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ABSTRACT. We consider ionic electrodiffusion in fluids, described by the Nernst-Planck-Navier-Stokes sys-
tem in bounded domains, in two dimensions, with Dirichlet boundary conditions for the Navier-Stokes and
Poisson equations, and blocking (vanishing normal flux) or selective (Dirichlet) boundary conditions for the
ionic concentrations. We prove global existence and stability results for large data.

1. Introduction

We consider electrodiffusion of ions in fluids in the presence of boundaries. Ions of different valences
carry charges, are advected and diffuse under the influence of an electric potential, their own concentration
gradients and a fluid flow. The fluid is forced by the electric forces created by the ions. These situations arise
quite frequently in nature and are present in a large number of biological and industrial processes, such as
electrodialysis, electrodeposition and electrochromatography. The subject is more than a hundred and thirty
years old but in recent years there has been a resurgence of interest due to the ability to control transport of
ions through charge selective membranes at nanometer scales. It has become clear that the geometry of the
device and the nature of the boundary conditions can be the source of significant changes in the transport
of ions. The physical and biophysical applications of the system are extremely broad, and the system has
been investigated extensively in the physical literature. An introduction to some of the basic physical and
mathematical issues can be found in [16].

The situation is described by the Nernst-Planck equations

∂tci + div ji = 0 (1)

where ci are the i-th ionic species concentrations, i = 1, . . . N , and where the fluxes ji are given by

ji = uci −Di∇ci −Di
ezi
kBT

ci∇Ψ. (2)

The ion concentrations ci = ci(x, t) are nonnegative functions, with x representing position, x ∈ Ω ⊂ Rd,
an open bounded set with smooth, orientable boundary, and t representing time, t ≥ 0. The domain is
connected but not necessarily simply connected. The velocity u = u(x, t) is a divergence-free field. Di are
positive constant diffusivities (Di > 0, possibly different from each other), e is elementary charge, zi are
valences (zi ∈ R, unrestricted to be integers, and with both positive and negative signs required, so that 0
is in the interior of the convex hull of the valences), kB is Boltzmann’s constant and T is temperature. The
potential Ψ solves a Poisson equation

− ε∆Ψ = ρ̃ (3)
in Ω. The function ρ̃ is the charge density,

ρ̃ = e

N∑
i=1

zici (4)

and ε is a positive constant, the dielectric permittivity of the solvent. The velocity u obeys the Navier-Stokes
equations

∂tu+ u · ∇u− ν∆u+∇p = ρ̃Ẽ (5)
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in Ω with the divergence-free condition
∇ · u = 0 (6)

and with Ẽ the electric field
Ẽ = −∇Ψ. (7)

Here ν > 0 is the kinematic viscosity and p the pressure. There are two kinds of boundary conditions for
the ionic concentrations. The vanishing of all normal fluxes

(ji · n)|∂Ω = 0, i = 1, . . . N, (8)

where n is outer normal at the boundary of Ω, is termed “blocking boundary conditions”. These boundary
conditions model situations in which boundaries are impermeable: the ions are not allowed to cross them.

Different boundary conditions are termed “selective” or “permselective”. They model situations in
which some ionic species are selectively crossing some boundaries or membranes, while being blocked from
crossing others. In this case M ≤ N of the ionic concentrations have mixed Dirichlet - no-flux boundary
conditions, and the rest of the ionic species (i = M + 1, . . . , N ) have blocking boundary conditions (8),{

ci|Si = γi, (ji · n)|∂Ω\Si = 0, i = 1, . . .M,
(ji · n)|∂Ω = 0, i = M + 1, , . . . , N,

(9)

where Si ⊂ ∂Ω are portions of the boundary for i = 1, . . . ,M , and γi > 0 are positive constants. The
subsets Si can be quite general: they do not need to be connected, nor do they need to be distinct from one
another as i varies. Selective boundary conditions occur at membranes which maintain a fixed density of
certain ions, and are impermeable to others. A simple example of a situation like this is when there are
only two species of ions, of equal and opposite valences, in a doubly connected domain (like an annulus for
instance), where one boundary is a selective membrane for one of the ionic species and is blocking for the
other. The other boundary might be selective for both ionic species, or blocking for both, or again, blocking
for one and selective for the other. These boundary conditions will have different dynamical consequences
in the presence of applied voltage and fluid.

The electric potential satisfies Dirichlet boundary conditions

Ψ|∂Ω = V (10)

where V (x) are imposed voltages (the boundary ∂Ω need not be connected). We normalize the potential by
introducing Φ,

Φ =
e

kBT
Ψ, (11)

and denote

ρ =
N∑
i=1

zici. (12)

The NPNS system is therefore

(∂t + u · ∇)ci = Didiv (∇ci + zici∇Φ) = Didiv (ci∇(log ci + ziΦ)) (13)

together with
− ε∆Φ = ρ (14)

and the forced Navier-Stokes equations

∂tu+ u · ∇u− ν∆u+∇p = −kBTρ∇Φ, (15)

∇ · u = 0, (16)

with

ε =
εkBT

e2
= c0(

N∑
i=1

z2
i )λ2

D, (17)
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where λD is the Debye screening length ([16]) defined as

λD =

√
εkBT

c0e2
∑N

i=1 z
2
i

(18)

and c0 is a reference bulk concentration of ions. We did not rescale the equations, we just slightly changed
the dependent variables potential and charge density. We note that ε is essentially the Debye length squared.

The boundary conditions for u are homogeneous Dirichlet,

u|∂Ω = 0, (19)

and the blocking boundary conditions (8) for ci thus become

ci∂n(log ci + ziΦ)|∂Ω = 0, (20)

where
∂n = n · ∇ (21)

is normal derivative at the boundary. The boundary condition for Φ is

Φ|∂Ω = W =
e

kBT
V, (22)

with W = W (x) a given smooth enough function of space. We distinguish between two kinds of selective
boundary conditions for the concentrations ci. The first, which we term “uniform selective”, require not
only the γi to be constant (in space and time) but also that the boundary voltage W (x) to be constant on the
portions Si of the boundary where γi are prescribed,

W (x)| Si = wi. (23)

For instance, if one of the ionic species concentrations, say c1, has one boundary selective and one boundary
blocking, then a constant boundary condition for Φ is needed on the selective boundary. If the rest of the
ionic species concentrations c2, . . . , cN have blocking boundary conditions then the situation is uniformly
selective, in our language. The non-uniform selective boundary conditions we term “general selective”. In
their case W (x) may be an arbitrary (smooth enough) function of space. For instance, if in the preceding
case the boundary condition for Φ was varying in space on the selective membrane, then we would be in a
general selective situation. Or, if one ionic species has two distinct constant Dirichlet boundary conditions
at two membrane boundaries, then we are in a general selective situation.

The Boltzmann steady states are defined to be

c∗i (x) =
e−ziΦ

∗(x)

Zi
(24)

with Zi > 0 constants (which may depend on Φ∗). We choose the notation Zi in analogy with statistical
mechanics. The Zi are normalizing constants. The function Φ∗(x) is time independent and obeys the
semilinear elliptic equation

− ε∆Φ∗ = ρ∗ (25)
with

ρ∗ =

N∑
i=1

zic
∗
i (26)

and with boundary condition
Φ∗|∂Ω = W. (27)

This equation is known as the Poisson-Boltzmann equation. Let us observe that c∗i , Φ∗ are steady solutions
of the NPNS system with u = 0. Indeed, in this situation the forcing term in the Navier-Stokes equations
(15) is a gradient and it can be included in the pressure, while the time independent equations (13) are
satisfied.
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The NPNS system is nonlinear, and the blocking boundary conditions are nonlinear and nonlocal. While
blocking boundary conditions lead to stable configurations, instabilities occur for selective boundary con-
ditions. These have been studied in simplified models mathematically and numerically ([18], [22]) and
observed in physical experiments [17]. A recent numerical study [6], which partly motivated ours, dis-
cussed additional “patterned” boundary conditions, and described the effect of the geometry of nonuniform
boundary conditions on the instabilities. That numerical study is performed in a strip, with periodic lateral
boundary conditions. There are two ionic species, anions and cations, and the boundary conditions for an-
ions are blocking while the boundary conditions for cations are selective. The boundary conditions for the
electric potential are Dirichlet: a constant voltage is applied at one of the boundaries. The case when both
boundaries for cations are selective corresponds in our language to general selective boundary conditions:
N = 2, S1 = ∂Ω is formed by both the upper and the lower boundary, c1 is constant on S1, but W is
not, taking two different values. Another interesting case is one in which the upper boundary for cations
is selective and the lower boundary is patterned with alternating segments of permeable and impermeable
membranes. Both situations lead to instability and chaotic behavior, and correspond in our language to
general selective boundary conditions. Interestingly, if the upper boundary is blocking, but the lower one is
selective, or even patterned selective, then we are in situations which we call “uniform” selective, because
the voltage is constant on the selective part of the boundary. These, and more complicated cases with many
boundary components and many ion species are proved in this paper to be nevertheless unconditionally
globally uniformly stable situations.

The mathematical study of semilinear elliptic equations is classical (please see [10] for instance for
general existence, regularity and uniqueness results, including for quasilinear elliptic equations in bounded
domains, and [15], [8] for some results directly connected to the physical problem of ionic diffusion. We
comment in more detail on particular aspects relevant to the Poisson-Boltzmann equation in Appendix A).
The coupled NPNS system is semilinear parabolic, so its local well posedness is not unexpected. The issue
is whether or not solutions exist globally and what is their asymptotic behavior. This issue is mostly a
question of boundary conditions, although dimensionality enters as well. Global existence and stability
of solutions of the Nernst-Planck equations, uncoupled to fluids has been obtained in several situations
in [1], [4], [9] for blocking boundary conditions. Local existence for the system coupled to the Navier-
Stokes equations in the whole space was obtained in [13] and global existence of weak solutions in 3D
with blocking boundary conditions was obtained in [14] and in [7]. Global existence for small data and
forces was obtained in [19] and [20] in some cases. The global existence and stability of the system in
2D has been studied in [2] with blocking boundary conditions for the ions and a Robin boundary condition
for the electric potential. Neumann boundary conditions for the potential simplify the analysis, but they
are not relevant for the physical situation at hand. Robin boundary conditions retain enough features of
the Neumann boundary conditions to still facilitate the analysis, while being more physically relevant. The
Dirichlet boundary conditions for the potential are however the natural and most commonly used physical
boundary conditions for the electrical potential. The method of proof and the result of [2] do not apply to
the case of Dirichlet boundary conditions for the potential.

In this paper we prove global existence for both blocking and selective boundary conditions for the ionic
concentrations, in two spatial dimensions, for arbitrary data. In the cases of blocking boundary conditions
and in the case of uniform selective boundary conditions we prove unconditional global stability: for all
initial data, valences, voltages, species diffusivities, dielectric constant and arbitrary Reynolds numbers,
the solutions converge as time tends to infinity to unique selected Boltzmann states. The Boltzmann states
are uniquely determined by the initial average concentrations of the species and boundary conditions. The
Navier-Stokes equations are forced, and the forces converge in time to potential forces, but they are not, in
general, potential forces at any finite time. Thus the fact that the attractor is a singleton (per leaf) is nontrivial,
and it follows from the remarkable dissipative structure of the equations: The system has a “free energy”
which decays in time. This energy is the sum of natural relative entropies (or Kullback-Leibler divergences),
relative to Boltzmann states, added to the mean-square gradient difference of electrical potentials and to the
kinetic energy of the fluid. This dissipative structure is determined by two factors: one is the nature of
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the equations themselves, and the other is the boundary conditions for the ionic species and the fluid. The
use of relative entropy in PDE is of course not new. A relative entropy of this kind is used in Fokker-
Planck equations. We find however that the structure here is remarkable in that it applies to a system of
many measures. In the Nernst-Planck system there are many concentrations which all play the role of the
one probability density function in the Fokker-Planck equation, and many Boltzmann states which play the
role of the one Maxwellian which is the reference probability density. The additional element is of course
the coupling to the fluid, and that is where the nature of the electric force turns out to be essential for
the structure to be dissipative. The boundary conditions (either blocking or uniformly selective) allow to
conclude that the energy is nonincreasing in time. The time evolution of the energy has a boundary term and
this term vanishes for blocking boundary conditions and for uniformly selective boundary conditions. In the
case of different boundary conditions the energy is still useful for the analysis and helps to establish global
existence, but is no longer guaranteed to decay in time in general.

The energy measures in some sense a distance to the Boltzmann states. Interestingly, it does not matter
which Boltzmann states we refer to in order to compute the energy and show it is nonincreasing. This fact
is explained by the conservation of the averages of concentrations for the blocking boundary conditions
and the choice of normalizing constants Zi for the species with uniformly selective boundary conditions.
The difference between two energies relative to different admissible Boltzmann states is constant in time.
(Please see Remark 2 for details). The time monotone behavior of the energy provides some global a
priori bounds, which we then improve upon, using the fact that the equations are semilinear parabolic. The
limitation to two dimensions arises here, not chiefly because of the Navier-Stokes equations, which we
could consider in the relevant low Reynolds regime, but because of the fact that we need global exponential
bounds for the Poisson equation when the charge density has the bounds provided from the energy decay.
These are available in two dimensions. Sufficient regularity is thus established and the time integrability
of the energy dissipation provides enough information to deduce the convergence on time sequences of
solutions to some functions. We identify these functions as Boltzmann states associated to potentials solving
appropriate nonlocal Poisson-Boltzmann equations. Uniqueness of the latter, given the conserved quantities
in the system is used to prove finally the asymptotic behavior is the stated one.

The paper is organized as follows: in Section 2 we describe in detail the dissipative structure and explain
the role of the Boltzmann states. We give results about the Poisson-Boltzmann equations in Section 3. In
Section 4 we give a priori bounds and decay to Boltzmann states for blocking boundary conditions, in
Section 5 we describe the stability of uniform selective boundary conditions and in Section 6 we describe
the global existence for the general selective boundary conditions. In Appendix A we discuss proofs for
Poisson-Boltzmann equations, and in Appendix B we present a proof of local existence.

2. Dissipative Structure

We define the energy

E = E(ci,Φ; c∗i ,Φ
∗) =

∫
Ω

[
N∑
i=1

Eic
∗
i +

1

2
(ρ− ρ∗)(Φ− Φ∗)

]
dx. (28)

This energy is relative to some fixed selected Boltzmann states,

c∗i (x) = Z−1
i e−ziΦ

∗(x) (29)

with Φ∗ obeying the Poisson-Boltzmann equation (25), with boundary conditions (27), and charge density

ρ∗(x) =

N∑
i=1

zic
∗
i (x), (30)

(see 26). Above we used ρ =
∑
zici (see 12). The potential Φ in E is computed solving the Poisson problem

(14)
− ε∆Φ = ρ (31)
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with boundary condition (22)
Φ| ∂Ω = W. (32)

We define Ei by

Ei =
ci
c∗i

log

(
ci
c∗i

)
− ci
c∗i

+ 1. (33)

Let

D =
N∑
i=1

Di

∫
Ω
ci

∣∣∣∣∇ δEδci
∣∣∣∣2 dx (34)

where δE
δci

are densities of the first variations (Fréchet derivatives) of E . We have the following variational
dissipative structure theorem.

THEOREM 1. Let ci > 0 solve the 2D Nernst-Planck-Navier-Stokes equations (12), (13), (14), (15),
(16) with Dirchlet boundary conditions for the Navier-Stokes velocity (19) and the electric potential (22)
and either blocking (vanishing normal flux) boundary conditions (8) or uniform selective (constant Dirichlet
and vanishing normal flux) boundary conditions (9) for the ion concentrations. Let E be defined in (28) with
respect to arbitrary Boltzmann states in the case of blocking boundary conditions, and with respect to
Boltzmann states selected below in (66) for uniform selective boundary conditions. Then

d

dt

[
1

2kBT

∫
Ω
|u|2dx+ E

]
= −D − ν

kBT

∫
Ω
|∇u|2dx (35)

holds for all t > 0, where D is given by (34).

Proof of Theorem 1. We have the relations
∂(Eic

∗
i )

∂ci
= log

(
ci
c∗i

)
(36)

and
∂(Eic

∗
i )

∂c∗i
= 1− ci

c∗i
. (37)

Computing the first variations (Fréchet derivatives) of E gives the densities

δE
δci

= log

(
ci
c∗i

)
+ zi(Φ− Φ∗) (38)

because
1

2
(ρ− ρ∗)(Φ− Φ∗) =

1

2ε
(ρ− ρ∗)(−∆D)−1(ρ− ρ∗) (39)

where (−∆D)−1 is the inverse Laplacian with homogeneous Dirichlet boundary conditions, which is a
selfadjoint operator, and because

∂ρ

∂ci
= zi. (40)

Note that in view of (29) we have
δE
δci

= log ci + ziΦ + logZi (41)

and therefore the equations (13)

Dtci = Didiv (ci∇ (log ci + ziΦ)) (42)

are, in view of the relation (41), the same as

Dtci = Didiv
(
ci∇

(
δE
δci

))
. (43)

We denoted above by Dt the material derivative

Dt = ∂t + u · ∇ (44)
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with respect to the time dependent divergence-free velocity u. The form (43) of the equations in terms of
the energy E is a fundamental property of the Nernst-Planck system. The dissipative variational structure
follows using only the fact that Φ and Φ∗ obey the same Dirichlet boundary conditions. Defining the energy
density by

E =

N∑
i=1

Eic
∗
i +

1

2
(ρ− ρ∗)(Φ− Φ∗) (45)

we compute Dt(Eic
∗
i ) using (36), (37) and (29):

Dt(Eic
∗
i ) = log

(
ci
c∗i

)
Dtci +Dtc

∗
i − ciDt log c∗i

= log
(
ci
c∗i

)
Dtci +Dtc

∗
i + ziciDtΦ

∗.
(46)

Adding we obtain

Dt

(
N∑
i=1

Eic
∗
i

)
=

N∑
i=1

log

(
ci
c∗i

)
Dtci +

N∑
i=1

Dtc
∗
i + ρDtΦ

∗. (47)

In view of (38) we have thus

Dt

(
N∑
i=1

Eic
∗
i

)
=

N∑
i=1

δE
δci

Dtci +
N∑
i=1

Dtc
∗
i − (Φ− Φ∗)Dtρ+ ρDtΦ

∗. (48)

Therefore

DtE =
N∑
i=1

δE
δci

Dtci +

N∑
i=1

Dtc
∗
i + P (49)

where
P =

1

2
Dt[(ρ− ρ∗)(Φ− Φ∗)] + ρDtΦ

∗ − (Φ− Φ∗)Dtρ, (50)

and thus
P =

1

2
Dt [ρΦ∗ − ρ∗Φ + ρ∗Φ∗] +

1

2
ρDtΦ−

1

2
(Dtρ)Φ. (51)

Now we claim that we have
P = ρu · ∇Φ +Q (52)

where, importantly, ∫
Ω
Qdx = 0 (53)

holds for all t. Indeed,

Q = 1
2Dt [ρΦ∗ − ρ∗Φ + ρ∗Φ∗]− 1

2div (uρΦ) + 1
2(ρ∂tΦ− Φ∂tρ)

= 1
2 [Φ∗∂tρ− ρ∗∂tΦ + ρ∂tΦ− Φ∂tρ] + 1

2div [u (ρΦ∗ − ρ∗Φ + ρ∗Φ∗ − ρΦ)]
= 1

2 [(ρ− ρ∗)∂tΦ− (Φ− Φ∗)∂tρ] + 1
2div [u (ρΦ∗ − ρ∗Φ + ρ∗Φ∗ − ρΦ)]

= 1
2 [(ρ− ρ∗)∂t(Φ− Φ∗)− (Φ− Φ∗)∂t(ρ− ρ∗)] + 1

2div [u(ρ+ ρ∗)(Φ∗ − Φ)]

(54)

where we used that
∂tΦ

∗ = ∂tρ
∗ = 0. (55)

Thus

Q =
1

2ε
[(ρ− ρ∗)(−∆D)−1(∂t(ρ− ρ∗))− ((−∆D)−1(ρ− ρ∗))(∂t(ρ− ρ∗))] +

1

2
div (uq) (56)

with
q = (ρ+ ρ∗)(Φ∗ − Φ). (57)

The fact that (53) holds follows from the facts that (−∆D)−1 is selfadjoint and the fact that u is divergence-
free and has vanishing normal component on the boundary of Ω. No boundary conditions on ci are used.
We have thus
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DtE =

N∑
i=1

δE
δci

Dtci +

N∑
i=1

Dtc
∗
i + ρu · ∇Φ +Q (58)

where Q satisfies (53). Consequently, we have

DtE =

N∑
i=1

δE
δci

Dtci − F · u+R (59)

where
F = −ρ∇Φ (60)

and with

R =
N∑
i=1

Dtc
∗
i +Q. (61)

In view of (53) and of
∂tc
∗
i = 0 (62)

we have that R satisfies ∫
Ω
R(x, t)dx = 0 (63)

for all t. We stress that no boundary conditions for ci were used so far. Now we use the coupling to the
2D Navier-Stokes equations whose kinetic energy is forced by F . Adding the energy balance in the Navier-
Stokes equations multiplied by 1

kBT
we obtain from (43), (59) and (63) after integration by parts

d

dt

[
1

2kBT

∫
Ω
|u|2dx+ E

]
= −D − ν

kBT

∫
Ω
|∇u|2dx+

N∑
i=1

Di

∫
∂Ω
ci
δE
δci

∂n

(
δE
δci

)
dS. (64)

If blocking boundary conditions (8) are employed, then

∂n

(
δE
δci

)
|∂Ω

= 0 (65)

no matter what Boltzmann states are considered, in view of (41) and the fact that Zi are constant in space
(and time, of course). We recall that in this case W is an arbitrary (smooth enough) function.

In the case of uniform selective boundary conditions (9) we choose

Zi = (γie
ziwi)−1 , for i = 1, . . .M (66)

where we recall that
wi = W| Si (67)

are assumed to be constant on Si. The rest of Zi, i = M + 1, . . . , N are arbitrary and W may vary in space
on the rest of the boundary ∂Ω \ ∪Mi=1Si. In this case we have, in view of (41) and (9)

δE
δci

∂n

(
δE
δci

)
| ∂Ω

= 0 (68)

for all i = 1, . . . , N . This concludes the proof of Theorem 1

REMARK 1. The energy in the left hand side of (35) is non-negative. The energy is the sum of rela-
tive entropies (or Kullback-Leibler divergences) for the pairs (ci, c

∗
i ), the square of the H−1 norm of the

difference of charge densities, and the kinetic energy of the fluid. It vanishes only if ci = c∗i , Φ = Φ∗ and
u = 0. The dissipation D also vanishes only at Boltzmann states. The dimension d of space does not enter
these calculations, and the only use of the Navier-Stokes equations is by considering Dt as a derivation,
and using the energy equality. In d = 3, and for weak Leray solutions of the forced NSE, (35) holds with
inequality rather than equality, for almost all time. The fact that (59) with (63) holds represents a mathe-
matical confirmation that F is the correct electrical forcing of Navier-Stokes or Stokes equations: no other
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force would have fulfilled its role. In other words, we could derive the form of F by the requirement that
Theorem 1 holds. The dimension of kBT is that of an energy, and (35) is dimensionally correct.

REMARK 2. The right hand side of (35) is independent of the choice of reference Boltzmann state,
in view of (41). This might seem puzzling, but is explained by the fact that the difference between two
energies E1 and E2 corresponding to two different admissible choices of Zi is time independent. Indeed,
this difference is the sum of time independent quantities and constant multiples of

∫
Ω ci(x, t)dx (for all i

in the case of blocking conditions and for i = M + 1, . . . , N for uniform selective boundary conditions)
which are conserved under the evolution. This follows from the calculation below. Let c∗i ,Φ

∗ be the unique
Boltzmann state corresponding to constants Zi, and let d∗i ,Ψ

∗ be the Boltzmann state corresponding to
different constantsUi > 0, which still satisfy the conditions (66) in the case of selective boundary conditions.
Define q∗ =

∑N
i=1 zid

∗
i . Let E1 denote the energy density of the state ci,Φ, relative to the first Boltzmann

state given by (45), and E2 the energy density corresponding to the second state. The difference of densities
is

E1 −E2 =
N∑
i=1

ci log

(
d∗i
c∗i

)
+

1

2
Φ (q∗ − ρ∗) +

1

2
ρ (Ψ∗ − Φ∗) +

N∑
i=1

(c∗i − d∗i ) +
1

2
(ρ∗Φ∗ − q∗Ψ∗) . (69)

Using (29) and its analogue, we have

log

(
d∗i
c∗i

)
= zi (Φ∗ −Ψ∗) + log

(
Zi
Ui

)
, (70)

and from (69) it follows that

E1 −E2 =

N∑
i=1

ci log

(
Zi
Ui

)
+

1

2
ρ (Φ∗ −Ψ∗) +

1

2
Φ (q∗ − ρ∗) +

N∑
i=1

(c∗i − d∗i ) +
1

2
(ρ∗Φ∗ − q∗Ψ∗) . (71)

Now we write
Φ = ΦW + Φ0 (72)

with
− ε∆Φ0 = ρ, Φ0| ∂Ω = 0, (73)

and
− ε∆ΦW = 0, ΦW | ∂Ω = W (74)

and rewrite (71) as

E1 − E2 =

N∑
i=1

ci log

(
Zi
Ui

)
+

1

2
ρ (Φ∗ −Ψ∗) +

1

2
Φ0 (q∗ − ρ∗) +K∗ (75)

where

K∗ =
1

2
ΦW (q∗ − ρ∗) +

N∑
i=1

(c∗i − d∗i ) +
1

2
(ρ∗Φ∗ − q∗Ψ∗) (76)

is time independent. Therefore

E1 − E2 =
N∑
i=1

ci log

(
Zi
Ui

)
+

1

2ε
ρ(−∆D)−1 (ρ∗ − q∗)− 1

2ε

(
(−∆D)−1ρ

)
(ρ∗ − q∗) +K∗, (77)

and, integrating and using the selfadjointness of (−∆D)−1 we have

E1 − E2 =

N∑
i=1

log

(
Zi
Ui

)∫
Ω
ci(x, t)dx+

∫
Ω
K∗dx. (78)

The integrals
∫

Ω ci(x, t)dx are time independent for all i = 1, . . . , N , if blocking conditions are used, and
for i = M + 1, . . . , N , if uniform selective boundary conditions are used. In the latter case, in view of (66),
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log
(
Zi
Ui

)
= 0 for i = 1, . . . ,M . Thus, it makes no difference which admissible Boltzmann state is chosen

to define the energy for (35) to hold.

REMARK 3. The decay of energy (35) implies that any time independent solution of the system is a
Boltzmann state. The velocity vanishes and the gradient of pressure balances the electrical forces, which
are a gradient, in steady state. It is interesting to note the fact that the electrical forces are a gradient only
in steady state, not on the way to steady state. Because of this, the decay of velocity is non-trivial, as the
Navier-Stokes are forced.

3. Poisson-Boltzmann equations

In this section we describe the semilinear elliptic equations defining Boltzmann states. They all are of
the form (25) with (24), (26) and Zi = Zi(Φ

∗). The simplest case is when Zi are just given fixed positive
constants, independent of Φ∗. In that case the problem is a local semilinear elliptic problem of the form

− ε∆Φ∗ +G′(Φ∗) = 0 (79)

in the bounded domain Ω ⊂ Rd, with smooth boundary ∂Ω. The nonlinearity G(Φ∗) is given by

G(Φ∗) =
N∑
i=1

Z−1
i e−ziΦ

∗
(80)

with Zi > 0 and zi ∈ R given constants. The derivative G
′
(Φ∗) is

G
′
(Φ∗) = −

N∑
i=1

zi
Zi
e−ziΦ

∗
. (81)

The boundary condition for Φ∗ is (27). We note that G is positive and convex. Because 0 is in the interior
of the convex hull of zi, in other words, because there are both positive and negative zi, it follows that
limφ→±∞G

′(φ) = ±∞.

THEOREM 2. Let Ω ⊂ Rd, d = 2, 3 be bounded domain with smooth boundary and let W be a smooth
enough function on ∂Ω (for instance W ∈ Hs(∂Ω) with s ≥ 3

2 ). Then there exists a unique weak solution
Φ∗ ∈ A ∩H2

loc(Ω) of
− ε∆Φ∗ = −G′(Φ∗) (82)

with boundary condition (27), with

G(Φ∗) =
N∑
i=1

Z−1
i e−ziΦ

∗
(83)

and with given positive numbers Zi > 0. If W ∈ W
3
2
,p(∂Ω) with p > d then Φ∗ ∈ W 2,p(Ω) and

consequently Φ∗ ∈W 1,∞(Ω).

Both existence and uniqueness follow because of the convex variational structure. Boundedness follows
using the maximum principle and regularity follows from classical methods ([10]). The admissible set A is
defined in (233), see Appendix A where we give the proof.

A different case of Poisson-Boltzmann equation we need is

− ε∆Φ∗ =
N∑
i=1

ziI
0
i

e−ziΦ
∗∫

Ω e
−ziΦ∗

. (84)

The constants I0
i are given positive numbers and the boundary conditions are (27). Equation (84) is obtained

from (25) (24), (26) with constants Zi given by

Zi = (I0
i )−1

∫
Ω
e−ziΦ

∗
dx. (85)
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We also need the more general case

− ε∆Φ∗ =
M∑
i=1

ziZ
−1
i e−ziΦ

∗
+

N∑
i=M+1

ziI
0
i

e−ziΦ
∗∫

Ω e
−ziΦ∗dx

(86)

with Zi > 0 and I0
i > 0 given numbers. In fact (86) include both (82) (83), when M = N and (84) when

M = 0 (with the convention that when the set of indices is empty the sum vanishes).

THEOREM 3. Let Ω ⊂ Rd, d = 2, 3 be a bounded domain with smooth boundary and let W ∈
W

3
2
,p(∂Ω) with p > d. Let 0 ≤ M ≤ N and let Zi > 0, i = 1, . . . ,M and I0

i > 0, i = M + 1, . . . , N
be given positive constants. Then there exists a unique a solution Φ∗ ∈ W 2,p(Ω) of (86) with boundary
conditions (27)

The existence of solutions follows from a variational structure. This is no longer a convex variational
problem, nor a local PDE. Boundedness of solutions follows from the maximum principle. Regularity of
bounded solutions follows from classical elliptic regularity arguments ([10]). Uniqueness follows from a
monotone structure of the equations. We present the monotone structure and ideas of proofs in Appendix A.

4. Global unconditional stability for blocking boundary conditions

We treat in this section the boundary conditions

ji · n| ∂Ω = 0 (87)

for the fluxes
ji = uci −Di(∇ci + zici∇Φ). (88)

Thus, we consider the system
∂tu+ u · ∇u+∇p = ν∆u− (kBTK)ρ∇Φ,
divu = 0,

ρ =
∑N

i=1 zici,
−ε∆Φ = ρ,
∂tci + u · ∇ci = Di (∆ci + zidiv(ci∇Φ)) ,

(89)

in Ω× [0,∞), with boundary conditions
u|∂Ω = 0,
Φ|∂Ω = W,
(∇ci + zici∇Φ)|∂Ω · n = 0

(90)

where n is the external normal at ∂Ω. Above and in what follows we write TK to denote temperature, which
is a fixed constant, in order to avoid confusion with T representing time.

We use the following local existence result.

THEOREM 4. Let Ω ⊂ Rd, d = 2, 3 be a bounded domain with smooth boundary. Let zi ∈ R,
1 ≤ i ≤ N and let ε > 0, Di > 0, i = 1, . . . N . Let ci(0) be nonnegative functions 1 ≤ i ≤ N , let W be a
smooth function defined on ∂Ω and let u0 ∈ H1(Ω)d be divergence-free. Let p = 2q > 2d. There exists T0

depending only on the parameters of the problem ε,Di, zi, ν, the domain Ω, the initial energy E(0) and on
the norms

‖ci(0)‖Lp(Ω), ‖W‖
W

3
2 ,p(∂Ω)

, ‖u0‖L2(Ω), (91)

such that a unique strong solution of (89) with initial data ci(0) ∈ Lp(Ω) ∩W 2,q(Ω), u0 ∈ W 1,p(Ω) exists
and satisfies

sup
0≤t≤T0

‖ci(t)‖Lp(Ω) ≤ 3‖ci(0)‖Lp(Ω) (92)
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and
sup

0≤t≤T0

[‖ci(t)‖W 2,q(Ω) + ‖∂tci(t)‖Lq(Ω)] ≤ Cq (93)

and ∫ T0

0
[‖∂tu(t)‖2Lp(Ω) + ‖u(t)‖2W 2,p(Ω)]dt ≤ Cp (94)

with constants Cp, Cq, depending on

‖ci(0)‖Lp(Ω), ‖ci(0)‖W 2,q(Ω), ‖u0‖W 1,p(Ω). (95)

The proof is presented in Appendix B.

REMARK 4. Note that the time of existence depends only on the initial energy and the norms of ci(0),
u0, W listed in (91), but not on the higher norms which are subsequently controlled. There is no special
meaning to the time t = 0: the result holds from any t0 for a short time, determined as above. We also
remark that although no attempt was made to find the most generous initial data regularity conditions,
nevertheless no compatibility conditions for the initial data are required.

We now show that if ci(x, t) are positive at t = 0, then they remain positive, as long as the solutions are
regular. In order to show this we take a convex function F : R→ R that is nonnegative, twice continuously
differentiable, identically zero on the positive semiaxis, and strictly positive on the negative axis. We also
assume

F ′′(y)y2 ≤ CF (y) (96)

with C > 0 a fixed constant. Examples of such functions are

F (y) =

{
y2m for y < 0,
0 for y ≥ 0

(97)

withm > 1. (In factm = 1 works as well, although we have only F ∈W 2,∞(R) in that case.) We multiply
the equation (42) by F ′(ci) and integrate by parts using (87). We obtain

d

dt

∫
Ω
F (ci)dx = −Di

∫
Ω
F ′′(ci)

[
|∇ci|2 + zici∇Φ · ∇ci

]
dx. (98)

Using a Schwartz inequality and the convexity of F , F ′′ ≥ 0, we have

d

dt

∫
Ω
F (ci(x, t))dx ≤

CDi

2
z2
i ‖∇Φ‖2L∞(Ω)

∫
Ω
F (ci(x, t))dx. (99)

If ci(x, 0) ≥ 0 then F (ci(x, 0)) = 0 and (99) above shows that F (ci(x, t)) has vanishing integral. As F
is nonnegative, it follows that F (ci(x, t)) = 0 almost everywhere in x and because F does not vanish for
negative values it follows that ci(x, t) is almost everywhere nonnegative.

The following result provides global existence in two dimensions.

THEOREM 5. Let Ω ⊂ R2 be a bounded domain with smooth boundary. Let zi ∈ R, 1 ≤ i ≤ N , let
ε > 0, Di > 0, i = 1, . . . N . Let ci(0) be nonnegative functions 1 ≤ i ≤ N , with ci(0) ∈ Lp(Ω)∩W 2,q(Ω),
p = 2q > 4, let W ∈ W

3
2
,p(∂Ω) be a function defined on ∂Ω and let u0 ∈ W 1,p

0 (Ω) be divergence-free.
Then there exists a unique global strong solution with initial data ci(0), u0, defined on [0,∞) of the Nernst-
Planck-Navier-Stokes system (89) with boundary conditions (90). There exist constants Γp depending on the
parameters ε,Di, zi, the domain Ω, the initial energy E(0), and the norms

‖ci(0)‖Lp(Ω), ‖W‖Hs(∂Ω), ‖u0‖L2(Ω), (100)

for p ≥ 2, s ≥ 3
2 , such that

max
1≤i≤N

sup
0≤t<∞

‖ci(t)‖Lp(Ω) ≤ Γp, (101)
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The bounds
sup

0≤t<∞
‖Φ(t)‖W 2,p(Ω) ≤ Γp. (102)

hold for p ≥ 2 and in particular,
sup

0≤t<∞
‖Φ(t)‖W 1,∞(Ω) ≤ Γ∗∞ (103)

holds. In addition
max

1≤i≤N
sup

0≤t<∞
‖ci(t)‖L∞(Ω) ≤ Γ∞, (104)

and
max

1≤i≤N
sup

0≤t<∞
‖∇ci(t)‖L2(Ω) ≤ Γ. (105)

The functions
c̃i(x, t) = ci(x, t)e

ziΦ(x,t)

obey
max

1≤i≤N
sup

0≤t<∞
‖c̃i(t)‖L∞(Ω) ≤ Γ∞, (106)

max
1≤i≤N

sup
0≤t<∞

‖∇c̃i(t)‖2L2(Ω) ≤ Γ, (107)

and ∫ ∞
0

∫
Ω
|∇c̃i(x, t)|2 dxdt ≤ Γ2. (108)

Moreover, ∫ ∞
0

[
‖∂tc̃i(t)‖2L2(Ω) + ‖∆c̃i(t)‖2L2(Ω)

]
dt ≤ Γ (109)

and ∫ ∞
0

[
‖∂tΦ(t)‖2Lp(Ω) + ‖∇∂tΦ(t)‖2L2(Ω)

]
dt ≤ Γ (110)

hold. The Navier-Stokes solution satisfies

sup
0≤t≤T

‖u(t)‖2H1(Ω) + ν

∫ T

0
‖u(t)‖2H2(Ω)dt ≤ C

∗T (111)

for any T > 0, with C∗ depending on Γp above and ‖u0‖H1(Ω) and further

sup
0≤t≤T

[‖ci(t)‖W 2,q(Ω) + ‖∂tci(t)‖Lq(Ω)] ≤ Cq(T ) (112)

and ∫ T

0
[‖∂tu(t)‖2Lp(Ω) + ‖u(t)‖2W 2,p(Ω)]dt ≤ Up(T ) (113)

hold. The constants Cq(T ) and Up(T ) depend on the initial data and T .

Proof of Theorem 5. The proof follows from the a priori bounds established below and the uniform local
existence and uniqueness theorem, Theorem 4.

From (35) and the fact that
∫

Ω(ρ− ρ∗)(Φ− Φ∗)dx ≥ 0 it follows that
N∑
i=1

∫
Ω

(
ci(x, t)

c∗i (x)
log

(
ci(x, t)

c∗i (x)

)
− ci(x, t)

c∗i (x)
+ 1

)
c∗i (x)dx ≤ E(0) +

1

2kBTK
‖u0‖2L2(Ω) (114)

holds for all time t. In view of (114) we know that∫
Ω
ci(x, t) log(ci(x, t) + 2)dx ≤ C∗

[
E(0) +

1

2kBTK
‖u0‖2L2(Ω)

]
(115)

holds for all t, with C∗ depending only on bounds on c∗i and zi. We use here the fact that c∗i are positive,
bounded, and bounded away from zero, a fact that follows from L∞(Ω) bounds for Φ∗, see Theorems 2 and
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3. We denote by Γ various constants depending only on the initail energy and the initial L2 norm of velocity.
With

Γ =

[
E(0) +

1

2kBTK
‖u0‖2L2(Ω)

]
(116)

consequently we have that ∫
Ω
|ρ(x, t)| log (|ρ(x, t)|+ 2) dx ≤ C∗Γ (117)

holds uniformly in time, with a slightly different C∗.

Step 1: L∞ bound on Φ.
From the Poisson equation

− ε∆(Φ− Φ∗) = ρ− ρ∗ (118)
with homogeneous Dirichlet boundary conditions we obtain that

‖Φ(·, t)‖L∞(Ω) ≤ C∗Γ1 (119)

uniformly in time, with C∗ depending on ε, and the domain Ω and

Γ1 = Γ +

∫
Ω
|ρ∗(x)| log (|ρ∗(x)|+ 2) dx. (120)

This follows from Lemma 1 below, which must certainly be known, but we do not have a ready reference
for it. We give a simple proof based on an idea in ([3]) and on the Legendre transform.

LEMMA 1. Let Ω ⊂ R2 be a bounded domain with smooth boundary. Let f satsify the bound∫
Ω
|f(x)| log(2 + |f(x)|)dx = B <∞

and let u be the solution of
−∆u = f

in Ω with boundary condition u|∂Ω = 0. Then, there exists a constant C, depending on Ω such that

sup
x∈Ω
|u(x)| ≤ CB

holds.

Proof of Lemma 1. We extend f by zero outside the domain Ω and take R = 1
2diam Ω. We let BR be a

ball of radius R containing Ω and set

ū(x) =
1

2π

∫
BR

log

(
2R

|x− y|

)
|f(y)|dy.

Thus,
−∆ū = |f |

holds in R2. Because 2R
|x−y| ≥ 1 it follows that ū(x) ≥ 0 in BR and, from the maximum principle we have

that
|u(x)| ≤ ū(x)

in Ω. The proof of the lemma follows from the fact that the Legendre transform of p log p− p+ 1, defined
on the semipositive axis p ≥ 0, is eq − 1, and consequently, from pq ≤ p log p− p+ 1 + eq − 1 it follows
that

| log |x− y||f(y)|| ≤ |f(y)| log |f(y)| − |f(y)|+ e| log |x−y|| (121)
holds for any x, y ∈ BR. Integration and straightforward inequalities for the rest of the terms concludes the
proof.

We stress that this is result makes essential use of d = 2.
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Step 2: Local uniform L1(Lq) bounds for ci.
We exploit the fact that ∫ T

0
D(t)dt <∞. (122)

Because of (41) and (34) we have from (122) that∫ T

0

∫
Ω
ci(x, t)

∣∣∣∇ log
(
ci(x, t)e

ziΦ(x,t)
)∣∣∣2 dxdt ≤ E(0) +

1

2kBTK
‖u0‖2L2(Ω) = Γ. (123)

Using the crucial information from the previous step that Φ is bounded a priori in L∞ (119) we deduce that
the useful auxiliary function

c̃i(x, t) = ci(x, t)e
ziΦ(x,t) (124)

obeys ∫ T

0

∫
Ω
c̃i(x, t)

−1 |∇c̃i(x, t)|2 dxdt ≤ C∗ΓeC
∗Γ1 = C∗Γ2. (125)

Together with (119) and (115), this implies that
√
c̃i ∈ L2(0, T ;H1(Ω)), and thus c̃i ∈ L1(0, T ;Lq(Ω))

for any q ∈ [1,∞), with bounds depending only on the initial energy and growing linearly in T . More
precisely, we have that

√
c̃i ∈ L∞(0, T ;L2(Ω)) and ∇

√
c̃i ∈ L2(0, T ;L2(Ω)) and so, for any interval

[t0, t0 + τ ] ⊂ [0, T ] we have ∫ t0+τ

t0

‖
√
c̃i(t)‖2H1(Ω)dt ≤ C

∗Γ2(1 + τ) (126)

with C∗ independent of initial data and of time. Time enters in the right-hand side of the estimate because
unlike its gradient which is mean square time integrable, the

√
c̃i norms are bounded but not decaying in

time. Returning to ci and using again (119) we obtain∫ t0+τ

t0

‖ci(t)‖Lq(Ω)dt ≤ C∗Γ3(1 + τ) (127)

with Γ3 depending only on the initial energy and L2 norm of velocity via Γ, and on ρ∗ via Γ1. The constant
C∗ depends on q because we used embedding theorems.

Step 3: Local uniform bounds for ci in L2(L2).
In view of the fact that

√
c̃i is bounded in L2(0, T ;H1(Ω)) (125) we can interpolate using Ladyzhenskaya

(Gagliardo-Nirenberg) inequalities∫
Ω
|
√
c̃i(x, t)|4dx ≤ C

(∫
Ω
|
√
c̃i(x, t)|2dx

)
‖
√
c̃i(t)‖2H1(Ω), (128)

and, in view of the fact that
√
c̃i ∈ L∞(0, T ;L2(Ω)), we have∫ t0+τ

t0

∫
Ω
c̃i

2dxdt ≤ C∗Γ4(1 + τ). (129)

Using again (119) we have ∫ t0+τ

t0

∫
Ω
ci

2dxdt ≤ C∗Γ5(1 + τ). (130)

with constant Γ∗5 depending like above only on Γ and bounds on ρ∗.

Step 4: Global bound on ci in L∞(L2).
We use now (98) with F (c) = c2

2 . We have

d

dt

∫
Ω
c2
i dx ≤ −2Di

∫
Ω
|∇ci|2dx+ 2Di|zi|‖ci‖L4(Ω)‖∇Φ‖L4(Ω)‖∇ci‖L2(Ω). (131)
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We use the inequalities

‖ci‖L4(Ω) ≤ C
[
‖∇ci‖

1
2

L2(Ω)
+ ‖ci‖

1
2

L2(Ω)

]
‖ci‖

1
2

L2(Ω)
(132)

and we estimate, recalling (14), (25),

‖∇Φ‖L4(Ω) ≤ ‖∇(Φ− Φ∗)‖L4(Ω) + ‖∇Φ∗‖L4(Ω). (133)

For ‖∇(Φ− Φ∗)‖L4(Ω) we bound

‖∇(Φ− Φ∗)‖L4(Ω) ≤ C‖∇(Φ− Φ∗)‖
1
2

L2(Ω)
‖ρ− ρ∗‖

1
2

L2(Ω)
≤ C∗Γ

1
4 ‖ρ− ρ∗‖

1
2

L2(Ω)
. (134)

We used here that ‖∇(Φ(t) − Φ∗)‖2L2(Ω) is bounded in time because it is part of the energy. Putting these
together we see that

1
2
d
dt

∫
Ω c

2
i dx ≤ −Di‖∇ci‖2L2(Ω)

+DiΓ6‖∇ci‖L2(Ω)

[
‖∇ci‖

1
2

L2(Ω)
+ ‖ci‖

1
2

L2(Ω)

]
‖ci‖

1
2

L2(Ω)

[∑N
j=1 ‖cj‖

1
2

L2(Ω)
+ Γ7

]
(135)

where the constants Γ6,Γ7 depend on the initial energy, ε, all |zj | and bounds on ρ∗, Φ∗. From here we
obtain

d

2dt
A2 ≤ −δG2 + Γ6G(G

1
2 +A

1
2 )A

1
2 (A

1
2 + Γ7) (136)

for

A2(t) =
N∑
j=1

‖cj(t)‖2L2(Ω), G2(t) =
N∑
j=1

∫
Ω
|∇cj(x, t)|2dx, (137)

with slightly modified Γ6 and Γ7 and δ = minDj . Using Young inequalities we finally obtain

d

dt
A2 ≤ Γ8(A4 +A2). (138)

In view of (130) we have ∫ t0+τ

t0

A2dt ≤ NC∗Γ5(1 + τ), (139)

which, together with (138) shows that A remains bounded

sup
t0≤t≤t0+τ

A2(t) ≤ A(t0)2eΓ9(1+τ) (140)

where Γ9 depends on the initial energy, ε, all |zj | and bounds on ρ∗, Φ∗. This is the first place where data
appear in the right hand side of inequalities on their own and not through the initial energy Γ. Now we cover
the interval [0, T ] with intervals of length τ

2 where τ
2 > 0 is a fixed positive time step. In view of (139) with

t0 = 0 and τ replaced by τ
2 , because of the Chebyshev inequality there exists t0 ∈ [0, τ2 ] such that

A(t0)2 ≤ C∗Γ5τ
−1. (141)

Using this value we obtain from (140)

sup
τ
2
≤t≤τ

A2(t) ≤ C∗Γ5e
Γ9(1+τ)τ−1. (142)

Now, because of (139) in the interval [ τ2 , τ ] and the Chebyshev inequality, there is a new t0 ∈ [ τ2 , τ ] such
that (141) holds, and thus, inductively

sup
τ
2
≤t≤T

A2(t) ≤ C∗Γ5e
Γ9(1+τ)τ−1. (143)
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This bound is independent of time, and depends only on initial energy and an arbitrary positive initial time
τ
2 > 0. We obtain also that ci ∈ L∞(0, T ;L2(Ω)), by adding the inequality (140) for the first time interval,
starting at t0 = 0 and obtain thus:

sup
0≤t≤T

A2(t) ≤ C∗(A(0)2 + Γ5τ
−1)eΓ9(1+τ) = Γτ (1 +A(0)2). (144)

The right hand side does not depend of T . Returning to (136) we see that
N∑
i=1

∫ t0+τ

t0

‖∇ci‖2L2(Ω)dt ≤ Γτ (1 +A(0)2) (145)

with slightly different Γτ . The mention of τ in the constant is only as a reminder of how the bound is
achieved, but basically one thinks of τ = 1, i.e. a fixed auxilliary time step.

This methodology of obtaining L∞(dt) bounds for some positive quantity from local uniform L1(dt)
bounds (like (139)) and a local uniform doubling inequality (like (140)) is well known. It was used for
instance in [5] to prove global strong solution bounds for Navier-Stokes equations in two dimensions and it
provides the proof of the uniform Gronwall lemma.

Step 5: Global L∞(Lp) bounds for ci and bounds for∇Φ.
We improve the time integrability in (127) for p > 2. We write∫

Ω
ci(x, t)

pdx =

∫
Ω
ci(x, t)

2−δci(x, t)
p−2+δdx ≤

(∫
Ω
ci(x, t)

2dx

)1− δ
2
(∫

Ω
ci(x, t)

2(p−2+δ)
δ dx

) δ
2

and therefore, in view of (127) with q = 2(p−2+δ)
δ and (144), we have that∫ t0+τ

t0

‖ci(t)‖
p

p−2+δ

Lp dt ≤ (Γτ (1 +A(0)2))
2−δ

2(p−2+δ) Γ∗3(1 + τ) (146)

holds for any p > 2 and any 0 < δ < 2.
By taking 2 < p < 4 and δ small enough we have p

p−2+δ ≥ 2. Using the bound

‖∇(Φ− Φ∗)‖L∞(Ω) ≤ C‖ρ− ρ∗‖Lp(Ω) (147)

we obtain that ∫ t0+τ

t0

‖∇(Φ− Φ∗)‖2L∞dt ≤ Γτ (148)

holds with Γτ depending on initial energy, τ and A(0). Using (99) with F (c) = cp and arbitrary p ≥ 2 we
obtain from (148)

sup
0≤t≤T

‖ci‖Lp(Ω) ≤ Γp (149)

with Γp depending on initial energy, initial ‖ci(0)‖Lp(Ω) but not on T . This is obtained in the same manner
as the uniform bound (144): using controlled growth on overlapping short time intervals starting from values
bounded using Chebyshev inequalities. Then, returning to the elliptic equation solved by Φ (31) we obtain
uniform in time bounds for the norms of Φ in W 2,p(Ω). In particular,

‖Φ(·, t)‖W 1,∞(Ω) ≤ Γ∗∞ (150)

holds for t ≥ 0.

Step 6: Uniform bounds for c̃i.
Now we turn to the equation satisfied by c̃i

∂tc̃i = Di∆c̃i − (u+Dizi∇Φ)∇c̃i + zi((∂t + u · ∇)Φ)c̃i. (151)
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The boundary conditions are homogeneous Neumann:

∂nc̃i(x, t)| ∂Ω = 0. (152)

Because of (145) and (150) we have that, for any k = 0, 1, . . . there exists tk ∈ [k τ2 , (k + 1) τ2 ] such that

‖∇c̃i(tk)‖2L2(Ω) ≤ Γτ (1 +A(0))2. (153)

If ci(0) ∈ H1(Ω) we can take t0 = 0. We prove local uniform estimates

sup
tk≤t≤tk+τ

‖∇c̃i(t)‖2L2(Ω) +

∫ tk+τ

tk

‖∆c̃i‖2L2(Ω)dt ≤ Γτ . (154)

These are obtained by multiplying (151) by −∆c̃i and integrating. We obtain
1
2
d
dt‖∇c̃i(t)‖

2
L2(Ω) +Di‖∆c̃i(t)‖2L2(Ω)

≤ C
[
‖u(t)‖L4(Ω) +Di|zi|‖∇Φ(t)‖L4(Ω)

]
‖∇c̃i(t)‖

1
2

L2(Ω)
‖∆c̃i(t)‖

3
2

L2(Ω)

+|zi|‖∂tΦ(t) + u · ∇Φ(t)‖L4(Ω)‖c̃i(t)‖L4(Ω)‖∆c̃i(t)‖L2(Ω).

(155)

Now we use a Gronwall inequality based on several facts. In view of (150) and the consequence∫ T

0
‖u(t)‖4L4(Ω)dt ≤ Γ (156)

of the energy inequality (35), the terms involving u and ∇Φ are easily bounded. The term involving ∂tΦ is
more interesting. We use the Poisson equation and the equations (42) to write

∂tΦ =
1

ε
(−∆D)−1

(
N∑
i=1

zidiv (Di∇ci + (Dizi∇Φ− u)ci)

)
. (157)

Because (−∆D)−1∆ is bounded in L4(Ω) and (−∆D)−1div maps L2(Ω) to H1
0 (Ω) ⊂ L4(Ω), we have

‖∂tΦ(t)‖L4(Ω) ≤ C
N∑
i=1

‖ci(t)‖L4(Ω)(1 + ‖u(t)‖L4(Ω) + ‖∇Φ(t)‖L4(Ω)). (158)

Because of (149) and (150), these inequalities imply

‖∇c̃i(t)‖2L2(Ω) +

∫ t

tk

‖∆c̃i(s)‖2L2(Ω)ds ≤ Γτ‖∇c̃i(tk)‖2L2(Ω) (159)

for t ∈ [tk, tk + τ ] and this implies (154). Because [(k + 1) τ2 , (k + 2) τ2 ] ⊂ [tk, tk + τ ], from (154) we
deduce by induction

sup
0≤t≤T

‖∇c̃i(t)‖2L2(Ω) ≤ Γτ (160)

and ∫ T

0
‖∆c̃i(t)‖2L2(Ω)dt ≤ ΓτT. (161)

Returning to the local estimates, we find new tk ∈ [k τ2 , (k + 1) τ2 ] such that

‖∆c̃i(tk)‖2L2(Ω) ≤ Γτ (162)

for k ≥ 0. We use now a local energy estimate for the Navier-Stokes equation:

sup
tk≤t≤tk+τ

‖∇u(t)‖2L2(Ω) + ν

∫ tk+τ

tk

‖∆u(t)‖2L2(Ω)dt ≤ Γτ (163)
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which is based on the fact that the forcing in (15) is bounded in L2(Ω) and on standard estimates for the
nonlinearity and the Stokes operator. Using the embedding H2(Ω) ⊂ L∞(Ω) we have thus∫ tk+τ

tk

‖u(t)‖2L∞(Ω)dt ≤ Γτ (164)

and, from (154), ∫ tk+τ

tk

‖c̃i(t)‖2L∞(Ω)dt ≤ Γτ . (165)

Now we take a large p and estimate from (151)
1
p
d
dt‖c̃i(t)‖

p
Lp(Ω) + (p− 1)Di

∫
Ω |∇c̃i(x, t)|

2c̃i(x, t)
p−2dx

≤ Di|zi|‖∇Φ(t)‖L∞(Ω)

∫
Ω |∇c̃i(x, t)|c̃i(x, t)

p−1dx+ |zi|‖∂tΦ + u∇Φ‖L∞(Ω)‖c̃i(t)‖
p
Lp(Ω).

(166)

Consequently,

sup
tk≤t≤tk+τ

‖c̃i(t)‖Lp(Ω) ≤ ‖c̃i(tk)‖Lp(Ω)e
∫ tk+τ
tk

[
Di

1
2(p−1)

|zi|2‖∇Φ(t)‖2
L∞(Ω)

+|zi|‖∂tΦ(t)+u(t)∇Φ(t)‖L∞(Ω)

]
dt
.

(167)
Passing p→∞ we have

sup
tk≤t≤tk+τ

‖c̃i(t)‖L∞(Ω) ≤ ‖c̃i(tk)‖L∞(Ω)e
∫ tk+τ
tk

|zi|‖∂tΦ(t)+u(t)∇Φ(t)‖L∞(Ω)dt. (168)

Using (157) we have now enough information to bound,

‖∂tΦ(t)‖L∞(Ω) ≤ C
N∑
i=1

[‖∇ci‖Lp(Ω) + ‖Dizi∇Φ− u‖L∞(Ω)‖∇ci‖L2(Ω) + ‖ρci‖L2(Ω)] (169)

with p > 2, where we also used the fact that (−∆D)−1div maps Lp(Ω) to L∞(Ω) and (−∆D)−1 maps
L2(Ω) to L∞(Ω). Because ∇ci = e−ziΦ(∇c̃i − zic̃i∇Φ), the bound (150), the embedding H2(Ω) ⊂
W 1,p(Ω) and (154) we have ∫ tk+τ

tk

‖∂tΦ(t)‖L∞(Ω)dt ≤ Γτ (170)

and consequently, by induction, we obtain the uniform bound

sup
0≤t≤T

‖c̃i(t)‖L∞(Ω) ≤ Γτ . (171)

This then implies
sup

0≤t≤T
‖ci(t)‖L∞(Ω) ≤ Γτ . (172)

In view of (125) we have using (172) ∫ T

0
‖∇c̃i(t)‖2L2(Ω)dt ≤ Γ (173)

with Γ time independent. The Nernst-Planck equations (13) imply

∂tρ =

N∑
i=1

ziDidiv
(
e−ziΦ∇c̃i

)
− u · ∇ρ (174)

and, together with the Poisson equation (14), the bound (119) and the embedding H1(Ω) ⊂ Lp(Ω) have
then the consequence that ∫ T

0
‖∂tΦ(t)‖2Lp(Ω)dt ≤ Γ (175)
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holds for any p ∈ [1,∞). The L2 boundedness of Dirichlet Riesz transforms imply that∫ T

0
‖∇∂tΦ(t)‖2L2(Ω)dt ≤ Γ (176)

also holds. Turning to the equation (151) we obtain∫ T

0

[
‖∂tc̃i(t)‖2L2(Ω) + ‖∆c̃i(t)‖2L2(Ω)

]
dt ≤ Γ. (177)

Indeed, ∫ T

0

[
‖u(t)‖4L4(Ω) + ‖∇Φ(t)‖2L∞(Ω)

]
‖∇c̃i(t)‖2L2(Ω)dt ≤ Γ (178)

and ∫ T

0
‖(∂tΦ(t) + u(t) · ∇Φ(t))c̃i(t)‖2L2(Ω)dt ≤ Γ (179)

because of (150), (156), (160), (171), (173) and (175). This concludes the proof of Theorem 5.
Using the global existence theorem we obtain the following decay result.

THEOREM 6. Under the conditions of Theorem 5 we obtain

lim
t→∞

∫
Ω
|∇c̃i(x, t)|2 dx = 0. (180)

Proof of Theorem 6. Let
N(t) = ‖∇c̃i(t)‖2L2(Ω). (181)

The proof is done by contradiction. Assume by contradiction that there exists a sequence of times tn →∞
where

N(tn) = ‖∇c̃i(tn)‖2L2(Ω) ≥ δ > 0. (182)

The time derivative of N(t) is

N ′(t) = 2

∫
Ω
∂tc̃i(x, t)(−∆c̃i(x, t))dx. (183)

In view of (109) we have that ∫ ∞
0
|N ′(t)|dt ≤ Γ <∞. (184)

Thus the limit

N(∞) = lim
t→∞

N(t) = N(0) +

∫ ∞
0

N ′(t)dt (185)

exists, and by the contradiction assumption N(∞) ≥ δ > 0. Therefore there exists T > 0 such that
N(t) ≥ δ

2 for all t ≥ T . This is absurd, because∫ ∞
0

N(t)dt ≤ Γ2 <∞ (186)

by (108). This concludes the proof of Theorem 6.
We prove now convergence of solutions for infinite time.

THEOREM 7. Let the conditions of Theorem 5 be satisfied. Then the solution converges to a Boltz-
mann state, and the velocity converges to zero. The Boltzmann state is uniquely determined by the initial
concentrations

I0
i =

∫
Ω
ci(0)dx, (187)

and has the form
c∗i = Z−1

i e−ziΦ
∗

(188)
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with

Zi = (I0
i )−1

∫
Ω
e−ziΦ

∗
dx (189)

and with Φ∗ solving

− ε∆Φ∗ =
N∑
i=1

ziI
0
i

e−ziΦ
∗∫

Ω e
−ziΦ∗dx

(190)

with boundary conditions (27).

Proof of Theorem 7. Because of the boundary condition ∂nc̃i = 0, we have that

‖c̃i(·, t)−mi(t)‖L2(Ω) ≤ C‖∇c̃i(·, t)‖L2(Ω) (191)

where

mi(t) = |Ω|−1

∫
Ω
c̃i(x, t)dx. (192)

Thus, in view of the convergence

lim
t→∞
‖∇c̃i(·, t)‖L2(Ω) = 0 (193)

we have that

lim
t→∞
‖c̃i(·, t)−mi(t)‖L2(Ω) = 0. (194)

Let sn → ∞ be any sequence of times. By extracting a subsequence denoted tn, in view of the previous
results, we may assume without loss of generality that there exist numbers Mi ≥ 0 and a function Φ∞ such
that

lim
n→∞

mi(tn) = Mi, (195)

lim
n→∞

‖c̃i(tn)−Mi‖H1(Ω) = 0 (196)

holds in H1(Ω) and

lim
n→∞

‖Φ(tn)− Φ∞‖W 1,∞(Ω) = 0 (197)

holds in W 1,∞(Ω) by compactness of the embedding W 2,p(Ω) ⊂⊂ W 1,∞(Ω) for p > 2. Then it follows
from the above that

lim
n→∞

‖ci(tn)−Mie
−ziΦ∞‖H1(Ω) = 0. (198)

In addition, ∫
Ω
ci(x, tn)dx = I0

i (199)

follows from the zero flux boundary conditions, and thus we identify the constants Mi as

Mi = I0
i

(∫
Ω
e−ziΦ∞dx

)−1

. (200)

Passing to the limit in the equation (31) we have therefore that Φ∞ solves (190). We remark that this
equation does not depend on the sequence sn. The proof of Theorem 7 is completed by the uniqueness of
solutions of (190) (see Theorem 10 in Appendix A).



22 PETER CONSTANTIN AND MIHAELA IGNATOVA

5. Unconditional global stability for uniform selective boundary conditions

In this section we consider uniform selective boundary conditions (9). We remark that we only use the
uniform aspect, i.e. the constancy of γi and of wi = W (x)|Si , for the decay in Theorem 1. The result is the
following.

THEOREM 8. Under the assumptions of Theorem 5 a unique global strong solution of the Nernst-
Planck-Navier-Stokes system (89) with uniform selective boundary conditions

u|∂Ω = 0,
Φ|∂Ω = W (x),
W (x)|Si = wi, i = 1, . . . ,M,
ci|Si = γi, i = 1, . . . ,M,
(∂nci + zici∂nΦ)|∂Ω\Si = 0, i = 1, . . . ,M,
(∂nci + zici∂nΦ)|∂Ω = 0, i = M + 1, . . . , N

(201)

exists. The solution obeys the inequalities (101)-(113). As time tends to infinity, the velocity tends to zero
and the solutions ci converge to the Boltzmann state

c∗i = Z−1
i e−ziΦ

∗
(202)

with Zi given by (66) for i = 1, . . .M and (189) for i = M + 1, . . . , N where I0
i are given by (187), and

with Φ∗ solving the Poisson-Boltzmann equation

− ε∆Φ∗ = ρ∗ =
N∑
i=1

zic
∗
i (203)

with boundary conditions (27).

Proof of Theorem 8. The proof follows the same steps as the proof of Theorem 5. It is based on the local
existence theorem Theorem 4, which is true with the present boundary conditions and a priori estimates
described below.

The positivity of ci(x, t) follows in exactly the same way as in the case of blocking boundary conditions:
the equation (98) holds because, for i = 1, . . . ,M and x ∈ Si we have that F ′(γi) = 0 and for x ∈ ∂Ω \ Si
the normal flux vanishes, and thus integration by parts is allowed. The steps 1, 2, and 3 of the proof for
blocking boundary conditions are still valid: they do not use boundary conditions for ci. In particular (119),
(127), and (130) still hold.

Step 4: Global bound on ci in L∞(L2).
We introduce smooth time independent functions gi for i = 1, . . . ,M such that

gi| Si = γi. (204)

The evolution equations (13) can be written as

∂tci = Didiv (∇ci + zici∇Φ)− u · ∇ci. (205)

Multiplying by ci − gi and using the boundary conditions (9) which imply that

(ci − gi)(∂nci + zici∂nΦ)|∂Ω = 0, for i = 1, . . . N, (206)

we obtain after integration by parts
1
2
d
dt

∫
Ω(c2

i (x, t)− 2gi(x)ci(x, t))dx+Di

∫
Ω |∇ci(x, t)|

2dx
≤ Di|zi|‖ci‖L4(Ω)‖∇Φ‖L4(Ω)

[
‖∇ci‖L2(Ω) + ‖∇gi‖L2(Ω)

]
+Di‖∇ci‖L2(Ω)‖∇gi‖L2(Ω).

(207)

Because gi,∇gi are bounded, and the inequality (134) is still valid, the quantity

y(t) =

N∑
i=1

∫
Ω

(c2
i (x, t)− 2gi(x)ci(x, t))dx (208)
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obeys
dy

dt
≤ C(y2 + 1) (209)

and the local uniform bound
∫ t0+τ
t0

y(t)dt ≤ Γ(1 + τ). Using a similar argument as in Step 4 of the proof
of Theorem 5 we deduce the inequalities (144) and (145).

Step 5: Global L∞(Lp) bounds for ci and bounds for∇Φ.
The inequality (148) is obtained without use of boundary conditions for ci from (144), in the same manner as
for the blocking boundary conditions case, and so it is thus still valid. We take the equations (205), multiply
by F ′(ci) − F ′(gi) where F (c) = cp and integrate by parts. The boundary terms vanish, and thus, after
integrating by parts we obtain

d

dt

∫
(F (ci(t))−ci(t)F ′(gi))dx = −Di

∫
Ω

(∇ci + zici∇Φ)∇(F ′(ci)−F ′(gi))dx−
∫

Ω
ciu·∇(F ′(gi))dx.

(210)
Using (148) and (145) we obtain like in the case of blocking boundary conditions (149)

sup
0≤t
‖ci(t)‖Lp(Ω) ≤ Γp (211)

and consequently
sup
0≤t
‖Φ(t)‖W 2,p(Ω) ≤ Γp (212)

with Γp time independent.

Step 6: Uniform bounds for c̃i.
These are obtained in the exact same manner as in the case of blocking boundary conditions. The auxiliary
functions c̃i obey time independent Dirichlet boundary conditions on Si, for i ≤ M and homogeneous
Neumann conditions on the rest of the boundary and for i ≥M + 1. Therefore

(∂tc̃i∂nc̃i)| ∂Ω = 0, i = 1, . . . , N, (213)

and thus there is no contribution from the boundary when we multiply the equation (151) obeyed by c̃i by
−∆c̃i and integrate. The rest of the arguments are repeated almost verbatim and we omit further details.

6. Global existence for general selective boundary conditions

The case of general selective boundary conditions is different because the decay in Theorem 1 is no
longer generally true. We can however use the dissipative structure to obtain time dependent bounds, which
allow for growth of norms but no finite time singularities. The approach is similar to the one for blocking
and uniform selective boundary conditions once the replacement of the first step is obtained.

THEOREM 9. Under the assumptions of Theorem 5 a unique global strong solution of the Nernst-
Planck-Navier-Stokes system (89) with general selective boundary conditions

u|∂Ω = 0,
Φ|∂Ω = W (x),
ci| Si = γi, i = 1, . . . ,M,
(∂nci + zici∂nΦ)|∂Ω\Si = 0, i = 1, . . . ,M,
(∂nci + zici∂nΦ)|∂Ω = 0, i = M + 1, . . . , N

(214)

exists for any time T , and

sup
0≤t≤T

[‖ci(t)‖W 2,q(Ω) + ‖∂tci(t)‖Lq(Ω)] ≤ Cq(T ) (215)
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and ∫ T

0
[‖∂tu‖2Lp(Ω) + ‖u(t)‖2W 2,p(Ω)]dt ≤ Up(T ) (216)

hold. The constants Cq(T ) and Up(T ) depend on the initial data and T .

Proof of Theorem 9. We start from the fundamental structure (59) for the energy density (45) relative to a
Boltzmann state with Zi > 0 chosen below. In view of (41) we observe that the general selective boundary
conditions imply that the densities(

δE
δci

)
|Si

= log γi + ziW (x) + logZi (217)

are known on the boundary for i = 1, . . . ,M . We consider a smooth, time independent function W̃ (x) of
x ∈ Ω such that

W̃ (x)|Si = W (x) (218)
and choose

Zi = (γi)
−1 (219)

for i = 1, . . . ,M. The rest of Zi may be arbitrary positive numbers. We then write (59) as

DtE =

N∑
i=1

(
δE
δci
− ziW̃ + ziW̃

)
Dtci − F · u+R, (220)

add |u|2
2kBTK

and integrate. Moving the term ziW̃∂tci to the left hand side, integrating by parts using (43) and

the fact that on the selected portions Si of the boundary we have that δE
δci
− ziW̃ = 0, while on all the rest

the normal derivative ∂n δEδci = 0, we obtain

d
dt

[
E +

‖u(t)‖2
L2(Ω)

2kBTK
−
∑N

i=1

∫
Ω ziW̃ (x)ci(x, t)dx

]
+D + ν

kBTK
‖∇u(t)‖2L2(Ω)

= −
∑N

i=1

∫
Ω zici(x, t)u(x, t) · ∇W̃ (x)dx+

∑N
i=1Di

∫
Ω zici∇

(
δE
δci

)
∇W̃dx.

(221)

Thus
d
dt

[
E +

‖u(t)‖2
L2(Ω)

2kBTK
−
∫

Ω ρ(x, t)W̃ (x)dx

]
+D + ν

kBTK
‖∇u(t)‖2L2(Ω)

= −
∫

Ω ρ(x, t)u(x, t) · ∇W̃ (x)dx+
∑N

i=1Dizi
∫

Ω ci∇
(
δE
δci

)
∇W̃dx.

(222)

Let

F = E +
‖u(t)‖2L2(Ω)

2kBTK
−
∫

Ω
ρ(x, t)W̃ (x)dx, (223)

G = E +
‖u(t)‖2L2(Ω)

2kBTK
, (224)

and
D1 = D +

ν

kBTK
‖∇u(t)‖2L2(Ω). (225)

We remark that
|F − G| ≤ C(1 + E) (226)

because W̃ is bounded. The first term in the right hand side of (222) can be estimated as follows,∣∣∣∫Ω ρ(x, t)u(x, t) · ∇W̃ (x)dx
∣∣∣ =

∣∣∣∫Ω(ρ(x, t)− ρ∗(x, t) + ρ∗(x, t))u(x, t) · ∇W̃ (x)dx
∣∣∣

≤
∣∣∣ε ∫Ω ∆(Φ− Φ∗)u · ∇W̃dx

∣∣∣+
∫

Ω |ρ
∗||u(x, t)||∇W̃ |dx ≤ ε

∫
Ω |∇(Φ− Φ∗)|∇(u · ∇W̃ )|dx+ C

√
G

≤ CG + C(1 +
√
D1)
√
G.

(227)
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The second term is estimated using the dissipation D and the boundedness of∇W̃ ,∣∣∣∑N
i=1Dizi

∫
Ω ci∇

(
δE
δci

)
∇W̃dx

∣∣∣ ≤ C√D√∑N
i=1

∫
Ω ci(x, t)dx

≤ C
√
D
√
E + C.

(228)

We have thus
dF
dt
≤ CF + C, (229)

and therefore
sup

0≤t≤T
G(t) ≤ Γ(T ) (230)

and also ∫ T

0
D1(t)dt ≤ Γ(T ) (231)

for any T > 0 with Γ(T ) depending only on T , initial data and boundary conditions. These estimates
replace step 1, and the rest follows without new ideas like in the proof of existence for the uniform selective
boundary conditions.

7. Conclusion

We proved global existence of solutions for two dimensional Nernst-Planck-Navier-Stokes equations in
bounded domains for arbitrary large initial data, arbitrary valences, voltages, different species diffusivities,
any dielectric constant and arbitrary Reynolds numbers, in the cases of both blocking and general selective
boundary conditions. Convergence to uniquely determined Boltzmann states and zero fluid velocity occurs
not only for blocking boundary conditions, but also for uniform selective conditions. The latter include
complex nontrivial configurations in which large voltage differences can be applied.

8. Appendix A: Poisson-Boltzmann Equations

We discuss here briefly ideas of proofs and remarks about the Poisson-Boltzmann equations encountered
in the text.
Proof of Theorem 2. The boundary conditions for Φ∗ are (27) with W the boundary trace of a function W̃ ,

W = W̃|∂Ω (232)

with W̃ ∈ H1(Ω) ∩ L∞(Ω). We let

A = {Φ ∈ H1(Ω) | G(Φ) ∈ L1(Ω), and γ0(Φ) = W} (233)

where
γ0(Φ) = Φ|∂Ω (234)

is the trace map γ0 : H1(Ω)→ H
1
2 (∂Ω), and define, for Φ ∈ A,

E(Φ) =

∫
Ω

ε

2
|∇Φ|2 +G(Φ)dx. (235)

PROPOSITION 1. There exists Φ∗ ∈ A attaining the minimum of E:

E(Φ∗) = min
Φ∈A

E(Φ). (236)

Proof of Proposition 1. Let α = infΦ∈AE(Φ). Because E(Φ) ≥ 0, there is no problem with the existence
and finiteness of α ≥ 0. Let Φj ∈ A be such that limj→∞E(Φj) = α. The sequence Φj is bounded
in H1(Ω) and therefore the sequence Φj − W̃ is bounded in H1

0 (Ω). We can thus pass to a subsequence
so that Φj − W̃ converge strongly in L2(Ω), and consequently we can pass to a subsequence of Φj that
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converges weakly in H1(Ω), strongly in L2(Ω) and almost everywhere to a function Φ∗. Because of the
weak convergence in H1(Ω) we have∫

Ω
|∇Φ∗|2dx ≤ lim inf

j→∞

∫
Ω
|∇Φj |2dx.

Because of the almost everywhere convergence and Fatou’s lemma for the nonnegative functions G(Φj) we
have that ∫

Ω
G(Φ∗)dx ≤ lim inf

j→∞

∫
Ω
G(Φj)dx,

and because of the subadditivity of lim inf we have

E(Φ∗) ≤ lim inf
j→∞

E(Φj) = α.

The inequalities above and the strong convergence in L2 establish that Φ∗ ∈ H1(Ω) and G(Φ∗) ∈ L1(Ω).
Because the trace operator γ0 is continuous between Hilbert spaces, hence weakly continuous, it follows
that γ0(Φ∗) = W , and thus Φ∗ ∈ A. This concludes the proof of the proposition.

We introduce
B = H1

0 (Ω) ∩ L∞(Ω) (237)
and observe that A + B ⊂ A (the sum of any element of A and any element of B belongs to A). Then,
fixing ψ ∈ B we observe that the function s 7→ E(Φ∗ + sψ) is differentiable and has a minimum at s = 0.
Carrying out the differentiation we arrive at the variational formulation:

PROPOSITION 2. Let Φ∗ be the minimum of E on A. Then, for any ψ ∈ B we have

ε

∫
Ω
∇Φ∗∇ψdx+

∫
Ω
G′(Φ∗)ψdx = 0. (238)

We use now the variational formulation to gain regularity in a well established manner. We define

∂ihf(x) =
f(x+ hei)− f(x)

h
(239)

where ei = (0, . . . , 0, 1, 0, . . . , 0) is the canonical basis of Rd, and h 6= 0. We note that

(∂ih)∗ = −∂i−h (240)

where the dual is with respect to the L2 scalar product. We take a function χ′1 of one variable that is smooth,
even, compactly supported in the interval [−2, 2], is nonincreasing for positive x and equals identically 1 on
[−1, 1] and identically 0 on [−2,−3

2 ]∪[3
2 , 2]. We define χ1(x) =

∫ x
0 χ
′
1(s)ds and rescale χ′M (x) = χ′1

(
x
M

)
,

and define χM (x) =
∫ x

0 χ
′
M (s)ds. Note that χM is odd. We take another function χ ∈ C∞0 (Ω). For any

1 ≤ i ≤ d, M > 1 and h 6= 0, with |h| < 1
2dist(suppχ, ∂Ω) we consider the test function

ψ(x) := (∂ih)∗[χ(x)χM (∂ihΦ∗(x))]. (241)

We easily check that ψ ∈ B. Now we apply the variational formulation (238). Let us describe the terms
separately

ε
∫

Ω∇Φ∗∇ψdx = ε
∫

Ω ∂
i
h∇Φ∗(x)∇[χ(x)χM (∂ihΦ∗(x))]dx

= ε
∫

Ω∇∂
i
hΦ∗(x)χ(x)∇[χM (∂ihΦ∗(x))]dx+ ε

∫
Ω∇∂

i
hΦ∗(x)∇χ(x)χM (∂ihΦ∗(x))dx

= ε
∫

Ω∇∂
i
hΦ∗(x)χ(x)χ′M (∂ihΦ∗(x))∇∂ihΦ∗(x)dx+ ε

∫
Ω∇∂

i
hΦ∗(x)∇χ(x)χM (∂ihΦ∗(x))dx

= ε
∫

Ω |∇∂
i
hΦ∗(x)|2χ(x)χ′M (∂ihΦ∗(x))dx+ ε

∫
Ω∇χ(x)∇FM (∂ihΦ∗(x))dx

= ε
∫

Ω |∇∂
i
hΦ∗|2χχ′M (∂ihΦ∗)dx− ε

∫
Ω ∆χFM (∂ihΦ∗)dx.

(242)

We used above the fact that ∂ih and ∇ commute. The function FM is given by

FM (Φ) =

∫ Φ

0
χM (t)dt. (243)
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We note that, from our definitions

FM (Φ) ≤ 1

2
Φ2. (244)

We obtained thus far:

ε

∫
Ω
∇Φ∗∇ψdx = ε

∫
Ω
|∇∂ihΦ∗|2χχ′M (∂ihΦ∗)dx− ε

∫
Ω

∆χFM (∂ihΦ∗)dx. (245)

Regarding the second term in (238) we have∫
Ω
G′(Φ∗)ψdx =

∫
Ω
∂ihG

′(Φ∗(x))χM (∂ihΦ∗(x))χ(x)dx. (246)

Now we observe that
∂ihG

′(Φ∗(x)) = G′′(S)∂ihΦ∗(x) (247)
with S some point on the segment [Φ∗(x),Φ∗(x+ h)]. Observing that

ΦχM (Φ) ≥ 0 (248)

holds for any Φ we obtain from the convexity of G that∫
Ω
G′(Φ∗)ψdx ≥ 0. (249)

Adding (245) and (249), using (238) and (244) we obtain

ε

∫
Ω
|∇∂ihΦ∗|2χχ′M (∂ihΦ∗)dx ≤ εCχ

∫
Ω
|∂ihΦ∗|2dx. (250)

Letting M →∞ and using the Lebesgue dominated convergence theorem we obtain

ε

∫
Ω
|∇∂ihΦ∗|2χdx ≤ εCχ

∫
Ω
|∂ihΦ∗|2dx ≤ CχE(Φ∗). (251)

As a consequence, for any relatively compact subdomain Ω1 ⊂⊂ Ω we have

ε‖Φ∗‖2H2(Ω1) ≤ CE(Φ∗). (252)

This inequality implies, in d = 2, 3, that Φ∗ ∈ Cα(Ω1). For higher dimensions we can show that G′(Φ∗) ∈
L2
loc(Ω). In order to do so, we take the test function

ψ(x) = χ(x)χM (G′(Φ∗(x))) (253)

with χ ∈ C∞0 (Ω) and χM as above. It is easy to check that ψ ∈ B and thus we can apply (238). We obtain

0 = ε
∫

Ω∇Φ∗∇ψ +
∫

ΩG
′(Φ∗)ψ = ε

∫
Ω |∇Φ∗|2χ′M (G′(Φ∗))G′′(Φ∗)χdx

+ε
∫

Ω∇Φ∗χM (G′(Φ∗))∇χdx+
∫

ΩG
′(Φ∗)χM (G′(Φ∗))χdx.

(254)

Now we note that

xχM (x) ≥ 1

2
χ2
M (x) (255)

which can be verified easily by differentiation, noticing that, in view of the fact that the functions are even
it is enough to check for nonnegative x, and using the fact that χM (x) ≤ x for nonnegative x. We obtain,
using a Schwartz inequality:

ε

∫
Ω
|∇Φ∗|2χ′M (G′(Φ∗))G′′(Φ∗)χdx+

1

2

∫
Ω
G′(Φ∗)χM (G′(Φ∗))χdx ≤ Cε2

∫
Ω

|∇χ|2

χ
|∇Φ∗|2dx. (256)

Letting M → ∞ and using the fact that xχM (x) is a nonnegative function which is nondecreasing in M ,
we obtain from the monotone convergence theorem and the convexity of G∫

Ω
G′(Φ∗)2χdx ≤ Cε2

∫
Ω

|∇χ|2

χ
|∇Φ∗|2dx. (257)
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Thus, G′(Φ∗) ∈ L2
loc(Ω) and, using elliptic regularity we can bootstrap and obtain bounds for higher deriva-

tives in any dimension d. We will not pursue this here.
The existence and interior regularity have been established. The boundedness of the solution follows

from the maximum principle. Indeed, there exists a number M depending on Zi, zi and W , sufficiently
large so that supx∈∂Ω |W (x)| < M , and G′(φ) > 0 for φ ≥ M , G′(φ) < 0 for φ ≤ −M . Then it is easily
verified that Φ∗ cannot attain a maximum larger than M , nor a minimum less than −M . It is here that we
used the fact that the zi-s include both positive and negative numbers.

The formal calculation for the uniqueness is simple: If Φ∗i ∈ A, for i = 1, 2, are two weak solutions
then

− ε∆(Φ∗1 − Φ∗2) +G′(Φ∗1)−G′(Φ∗2) = 0 (258)
with Φ∗1 − Φ∗2 ∈ H1

0 (Ω). Taking the scalar product with Φ∗1 − Φ∗2 and observing that

(G′(Φ∗1)−G′(Φ∗2))(Φ∗1 − Φ∗2) ≥ 0 (259)

holds pointwise because of the convexity of G, we obtain that∫
Ω
|∇(Φ∗1 − Φ∗2)|2dx = 0. (260)

The rigorous argument is as follows: by the interior regularity of solutions, (258) holds almost everywhere
in Ω, and the inequality (259) is pointwise true. Therefore the function

(∆(Φ∗1 − Φ∗2))(Φ∗1 − Φ∗2)

which a priori is known to be in L1
loc(Ω) is nonnegative almost everywhere. Thus, from interior regularity,

denoting ψ = Φ∗1 − Φ∗2 we have

|∇ψ|2 ≤ 1

2
∆ψ2

almost everywhere. The left hand side is in L1(Ω), as ψ ∈ H1
0 (Ω), and the right hand side is in L1

loc(Ω) by
interior regularity. Taking now w1, the positive eigenfunction corresponding to the first eigenvalue of −∆
with homogeneous boundary conditions, we obtain∫

Ω
w1|∇ψ|2dx ≤

1

2

∫
Ω
w1∆ψ2dx = −λ1

2

∫
Ω
w1ψ

2dx.

The integration by parts is allowed because ψ ∈ H1
0 (Ω) and w1 can be approximated in H1(Ω) by C∞0

functions. This shows that ψ = 0, because, as it is well known, w1(x) ≥ Cd(x) > 0 where d(x) is the
distance from x to the boundary of the domain. This concludes the sketch of the proof of Theorem 2.

Let us turn now to the equation (84) which is the Poisson-Boltzmann equation (190) for the case of
blocking boundary conditions for the ionic species, namely,

− ε∆Φ∗ =
N∑
i=1

ziI
0
i

e−ziΦ
∗∫

Ω e
−ziΦ∗

. (261)

We recall that the constants I0
i are given positive numbers and the boundary conditions are (27), and more-

over
Zi = (I0

i )−1

∫
Ω
e−ziΦ

∗
dx. (262)

There are several approaches to show existence. Showing that the equation (85) can be solved by varying
the constants Zi to solve (262) with solutions of (79) is a nontrivial possible route. A proof of existence
using the fact that solutions are critical points of the energy

ε

2

∫
Ω
|∇Φ(x)|2dx+

N∑
i=1

I0
i log

(∫
Ω
e−ziΦ(x)dx

)
(263)

is the most direct route. This is the approach in [8] where a special situation is treated, but the proof can be
adapted for the situation at hand. The energy is bounded below by Jensen’s inequality and an approximation
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is used to control the exponential integrals in the logarithms. This provides a variational solution. The Jensen
inequality is used to show that Zi(Φ) are bounded away from zero and infinity, uniformly on minimizing
sequences, and then boundedness of the variational solution is obtained via the maximum principle, in the
same manner as in the local case. Regularity of bounded weak solutions follows from the fact that the
equation is semilinear elliptic and the smoothness of the boundary and of the boundary conditions. The
uniqueness result is the following.

THEOREM 10. Any two W 1,∞(Ω) solutions of (84) with the same Dirchlet boundary conditions (22)
must coincide.

Proof of Theorem 10. Indeed, let Φ
(i)
∞ , i = 1, 2 be the two solutions and let ψ be their difference,

ψ = Φ(2)
∞ − Φ(1)

∞ . (264)

Then ψ satisfies

− ε∆ψ(x) +

N∑
i=1

z2
i I

0
i

∫ 1

0
piλ(x)

(
ψ(x)− (ψ, piλ)L2(Ω)

)
dλ = 0 (265)

with homogeneous boundary conditions. Here

piλ =
e−ziΦλ∫

Ω e
−ziΦλdx

(266)

and
Φλ = Φ(1)

∞ + λψ. (267)

Taking the scalar product of (265) with ψ we obtain

0 = ε‖∇ψ‖2L2(Ω) +
N∑
i=1

z2
i I

0
i

∫ 1

0
dλ

∫
Ω
piλ(x)

(
ψ(x)− (ψ, piλ)L2(Ω)

)2
dx (268)

and therefore ψ = 0. This uses the fact that piλ are probability densities (i.e. they are nonnegative and have
integrals equal to 1).

We consider now the Poisson-Boltzmann equation for the uniform selective boundary conditions,

− ε∆Φ∗ =

M∑
i=1

ziZ
−1
i e−ziΦ

∗
+

N∑
i=M+1

ziI
0
i

e−ziΦ
∗∫

Ω e
−ziΦ∗dx

(269)

with boundary conditions (22). A direct existence proof can be constructed using the fact that solutions are
critical points of

ε

2

∫
Ω
|∇Φ(x)|2dx+

∫
Ω

M∑
i=1

Z−1
i e−ziΦ(x)dx+

N∑
i=M+1

I0
i log

(∫
Ω
e−ziΦ(x)dx

)
, (270)

which is bounded below by Jensen’s inequality. Boundedness of solutions follows like above from the
maximum principle, regularity follows from the semilinear elliptic character and the uniqueness follows in
the manner of Theorem 10. It is interesting to note that the linearization of equation (86) at a state Φ is the
linear elliptic nonlocal operator

LΦ(ψ) = −ε∆ψ +G′′(Φ)ψ +

N∑
i=M+1

z2
i I

0
i (ψ − (ψ, pi)L2(Ω))pi (271)

where G(Φ) =
∑M

i=1 Z
−1
i e−ziΦ and pi = e−ziΦ(x)∫

Ω e
−ziΦ(x)dx

. This operator with domain H2(Ω) ∩ H1
0 (Ω) is

selfadjoint in L2(Ω), positive and invertible when Φ ∈ L∞(Ω). These properties can be used to produce a
nontrivial Newton iteration procedure for computing solutions of (86).
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Let us make a few remarks about (82). If W1(x) ≤ W2(x) are two boundary conditions, and if Φ∗1,Φ
∗
2

denote the corresponding solutions, (assumed to be continuous up to the boundary) it follows from the
maximum principle that Φ∗1(x) ≤ Φ∗2(x) everywhere. Indeed, from G′′ > 0 it follows from the equations
that Φ1 − Φ2 cannot attain its maximum in the interior of the domain.

If Zi together with zi satisfy the neutrality condition
N∑
i=1

zi
Zi

= 0, (272)

then G′(0) = 0. In this case, using the fact that G′(0) = 0 and the fact that 0 solves the equation with zero
boundary conditions, it follows that ifW (x) ≥ 0 on the boundary, the corresponding solution is nonnegative
Φ∗(x) ≥ 0. Then, considering M = max |W (x)| on the boundary it follows that Φ∗(x) ≤ Φ∗M (x) where
Φ∗M solves the problem (82) with constant boundary condition equal to M . Because Φ∗M (x) ≥ 0 and
G′(Φ) > 0 for Φ > 0 it follows again from the maximum principle that Φ∗M (x) ≤ M . Therefore, for any
W we have

−M ≤ Φ∗(x) ≤M. (273)
This bound is remarkable in that it does not depend on zi, Zi, once the neutrality condition is assumed.
The considerations above can be made rigorous, for instance by adding a small multiple of G2(Φ) to the
variational problem, and then removing it. The minimization of∫

Ω

[ ε
2
|∇Φ|2 +Gr(φ)

]
dx (274)

with
Gr(Φ) = G(Φ) + rG2(Φ) (275)

with r > 0 on the corresponding admissible set Ar = {Φ ∈ H1(Ω) | Gr(Φ) ∈ L1(Ω), γ0(Φ) = W} yields
bounded solutions with the same L∞ bounds, and their regularity up to the boundary is classical. Removing
r we deduce the bounds (273) for Φ∗ and then again we can apply classical results to obtain regularity up to
the boundary.

Let us provide here an explicit calculation for a one dimensional case, similar to to one used in [12] in
a half-space, using the neutrality condition. Let

− εΦ′′ +G′(Φ) = 0 (276)

on the interval [0, H] with boundary conditions

Φ(H) = W, Φ(0) = 0 (277)

with W > 0. Multiplying (276) by Φ′ and integrating once we obtain

ε(Φ′)2 = 2(G(Φ)−A) (278)

with A a constant of integration. If we are to have smooth solutions, A must not exceed the minimum of
G(Φ) on the interval. Now G is convex and the global minimum of G is G(0) because G′(0) = 0. Because
0 is in the range of Φ (it is a boundary condition) it follows that the minimum of G(Φ) is G(0). We write
A = G(0)− α2 with α ≥ 0. We choose α such that∫ W

0

dΦ√
G(Φ)−G(0) + α2

dΦ =

√
2

ε
H. (279)

The fact that we can solve this equation requires a small argument, based on the fact that when α = 0 the
integral diverges and the fact that G is convex. Thus

C1Φ2 ≤ G(Φ)−G(0)

for Φ ∈ [0,W ] because of convexity, and

G(Φ)−G(0) ≤ C2Φ2
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for Φ ∈ [0,Φ0] because of continuity of the second derivative of G, with C1 > 0, C2 and Φ0 independent
of W . Therefore part of the integral in (279) is bounded below by∫ Φ0

0

dΦ√
C2Φ2 + α2

≥ 1√
2C2

log

(
Φ0

√
C2

α

)
and the rest from above by ∫ W

Φ0

dΦ√
C1Φ2 + α2

≤ 1√
C1

log

(
W

Φ0

)
.

The sum therefore can be made arbitrarily large, as W is fixed (even if it depends on ε) and α is chosen
small enough. On the other hand, if α is large enough, then the integral on the left hand side of (279) can
be made arbitrarily small. Thus, as α is varied, the range of the integral contains the target value in the right
hand side of (279).

We then set

P (Φ) =

∫ Φ

0

dΨ√
G(Ψ)−G(0) + α2

dΨ (280)

and

Φ∗(y) = P−1

(√
2

ε
y

)
(281)

and conclude the construction.

9. Appendix B

We sketch here for the sake of completeness our proof of Theorem 4. Local existence based on methods
of maximal regularity was presented in [2].

We consider an iteration:

∂tci = Di(∆ci + zidiv (ci∇Φo))− u · ∇ci (282)

with
− ε∆Φo = ρo (283)

and
∂tu+ u · ∇u+∇p = ν∆u− (kBTK)ρo∇Φo, divu = 0, (284)

boundary conditions
(∇ci + zici∇Φo)| ∂Ω · n = 0 (285)

Φo| ∂Ω = W (286)
and

u| ∂Ω = 0. (287)

We are assuming that ρo(x, t) is given by a previous calculation, and we are interested in inductive bounds.
We do not mention explicitly the counting index of the iteration. We observe that the linear equations (282)
with time dependent boundary conditions (285) are equivalent to the linear equations

∂tc̃i = Di∆c̃i − (u+Dizi∇Φo)∇c̃i + zi((∂t + u · ∇)Φo)c̃i (288)

with homogeneous Neumann boundary conditions

∂nc̃i| ∂Ω = 0 (289)

for the dependent variable
c̃i = cie

ziΦo . (290)
This observation clarifies the nature of the equations: Obviously, if ρo, and consequently Φo, u are smooth,
then c̃i, and consequently ci are smooth. This allows us to perform calculations on the preferred form (282).
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We start by estimating norms ‖ci(t)‖Lp(Ω) for p > d. Integrating by parts and using the boundary conditions
we have

1

p(p− 1)Di

d

dt
‖ci(t)‖pLp(Ω) = −

∫
Ω

(|∇ci|2 + zici∇Φo · ∇ci)cp−2
i dx (291)

and therefore
1

p(p− 1)Di

d

dt
‖ci(t)‖pLp(Ω) +

1

2

∫
Ω
|∇ci|2cp−2

i dx ≤ z2
i

2
‖∇Φo(t)‖2L∞(Ω)‖ci(t)‖

p
Lp(Ω). (292)

Consequently, we have
‖ci(t)‖Lp(Ω) ≤ e‖ci(0)‖Lp(Ω) (293)

for all 0 ≤ t ≤ T , provided ∫ T

0
‖∇Φo(t)‖2L∞(Ω)dt ≤

2

(p− 1)Diz2
i

. (294)

Let us consider the inductive situation, when

ρo(x, t) =

N∑
i=1

zic
o
i (x, t), (295)

and let us assume the time interval [0, T0] we have that

sup
0≤t≤T0

‖coi (t)‖Lp(Ω) ≤ Ap (296)

for some p > d. Using elliptic regularity, we have that

‖∇Φo‖L∞(Ω) ≤ CΩ[‖ρo‖Lp(Ω) + ‖W‖
W

3
2 ,p(∂Ω)

] (297)

and, taking into account (295) and the assumption (296) we have that

sup
0≤t≤T0

‖∇Φo‖L∞(Ω) ≤ CW (Ap + 1) (298)

where we took

CW = CΩ(
N∑
i=1

|zi|+ ‖W‖
W

3
2 ,p(∂Ω)

), (299)

a constant that depends only on the data of the problem. The condition (294) is then satisfied if

TC2
W (Ap + 1)2 ≤ 2

(p− 1)Diz2
i

, (300)

and, if that is the case, we guarantee (293) on the interval [0, T ]. Therefore, choosing

Ap = e‖ci(0)‖Lp(Ω) (301)

we conclude that the assumption (296) is preserved in the iteration,

sup
0≤t≤T0

‖ci(t)‖Lp(Ω) ≤ e‖ci(0)‖Lp(Ω) = Ap, (302)

if
T0 ≤

2

(p− 1) maxi(Diz2
i )
C−2
W

(
e‖ci(0)‖Lp(Ω) + 1

)−2
. (303)

Let us note that from (292) we have also∫ T0

0

∫
Ω
|∇ci|2cp−2

i dxdt ≤ 2p+ 1

Dip(p− 1)
App. (304)

In order to provide further inductive information we require that p > 2d and that T0 satisfies the constraint
(303) with a possibly larger constant M ,

T0 ≤M−1
(
e‖ci(0)‖Lp(Ω) + 1

)−2
. (305)
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At this point we have required only

M ≥
(p− 1) maxi(Diz

2
i )C2

W

2
. (306)

We provide below the justification for the additional requirement

M ≥ 16e2(q − 1) max
i

(Diz
2
i )C2

z |Ω|
2(p−q)
pq . (307)

We remark that the condition (305) depends only on the norms ‖ci(0)‖Lp(Ω) of the initial data and on
the parameters of the problem, but not on the iteration step, nor on higher regularity data, or velocity initial
data.

The equation (282) can be written as

∂tci + div ji = 0 (308)

with
ji = −Di(∇ci + zici∇Φo) + uci. (309)

We take the time derivative and use the fact that the boundary conditions imply

ji| ∂Ω · n = 0. (310)

The time derivative ∂tci obeys thus
∂t(∂tci) + div ∂t(ji) = 0 (311)

with boundary condition
∂tji| ∂Ω · n = 0. (312)

We multiply (311) by (∂tci)|∂tci|q−2 for some q ≥ 2 and integrate by parts. We obtain

1

q

d

dt

∫
Ω
|∂tci|qdx =

∫
Ω

(∂tji · ∇((∂tci)|∂tci|q−2)dx. (313)

This yields
1

q(q−1)
d
dt

∫
Ω |∂tci|

qdx = −Di

∫
Ω

[
|∇∂tci|2 + zi(∂tci)∇Φo · ∇∂tci

]
|∂tci|q−2dx

+
∫

Ω ci [(∂tu−Dizi∇∂tΦo) · ∇∂tci] |∂tci|q−2dx.
(314)

Consequently we have
1

q(q−1)
d
dt‖∂tci‖

q
Lq(Ω) + Di

4

∫
Ω |∇∂tci|

2]|∂tci|q−2dx

≤ Diz
2
i

2 ‖∇Φo(t)‖2L∞‖∂tci‖
q
Lq(Ω) + 1

Di
‖ci(∂tu−Dizi∇∂tΦo)‖2Lq(Ω)‖∂tci‖

q−2
Lq(Ω),

(315)

where we used a Hölder inequality with exponents 2, q, 2q
q−2 and Schwartz inequalities. We have from (315)

d

dt
‖∂tci‖2Lq(Ω) ≤ (q − 1)Diz

2
i ‖∇Φo(t)‖2L∞‖∂tci‖2Lq(Ω) +

2(q − 1)

Di
‖ci(∂tu−Dizi∇∂tΦo)‖2Lq(Ω). (316)

From (294) we obtain that

‖∂tci(t)‖2Lq(Ω) ≤ e
2‖∂tci(0)‖2Lq(Ω) +

4e2(q − 1)

Di

∫ T0

0

[
‖ci∂tu‖2Lq(Ω) +D2

i z
2
i ‖ci∇∂tΦo)‖2Lq(Ω)

]
dt (317)

holds for all t ≤ T0. We treat the two integral terms in the right hand side of (317) differently. Because

− ε∆∂tΦo = ∂tρo (318)

with boundary condition
∂tΦo| ∂Ω = 0 (319)

we have, from elliptic regularity

‖∂tΦo(t)‖W 1,∞(Ω) ≤ CΩ‖∂tρo‖Lq(Ω). (320)
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Let us assume that
sup

0≤t≤T0

‖∂tcoi (t)‖Lq(Ω) ≤ Bq. (321)

Then it follows that
sup

0≤t≤T0

‖∂tΦo(t)‖W 1,∞(Ω) ≤ CzBq (322)

with

Cz = CΩ

N∑
i=1

|zi|. (323)

Thus for the second integral term in the right hand side of (317) we obtain that

4e2(q − 1)

∫ T0

0
Diz

2
i ‖ci∇∂tΦo)‖2Lq(Ω)dt ≤ 4e2(q − 1)Diz

2
iC

2
zB

2
qA

2
qT0 (324)

which implies

4e2(q − 1)

∫ T0

0
Diz

2
i ‖ci∇∂tΦo)‖2Lq(Ω)dt ≤

1

4
B2
q (325)

if q ≤ p, in view of (307 ) of condition (305). For the first integral term we use p = 2q and bound

4e2(q − 1)

Di

∫ T0

0
‖ci∂tu‖2Lq(Ω)dt ≤

4e2(q − 1)

Di
A2
p

∫ T0

0
‖∂tu‖2Lp(Ω)dt. (326)

Now we use the bound ([11], [21])∫ T0

0
‖∂tu‖2Lp(Ω)dt ≤ C

(
‖u(0)‖2W 1,p(Ω) +

∫ T0

0
‖F (t)‖2Lp(Ω)dt

)
(327)

which is valid on any time interval in d = 2 and on a short time interval, independent of iteration in d = 3.
Here

F = −(kBTK)ρo∇Φo (328)

obeys in view of (298), (302)

‖F (t)‖Lp(Ω) ≤ (kBTK)CzApCW (Ap + 1) (329)

and consequently

4e2(q − 1)

Di

∫ T0

0
‖ci∂tu‖2Lq(Ω)dt (330)

≤ 4e2(q − 1)

Di
A2
pC
[
‖∂tu(0)‖2Lp(Ω) + (kBTK)2C2

zA
2
pC

2
W (Ap + 1)2T0

]
. (331)

Consequently, using (305)
4e2(q − 1)

Di

∫ T0

0
‖ci(∂tu)‖2Lq(Ω)dt ≤

1

4
B2
q (332)

if we impose
B2
q ≥ C1A

2
p(‖u(0)‖2W 1,p(Ω) +A2

p) + 2e2‖∂tci(0)‖2Lq(Ω) (333)

with C1 depending only on the parameters of the problem. Then, returning to (317) we have

‖∂tci(t)‖2Lq ≤ B2
q (334)

for all t ≤ T0. We return now to the equation (282) written as

−∆ci = − 1

Di
∂tci + (zi∇Φo −

1

Di
u)∇ci −

zi
ε
ρoci (335)
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and esitimate the right hand side in Lq using (295), (296), (298), (302) and (317)

‖∆ci(t)‖Lq(Ω) ≤
1

Di
Bq +

(
|zi|CW (Ap + 1) +

1

Di
‖u(t)‖L∞(Ω)

)
‖∇ci(t)‖Lq(Ω) +

 |zi|
ε

N∑
j=1

|zj |

A2
p.

(336)
In order to finish we use the variables c̃i defined in (290) which obey homogeneous Neumann boundary
conditions. They obey therefore elliptic bounds

‖c̃i‖W 2,q(Ω) ≤ CΩ

(
‖∆c̃i‖Lq(Ω) + ‖c̃i‖Lq(Ω)

)
(337)

and, integrating by parts we see that

‖∇c̃i‖2Lq(Ω) ≤ CΩ‖c̃i‖Lq(Ω)

(
‖∆c̃i‖Lq(Ω) + ‖c̃i‖Lq(Ω)

)
. (338)

Returning to the variables ci we have, in view of (296) and (298)

‖c̃i‖Lq(Ω) ≤ e|zi|CW (Ap+1)‖ci‖Lq(Ω) ≤ e|zi|CW (Ap+1)Ap|Ω|
1
q
− 1
p = H0(Ap), (339)

and similarly,
‖∇ci‖Lq(Ω) ≤ H1(Ap)

(
‖∇c̃i‖Lq(Ω) + ‖ci‖Lq(Ω)

)
(340)

and
‖∆c̃i‖Lq(Ω) ≤ H2(Ap)(‖∆ci‖Lq + 1) (341)

with H1 and H2 explicit functions of Ap. Therefore, from (336) we obtain

sup
0≤t≤T0

‖ci‖W 2,q(Ω) ≤ H3(Ap, Bq, ‖u0‖W 1,q(Ω)) (342)

whereH3 is an explicit positive continuous function, nondecreasing in each of its arguments, and depending
also on the parameters zi, ν, ε but not on the iteration step.

We construct thus by induction a sequence of solutions of linear equations (282), (283), (284) which
obey uniform bounds (302) on a common interval of time [0, T0], determined by the condition (305) with
(306) and (307). We have also the bounds for higher derivatives (334), (327), (342). Passing to the limit in
the sequence is straightforward and yields a short time solution with the stated bounds.

The case of selective boundary conditions is entirely similar and we omit further details.
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