem 5.5. Theorems 1.2, 5.1, 5.3 remain true if, in Definitions 1.1,
5.2, “‖φ0‖L2 = 1” is replaced by “‖φ0‖Lp = 1” and “‖φA(τ)− φ̄‖L2 < δ” (resp.
“‖φA(τ)‖L2 < δ”) by “‖φA(τ) − φ̄‖Lq < δ” (resp. “‖φA(τ)‖Lq < δ”) for any
p, q ∈ [1,∞].

For the sake of consistency of notation, we will consider the compact
manifold case. The case of a domain Ω with Dirichlet or heat-loss boundary
conditions is handled similarly (see below).
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We start with the proof of a general L1 → L∞ estimate for solutions of

(5.4) ψt + v · ∇ψ −∆ψ = 0

on a compact manifold M . The point is that this estimate will be independent
of the incompressible flow v and so, in particular, of the amplitude A in (1.1).
It appeared, for example, in [12], where the domain was a strip in R2. The
crucial ingredient of the proof was a Nash inequality. In the general case, we
follow a part of the argument, but our proof of the corresponding inequality
(5.6) is different.

Lemma 5.6. For any smooth Riemannian manifold M of dimension d and
any ε ≥ 0 (resp. ε > 0) if d ≥ 3 (resp. d = 2), there exists C = C(M, ε) > 0
such that for any incompressible flow v ∈ Lip(M) and any mean zero φ0 ∈
L2(M), the solution of (5.4) and φ(x, 0) = φ0(x) satisfies

(5.5) ‖φ(x, t)‖L∞(M) ≤ Ct−d/2−ε‖φ0‖L1(M).

Proof. First note that by Hölder and Poincaré inequalities we have for any
mean zero ψ ∈ H1(M), any p ≥ (d+2)/4 (if d = 2, then for any p > (d+2)/4),
and some Cp,

‖ψ‖2
L2 ≤ ‖ψ‖1/p

L1 ‖ψ‖(2p−1)/p
L(2p−1)/(p−1) ≤ Cp‖ψ‖1/p

L1 ‖∇ψ‖(2p−1)/p
L2 .

That is,

(5.6) ‖∇ψ‖2
L2 ≥ Cq‖ψ‖2+q

L2 ‖ψ‖−q
L1

for q ≡ 2/(2p− 1) so that q ≤ 4/d if d ≥ 3 and q < 2 if d = 2.
After multiplying (5.4) by φ and integrating over M we obtain for t > 0

(5.7)
d

dt
‖φ‖2

L2 = −2‖∇φ‖2
L2 ≤ −2Cq‖φ‖2+q

L2 ‖φ‖−q
L1 ≤ −2Cq‖φ‖2+q

L2 ‖φ0‖−q
L1 .

The last inequality follows from the positivity of and the preservation of L1

norms of solutions of (5.4) with initial conditions φ0,± ≡ max{±φ0, 0}, which
shows that ‖φ‖L1 is non-increasing.

Next we divide (5.7) by−‖φ‖2+q
L2 and integrate in time to obtain ‖φ(x, t)‖−q

L2

≥ qCqt‖φ0‖−q
L1 . This in turn gives (with a new Cq),

(5.8) ‖φ(x, t)‖L2 ≤ Cqt
−1/q‖φ0‖L1 .

Hence we have shown that ‖Pt(v)‖L1→L2 ≤ Cqt
−1/q where Pt(v) is the solution

operator for (5.4). But since Pt(v) = (Pt(−v))∗ is the adjoint of the operator
Pt(−v), which satisfies the same bound, we obtain

‖P2t(v)‖L1→L∞ ≤‖Pt(v)‖L1→L2‖Pt(v)‖L2→L∞

= ‖Pt(v)‖L1→L2‖Pt(−v)‖L1→L2 ≤ C2
q t−2/q

which is (5.5).



24 P. CONSTANTIN, A. KISELEV, L. RYZHIK, AND A. ZLATOŠ

Proof of Theorem 5.5. Assume for simplicity that the total volume of M

is equal to one. Then it is clear that Lemma 5.6 also holds with

(5.9) ‖φ(x, t)‖Lp(M) ≤ Ct−d/2−ε‖φ0‖Lq(M)

in place of (5.5), with any p, q ∈ [1,∞] and the same C.
Assume now that we know that for some u and p, q ≥ 1, given any τ, δ > 0,

we can find Ap,q(τ, δ) such that ‖φA(x, τ)‖Lp < δ for any A > Ap,q(τ, δ) and
any mean zero φ0 ∈ L2(M) with ‖φ0‖Lq = 1. Take any other p′, q′ ≥ 1. Then
for any A > Ap,q(τ, δ),

‖φA(x, 3τ)‖Lp′ ≤Cτ−d/2−ε‖φA(x, 2τ)‖Lp

≤ δCτ−d/2−ε‖φA(x, τ)‖Lq ≤ δ(Cτ−d/2−ε)2‖φ0‖Lq′ .

This shows that when Ap,q(τ, δ) exists for some p, q and all τ, δ, for any p′, q′, τ, δ
we have Ap′,q′(τ, δ) = Ap,q(τ/3, δC−2(τ/3)d+2ε) and so Ap′,q′(τ, δ) exists for all
τ, δ. That is, Definition 1.1 describes the same class of flows regardless of which
Lp → Lq decay it addresses. This finishes the proof.

We note that in the case of a bounded domain Ω with Dirichlet boundary
conditions, the proof is identical. When we have heat-loss boundary conditions,
the only change is that the equality in (5.7) reads

d

dt
‖φ‖2

L2 = −2(‖∇φ‖2
L2 + ‖σ1/2φ‖2

L2(∂Ω))

and the Poincaré inequality is replaced by

‖ψ‖L(2p−1)/(p−1) ≤Cp(‖ψ‖L2 + ‖∇ψ‖L2)

≤ (Cp + λ
−1/2
0 )(‖∇ψ‖L2 + ‖σ1/2ψ‖L2(∂Ω))

which is due to the Sobolev inequality and the fact that the principal eigenvalue
λ0 of the Laplacian on Ω with heat-loss boundary conditions is positive.

6. Examples of relaxation enhancing flows

Here we discuss examples of flows that are relaxation enhancing. Most of
the results in this section are not new and are provided for illustration purposes.
According to Theorem 1.2 a flow u ∈ Lip(M) is relaxation enhancing if all of its
eigenfunctions are not in H1(M). One natural class satisfying this condition is
weakly mixing flows – for which the spectrum is purely continuous. Examples
of weakly mixing flows on T2 go back to von Neumann [33] and Kolmogorov
[28]. The flow in von Neumann’s example is continuous; in the construction
suggested by Kolmogorov the flow is smooth. The technical details of the
construction were carried out in [35]; see also [20] for a review. Recently, Fayad
[13] generalized this example to show that weakly mixing flows are generic in
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a certain sense. For more results on weakly mixing flows, see for example [14],
[20]. To describe the result in [13] in more detail, we recall that a vector α

in Rd is called β-Diophantine if there exists a constant C such that for each
k ∈ Zd \ {0} we have

inf
p∈Z

|〈α, k〉+ p| ≥ C

|k|d+β
.

The vector α is Liouvillean if it is not Diophantine for any β > 0. The Liouvil-
lean numbers (and vectors) are the ones which can be very well approximated
by rationals.

Example 1. Consider the flow on a torus Td+1 that is a time change of a
linear translation flow:

(6.1)
dx

dt
=

α

F (x, y)
,

dy

dt
=

1
F (x, y)

, (x, y) ∈ Td+1

with a smooth positive function F (x, y). Such flows have a unique invariant
measure dµ = F (x, y)dxdy. Let us denote by Cr(Td,R+) the set of Cr functions
on the torus that are positive. We have

Proposition 6.1 ([13]). Assume the irrational vector α ∈ Rd is not
β-Diophantine, for some β > 0. Then, for a dense Gδ of functions F in
Cβ+d(Td,R+), the flow (6.1) is weakly mixing (for the unique invariant mea-
sure F (x, y)dxdy).

To obtain examples of relaxation enhancing flows, we can now consider
the generic flows of Proposition 6.1 on the torus with a metric such that the
volume element is F (x, y)dxdy. Alternatively, we can just view a problem in
a weighted space and consider the operator 1

F∇(F∇), which is self-adjoint
on L2(Td+1, Fdxdy), instead of ∆. It is also straightforward to obtain more
physical examples of the relaxation enhancing flows that are incompressible
with respect to the usual flat metric. Indeed, assume for the sake of simplicity
that we are working with a unit torus and that the total integral of F is
also one. Then it is not difficult to construct an explicit measure preserving
invertible transformation Z from Td+1(F (x, y)dxdy) to Td+1(dpdq), as smooth
as the function F (for general results on existence of such maps see [31]). If
we denote w(x, y) = (α/F (x, y), 1/F (x, y)) the vector field in (6.1), then the
vector field u(p, q) = Z ◦w ◦Z−1 will be incompressible. Moreover, the unitary
evolutions generated by w and u in L2(F (x, y)dxdy) and L2(dpdq) respectively
are unitary equivalent and so have the same spectra.

We now describe an example of a different class of flows to which Theorem
1.2 applies. Namely, we will sketch a construction of a smooth incompressible
flow u(p, q), ∇·u = 0, on a torus T2 such that it has a purely discrete spectrum
but none of the eigenfunctions are in H1(T2). We could not find an exact
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statement regarding the existence of such flows in the literature, although the
idea of the construction appears in [28] and the result is presumably well-
known in the dynamical systems community. In particular, it follows in a
fairly direct way for example from considerations in [1], [20]. We briefly sketch
the construction, without presenting well-known technical details.

Example 2. Let us denote by Φu
t the flow on the torus generated by u

and by U t the flow on L2(T2) generated by Φu
t : (U tf)(x) = f(Φu−t(x)).

Proposition 6.2. There exists a smooth incompressible (with respect to
the Lebesgue measure) flow u(x, y) on a two-dimensional torus T2 so that the
corresponding unitary evolution U t has a discrete spectrum on L2(T2) but none
of the eigenfunctions of U are in H1(T2).

Proof. The example will be given by a flow of type (6.1), with d = 2 and
appropriately chosen α and F (x, y). We remark that while the form (6.1) may
seem quite special, in fact any analytic flow in two dimensions with an integral
invariant can be mapped analytically to the linear translation flow (6.1) with
some α, F (see e.g. [28]). The idea of the construction is to find a smooth flow
(6.1) which can be mapped to a constant flow (α, 1) by a measure preserving
map S with very low regularity properties. Since the eigenfunctions of the
constant flow are explicitly computable, we can compute the eigenfunctions of
the original flow. Due to the roughness of S, these will prove highly irregular.
To obtain an incompressible flow, we will then proceed as in the first example.

In order to find such a flow w, we start with a smooth periodic function
Q ∈ C∞(S1) and an irrational number α ∈ R so that the homology equation,

(6.2) R(ξ + α)−R(ξ) = Q(ξ)− 1, ξ ∈ S1,

has a solution R(ξ) that is very rough. Note that for (6.2) to have a measurable
solution the function Q(ξ) should satisfy the normalization [1]

∫ 1

0
Q(ξ)dξ = 1.

The following proposition is a particular case of Theorem 4.5 of [20].

Proposition 6.3. Let α be a Liouvillean irrational number. There exists
a C∞(S1) function Q(ξ) so that the homology equation (6.2) has a unique (up
to an additive constant) measurable solution R(ξ) : S1 → R such that for any
λ ∈ R∗ = R\{0}, the function Rλ(ξ) = eiλR(ξ) is discontinuous everywhere.

Note that without loss of generality we may assume that Q(ξ) is positive –
otherwise we choose M so that Q(ξ)+M > 1 and consider a rescaled function
QM (ξ) = (M + Q(ξ))/(M + 1). Then the function RM (ξ) = R(ξ)/(M + 1) is
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the solution of (6.2) with QM on the right side and, of course, RM (ξ) has the
same properties as R(ξ).

Given a Liouvillean irrational number α and a function Q(ξ) that satisfies
the conclusion of Proposition 6.3 we define a function F (x, y) on the torus
T2 as follows. Choose m > 0 so that m < minQ(s) and a smooth function
ψ(y) ≥ 0 such that

(6.3)
∫ 1

0
ψ(y)dy = 1.

In addition,

(6.4) ψ(y) = 0 for 0 ≤ y ≤ y0 and y1 ≤ y ≤ 1

with y0 close to zero and y1 close to one.

The choice of m ensures that the function

(6.5) F (x, y) = m + ψ(y)(Q(x− αy)−m), 0 ≤ x, y ≤ 1

is positive – then we extend F (x, y) periodically in both variables to the whole
plane R2. The resulting function is smooth because of (6.4) and, in addition, it
has total mass equal to one. The normalization (6.3) implies that the functions
F and Q are related by

(6.6) Q(ξ) =
∫ 1

0
F (ξ + αz, z)dz.

Now, the required transformation S : (x, y) → (X,Y ) is defined by [28], [36]

(6.7) X(x, y) = x + α(Y (x, y)− y), Y (x, y) = T (x− αy, y) + R(x− αy)

with the function R(x) that satisfies (6.2), and T (x, y) defined by

T (x, y) =
∫ y

0
F (x + αz, z)dz.

Note that the transformation (6.7) implies that x − αy = X − αY, and so it
preserves the flow trajectories. The homology equation (6.2) together with
the definition (6.5) of the function F (x, y) imply that S is well-defined as a
mapping T2 → T2. It is also straightforward to check that S maps the flow w

onto the uniform flow wunif = (α, 1). One can also verify that S is invertible
with measurable inverse, and is measure preserving:
(6.8)∫

[S∗f ](x, y)F (x, y)dxdy =
∫

f(S(x, y))F (x, y)dxdy =
∫

f(X, Y )dXdY

for any function f ∈ C(T2). Hence, S∗ may be extended as an operator
L2(dxdy) → L2(dµ) with the preservation of the corresponding norms. We
conclude that the unitary evolutions U t

w and U t
unif generated by the flow w
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given by (6.1) and the uniform flow wunif , respectively, are conjugated by
means of a unitary transformation S∗ : L2(T2, dXdY ) → L2(T2, dµ) and, now
we have U t

unif = [S∗]−1U t
wS∗. It follows that U t

w and U t
unif have the same spec-

trum: λnl = 2πinα + 2πil, l, n ∈ Z. It also follows that the eigenfunctions of
the operator Uw may be written as

ψw
nl(x, y) = e2πinX(x,y)+2πilY (x,y) = e2πin(x−αy+αY (x,y))+2πilY (x,y)(6.9)

= e2πin(x−αy)e(2πinα+2πil)(T (x−αy,y)+R(x−αy))

= ζ(x, y)e(2πinα+2πil)R(x−αy)

with a smooth function ζ(x, y) ∈ C∞([0, 1]2) (note that the function ζ(x, y) is
not periodic in y). In order to verify that ψw

nl are not in H1(T2) it suffices to
check that the function

Θλ(x, y) = eiλR(x−αy) = Rλ(x− αy)

is not in H1([0, 1]2) for any real λ 6= 0. The function Rλ(s) is defined in
Proposition 6.3 and is everywhere discontinuous. If Θλ(x, y) were in H1([0, 1]2),
it would force Rλ(s) to be in H1(S1) and hence continuous; but this function
is discontinuous everywhere. Therefore, the eigenfunctions ψw

nl cannot be in
H1(T2) unless n = l = 0.

Finally, to obtain an incompressible flow, we introduce a smooth transfor-
mation Z : (x, y) → (p, q) by setting

p =
∫ x

0
F̄ (s)ds, q =

1
F̄ (x)

∫ y

0
F (x, z)dz, where F̄ (x) =

∫ 1

0
F (x, z)dz.

It is immediate to verify that Z maps the measure dµ onto the Lebesgue
measure dpdq. Hence, the evolution group generated by the image u(p, q) of
the flow w(x, y) will have the same discrete spectrum as Uw. In addition, the
eigenfunctions ψw

nl of Uw are the images of the eigenfunctions ψu
nl of u under

Z∗: ψw
nl = Z∗ψu

nl = ψu
nl ◦ Z. As the functions ψw

nl are not in H1(T2) and the
map Z is smooth, it follows that all the eigenfunctions of the incompressible
flow u(p, q) are not in H1(T2). This finishes the proof of Proposition 6.2.

7. Quenching in reaction-diffusion equations

In this section we describe the application of our results to questions
of quenching in reaction-diffusion-advection equations. We will consider the
problem

(7.1) TA
t (x, t)+Au ·∇TA(x, t)−∆TA(x, t) = f(TA(x, t)), TA(x, 0) = T0(x)

on a smooth compact Riemannian manifold M with T0(x) ∈ [0, 1]. Here T is
the (normalized) temperature of a premixed flammable gas that is advected by
the incompressible flow Au(x) ∈ Lip(M). The nonlinear right-hand side term
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accounts for temperature increase due to burning and will be assumed to be
of ignition type. That is,

(i) f(0) = f(1) = 0 and f(T ) is Lipschitz continuous on [0, 1],(7.2)

(ii) ∃θ0 ∈ (0, 1) such that f(T ) = 0 for T ∈ [0, θ0]

and f(T ) > 0 for T ∈ (θ0, 1).

This shows, in particular, that T remains in [0, 1]. The main question will
be under what conditions on u one can always choose A large enough so that
for some time τ > 0 we have ‖TA(x, τ)‖L∞(M) ≤ θ0; that is, quenching —
extinction of flames — happens. Of course this question is meaningless for
certain initial data T0. Namely, if ‖T0‖L1 > θ0vol(M) or ‖T0‖L1 = θ0vol(M)
but T0 6≡ θ0, then we show easily, using

(7.3)
d

dt
‖TA‖L1 =

∫
f(TA(x, t))dx

that ‖TA‖L1 must be strictly increasing with the limit equal to the volume
of M . This motivates the following definition.

Definition 7.1. We say that u is strongly quenching if for any nonlinearity
f as in (7.2), and any solution TA of (7.1) with initial datum T0(x) ∈ [0, 1]
with ‖T0‖L1(M) < θ0vol(M), there exists A(T0, f) such that if A > A(T0, f),
then for some τ > 0 one has ‖TA(x, τ)‖L∞(M) ≤ θ0.

Then we have

Theorem 7.2. An incompressible flow u ∈ Lip(M) is strongly quenching
if and only if it is relaxation enhancing.

Proof. Assume that the volume of M is one. First, u is strongly quenching
when it is relaxation enhancing. Indeed, assume u is relaxation enhancing and
let c be the Lipshitz constant for f so that f(T ) ≤ cT . If φA solves (1.1) with
φ0 ≡ T0, then TA(x, t) ≤ ectφA(x, t) by the comparison principle. But this
means

‖TA(x, τ)‖L∞ ≤ ecτ‖φA(x, τ)‖L∞ ≤ ecτ (T̄0 + ‖φA(x, τ)− φ̄‖L∞)

which can be made as close to T̄0 = ‖T0‖L1(M) < θ0 as we wish by taking small
enough τ, δ > 0 and A > A1,∞(τ, δ) from the proof of Theorem 5.5. Since f

was arbitrary, it follows that u is strongly quenching.
Hence, we are left to prove that u being strongly quenching implies that

u is relaxation enhancing. Assume this is not the case, that is, there exists an
ignition nonlinearity f , a mean zero φ0 ∈ L2(M) and τ, δ ∈ (0, 1) such that for
all A < ∞ and t ≤ τ , the solution φA of (1.1) satisfies ‖φA(x, t)‖L1 > δ. We
can assume without loss of generality that ‖φ0‖L∞ ≤ 1.
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Let T0 ≡ θ1 + γφ0 where γ ≡ 1
3 min{θ0, 1− θ0} and θ1 ∈ (θ0 − β, θ0) with

β ≡ 1
8 min{γδ, τδκ, θ0} and κ ≡ min{f(T ) |T ∈ [θ0 + γδ

8 , 1
3(2 + θ0)]} > 0. Note

that T0(x) ∈ 1
3 [θ0, 1 + 2θ0].

For each t ≤ τ let Bt ≡ {x |φA(x, t) ≥ δ
4}. Since φA(x, t) is mean zero

with L1 norm more than δ, and |φA(x, t)| ≤ 1, we must have |Bt| ≥ δ
4 for each

t ≤ τ (recall that M has volume one). Thus

TA(x, t) ≥ θ1 + γδ
4 ≥ θ0 + γδ

8

for x ∈ Bt. If for some t ≤ τ there is a set B′
t ⊆ Bt with |B′

t| ≥ δ
8 and

TA(x, t) ≥ 1
3(2 + θ0) for x ∈ B′

t, then since ψA ≡ θ1 + γφA ≤ TA by the
comparison principle (because ψA satisfies (1.1) with ψA(x, 0) = T0(x)) and
0 < inf{T0(x)} ≤ ψA ≤ ‖T0‖L∞ ≤ 1

3(1 + 2θ0) by the maximum principle,

‖TA(x, t)‖L1 ≥ δ
8 [13(2 + θ0)− 1

3(1 + 2θ0)] + ‖ψA(x, t)‖L1 ≥ γδ
8 + θ1 > θ0.

This is a contradiction because then u cannot be strongly quenching by the
argument before Definition 7.1.

Therefore for each t ≤ τ there must be a set B′′
t ⊆ Bt such that |B′′

t | ≥ δ
8

and TA(x, t) ∈ [θ0 + γδ
8 , 1

3(2 + θ0)] for x ∈ B′′
t . But then f(TA(x, t)) ≥ κ for

x ∈ B′′
t , and so (7.3) gives

‖TA(x, τ)‖L1 ≥ θ1 + τ δκ
8 > θ0

and we have a contradiction again. Hence u has to be relaxation enhancing.

Applications of our results on relaxation enhancement to quenching on
infinite domains (where front propagation can occur as well) will be considered
elsewhere.
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