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ABSTRACT. We consider the limit of vanishing Debye length for ionic diffusion in fluids, described by the
Nernst-Planck-Navier-Stokes system. In the asymptotically stable cases of blocking (vanishing normal flux)
and uniform selective (special Dirichlet) boundary conditions for the ionic concentrations, we prove that the
ionic charge density ρ converges in time to zero in the interior of the domain, in the limit of vanishing Debye
length (ε → 0). The order of the limits is important, we take first the long time limit and then the limit of
vanishing Debye length. Thus, our main new results in these time asymptotically stable cases concern the
vanishing of the ionic charge densities in steady states, as ε → 0. The infinite time behaviors follow as
corollaries of our previous works [5], [6].
For the unstable regime of Dirichlet boundary conditions for the ionic concentrations, we prove bounds that
are uniform in time and ε. We also consider electroneutral boundary conditions, for which we prove that
electroneutrality ρ → 0 is achieved at any fixed ε > 0, exponentially fast in time in Lp, for all 1 ≤ p < ∞.
The results hold for two oppositely charged ionic species with arbitrary ionic diffusivities, in bounded domains
with smooth boundaries.

1. Introduction

Interior electroneutrality is the vanishing of electrical charge away from boundaries. This is an equi-
librium feature of electrolytes in fluids, at distances larger than the Debye length from charged boundaries.
Ionic diffusion of electrolytes in solvents is decribed by the Nernst-Planck-Navier-Stokes (NPNS) system.
We study the NPNS system in an open connected bounded domain Ω ⊂ Rd, d = 2, 3 with smooth boundary.
The domain need not be simply connected. The system describes the time evolution of ionic concentrations
in a Newtonian fluid [11]. Ions are transported by the fluid, and diffuse under the influence of the gradi-
ent of an electrochemical potential generated by the local charge density ρ and the applied voltage on the
boundaries. The fluid is forced by the electrical force exerted by the ionic charges. The system is given by
the Nernst-Planck equations

∂tci + u · ∇ci = Didiv (∇ci + zici∇Φ) (1)
for i = 1, 2, ...,m, coupled to the Poisson equation

− ε∆Φ = ρ (2)

and to the Navier-Stokes equations

∂tu+ u · ∇u− ν∆u+∇p = −Kρ∇Φ, ∇ · u = 0 (3)

where

ρ =
m∑
i=1

zici. (4)

The function ci(x, t) represents the local concentration of the i-th ionic species, Φ(x, t) is the electrical
potential and ρ(x, t) is the local charge density. The constants zi and Di > 0 are, respectively, the ionic
valence and ionic diffusivity of the i-th ionic species. Although it is sometimes mathematically inconvenient,
for most applications it is important to allow for unequal diffusivities. The constant ε > 0 is a rescaled
dielectric permittivity of the solvent and is proportional to the square of the Debye length. The Debye
length is a screening length characterizing the electrostatic potential resulting from the charges. The Debye
length is typically very small, of the order of a few nanometers in electrolytes. The kinematic viscosity of
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the fluid is given by ν > 0, and K is a positive coupling constant given by the product of the Boltzmann
constant kB and the absolute temperature of the system TK . The electrical potential Φ and charge density ρ
have been nondimensionalized so that (kBTK/e)Φ and eρ respectively are their dimensional counterparts,
where e is elementary charge.

The electrochemical potentials are
µi = log ci + ziΦ (5)

for i = 1, 2, ...,m. In terms of the electrochemical potential, the Nernst-Planck equations (1) are given by

(∂t + u · ∇)ci = Didiv (ci∇µi), i = 1, . . .m. (6)

In this work, we consider the case of two ionic species,m = 2, with ionic valences z1 = 1 and z2 = −1.
The boundary conditions for Φ are inhomogeneous Dirichlet boundary conditions

Φ(x, t)|∂Ω = W (x) (7)

where W (x) is a given function of space, which we assume to be time independent and smooth. The
boundary conditions for the Navier-Stokes equations are no slip, homogeneous Dirichlet,

u|∂Ω = 0. (8)

We consider four sets of boundary conditions for ci. Blocking boundary conditions, which correspond to
impermeable boundaries that block ionic transport are

(BL) n · (∇ci + zici∇Φ)|∂Ω = 0, i = 1, 2 (9)

where n is the outward pointing unit normal vector along ∂Ω. Therefore, the blocking boundary conditions
are homogeneous Neumann conditions for the electrochemical potentials,

(BL) n · ∇µi|∂Ω = 0, i = 1, 2. (10)

Dirichlet boundary conditions for the ionic concentrations model ion-selective (or permselective) mem-
branes along which a fixed concentration of ions is maintained. They are

(DI) ci|∂Ω = γi, i = 1, 2, (11)

where γi = γi(x) are positive smooth time-independent functions on the boundary. In view of the Dirichlet
boundary condition (7) for the potential, the Dirichlet boundary conditions are inhomogeneous Dirichlet
boundary conditions for the electrochemical potentials

(DI) µi|∂Ω = log(γi) + ziW, i = 1, 2. (12)

Uniform selective boundary conditions [5, 6] are

(US) ci|Si = γi, n · (∇ci + zici∇Φ)|∂Ω\Si = 0, i = 1, 2 (13)

where Si ⊂ ∂Ω are boundary portions. We require additionally that

(log γi(x) + ziW (x))|Si = logZ−1
i , (14)

holds with Zi > 0 constant in space and time when Si 6= ∅. We take this to hold for at least one of i = 1, 2,
otherwise the boundary conditions (US) coincide with (BL). The uniform selective boundary conditions
thus require the constancy of the electrochemical potential on a portion of the boundary, and the vanishing
of its normal derivative on the rest of the boundary,

(US) µi|Si = logZ−1
i , n · ∇µi|∂Ω\Si = 0. (15)

Electroneutral boundary conditions are

(EN) c1|∂Ω = c2|∂Ω, n · ∇(c1 + c2)|∂Ω = 0. (16)
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We denote the total salt concentration by σ = c1 + c2. In terms of ρ and σ, the electroneutral boundary
conditions (EN) are homogeneous Dirichlet boundary conditions for the charge density and homogeneous
Neumann conditions for the salt concentration,

ρ|∂Ω = 0, n · ∇σ|∂Ω = 0. (17)

In the absence of requirement (14), the boundary conditions (DI) are an example of general selective
boundary conditions [5]. The choice of boundary conditions for the ionic concentrations and the electrical
potential plays an important role in the dynamics of the solutions of the NPNS system, and several different
boundary conditions, including those considered in this paper, have been studied in the literature. For two
dimensions and (BL) boundary conditions, global well posedness and asymptotic behavior are obtained in
[1, 2, 4, 9] for the system without fluid. The full NPNS system with (BL) in two dimensions is addressed
in [3, 14], where for the electrical potential Φ, Robin and homogeneous Dirichlet boundary conditions,
respectively, are taken and global existence and stability are shown. For three dimensions, global well
posedness is known in some but not all physically relevant cases. The lack of well posedness results in three
dimensions is not solely due to the coupling with the Navier-Stokes equations, for which global existence
is a major open problem. Even for the system uncoupled to fluid flow or the system coupled to Stokes flow
instead, global well posedness in three dimensions is unknown in full generality. In [15], global existence
of weak solutions in three dimensions is shown for homogeneous Neumann boundary conditions on the
potential. Recently, in [10], the authors obtained analogous results in the case of no boundaries, Ω = R3.

For (BL) and (US) boundary conditions for the ionic concentrations and inhomogeneous Dirichlet
boundary conditions for the potential, global existence of strong solutions of the NPNS system is known
in two dimensions for arbitrary large initial data [5]. For the same boundary conditions in three dimensions,
global smooth solutions exist for initial conditions that are sufficiently small perturbations of steady state
solutions [6]. In all these cases with global existence, as time tends to infinity, the solutions converge to
unique stationary solutions selected by the initial total concentrations and the boundary conditions. In the
Dirichlet case (DI), global existence was shown in [7] for any spatial dimension by establishing uniform
bounds depending on the parameter ε. In this latter case, we do not expect stability results, as numerical
simulations, experiments and rigorous analysis of simplified models suggest that instabilities may occur in
this regime [8, 12, 13, 16].

The main results of this paper are as follows. In the cases with global existence and stability (BL) and
(US), we show that the charge density ρ vanishes in the interior of the domain Ω in the long time limit
t → ∞, in the limit of vanishing Debye length, ε → 0. That is, for any fixed initial conditions in 2D and
any compact K included in Ω, we have

lim
ε→0

lim
t→∞

sup
x∈K
|ρ(x, t)| = 0. (18)

The same result holds in 3D with the same boundary conditions, for small perturbations of steady states.
This result is a mathematical verification of the physical fact that in the stable cases, electroneutrality (ρ ∼ 0)
holds away from the boundaries.

In [5] it was shown that for each fixed ε > 0 the solutions (c1, c2,Φ, u) converge in time to the steady
state solutions (c∗1ε, c

∗
2ε,Φ

∗
ε , 0), where Φ∗ε is the unique solution of the Poisson-Boltzmann equation

(PBε) − ε∆Φ∗ε =
e−Φ∗ε

Z1
− eΦ∗ε

Z2
(19)

subject to Dirichlet data (7). The constants Zi, i = 1, 2, are given by

Z−1
i = I0

(∫
Ω
e−ziΦ

∗
ε dx

)−1

(20)

with z1 = 1, z2 = −1 in the (BL) case. In the (US) case, Zi is given by (14) if Si 6= ∅. If Si = ∅, then Zi
is given by (20), as in the (BL) case.
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With Φ∗ε thus defined, the stationary ionic concentrations c∗i ε are given by the Boltzmann states,

c∗i ε(x) =
e−ziΦ

∗
ε (x)

Zi
. (21)

The choices of Zi > 0 are precisely such that ‖ci(0)‖L1 = I0 = ‖c∗i ε‖L1 in the (BL) case and such that
ci|Si = γi = c∗i ε|Si in the (US) case.

In [5], the convergence ci → c∗i ε as t → ∞ holds in the space H1. It is not difficult to verify that
convergence in L∞ can be obtained by taking into consideration the uniform bounds in stronger norms (e.g.
L2
tH

2
x), also established in the same paper. Thus, we know that for each fixed ε > 0, ‖ρ(t)− ρ∗ε‖L∞ → 0 as

t→∞ where ρ∗ε = c∗1ε−c∗2ε is the charge density of the Boltzmann state. In order to prove the convergence
(18) in these cases, what remains to be shown is that for each compact K ⊂ Ω the uniform convergence

lim
ε→0

sup
x∈K
|ρ∗ε (x)| = 0 (22)

holds. Here and in the rest of the paper, the subscript ε is used to emphasize that Φ∗ε , and correspondingly
ρ∗ε , arises as the solution to (PBε), for a specific choice of ε and boundary conditions.

In the case of the boundary conditions (BL) and (US) we distinguish three different types of (US)
boundary conditions. One type is when both the cation concentration (c1) and anion concentration (c2)
have selective boundary portions (i.e. Si 6= ∅ for both i = 1, 2), and two additional types are when one
ionic species has a selective boundary portion while the other species is subject to purely blocking boundary
conditions. Thus, in total, there are four different boundary conditions for which the uniform convergence
(22) must be shown. These are proved in Theorems 1–4 below. The proofs share some common elements
and are based on the respective variational structures of the four Poisson-Boltzmann equations.

In the case of (DI) boundary conditions, we do not expect stability in general. We show that for arbi-
trary (DI) boundary conditions, the ionic concentrations do not grow larger than allowed by the Dirichlet
and initial data. In particular, the ionic concentrations obey uniform bounds that do not depend on ε and
consequently the charge densities are bounded uniformly, independently of the Debye length. The bound is
obtained from a maximum principle for the two-by-two system of evolution equations for the concentrations.
Such a uniform bound is not known in general.

In the last section, we show that under (EN) boundary conditions, electroneutrality is achieved expo-
nentially fast in Lp, 2 ≤ p <∞. In this case

‖ρ(t)‖Lp ≤ Cpe−λpt (23)

holds from arbitrary initial data, at each fixed ε, with Cp, λp independent of ε. The a priori upper bound
(23) is proved on the basis of the p = 2 case and a maximum principle for the system with these boundary
conditions.

2. Asymptotic electroneutrality of equilibria

We consider here Poisson-Boltzmann equations corresponding to blocking and uniformly selective
boundary conditions. In these stable cases, the solutions of the Poisson-Boltzmann equations uniquely deter-
mine the steady states of the Nernst-Planck-Navier-Stokes equations. The concentrations are in Boltzmann
states corresponding to the potential obtained by solving the relevant Poisson-Boltzmann equation, and the
fluid is at rest. In this section we investigate the singular limit ε → 0 of solutions of Poisson-Boltzmann
equilibria, for four different boundary conditions. In each of these cases, the corresponding solutions of the
Nernst-Planck-Navier-Stokes equations are known to be nonlinearly globally time asymptotically stable [5].
The infinite time behavior, discussed in the next section, follows from the stability of steady states and their
asymptotic interior electroneutrality.

In the first result, Theorem 1, we address uniform selective boundary conditions in which both the anions
and the cations have selective boundary conditions.
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THEOREM 1. Let Z1, Z2 > 0 be fixed given positive constants, and let Φ∗ε be the unique solution of the
Poisson-Boltzmann equation

− ε∆Φ∗ε = ρ∗ε (24)
with

ρ∗ε =
e−Φ∗ε

Z1
− eΦ∗ε

Z2
, (25)

and with boundary condition Φ∗ε |∂Ω = W . Then for each compact subset K ⊂ Ω, we have

lim
ε→0

sup
x∈K
|ρ∗ε (x)| = 0. (26)

PROOF. The proof of Theorem 1 uses the variational nature of the solution to the elliptic equation (24),
(25) with Dirichlet data W . The solution of this problem is the unique minimizer of the energy functional

Jε[ψ] =

∫
Ω

(
ε

2
|∇ψ|2 +

e−ψ

Z1
+
eψ

Z2

)
dx (27)

on the set A = {ψ ∈ H1(Ω) | eψ, e−ψ ∈ L1(Ω), ψ|∂Ω = W} [5]. We prove that the limit

lim
ε→0

min
ψ∈A

Jε[ψ] = lim
ε→0

Jε[Φ
∗
ε ] (28)

exists and we compute it explicitly. This allows us to deduce the convergence of ρ∗ε to 0. We define

G(y) =
e−y

Z1
+
ey

Z2
(29)

so that Jε[ψ] =
∫

Ω

(
ε
2 |∇ψ|

2 +G(ψ)
)
dx, and we also define

Z =
1

2
log

Z2

Z1
. (30)

We note that G(y) attains its unique global minimum at y = Z.
Step 1. We have

lim
ε→0

min
ψ∈A

Jε[ψ] = lim
ε→0

Jε[Φ
∗
ε ] = G(Z)|Ω|. (31)

Indeed, the lower bound for Jε[·],

Jε[Φ
∗
ε ] ≥

∫
Ω
G(Φ∗ε ) dx ≥ G(Z)|Ω|, (32)

follows directly from (27), (29) and (30). Next, we take as test functionsψδ ∈ A, which satisfy the properties
1) ψδ − Z is supported in Ω\Ωδ, with Ωδ = {x ∈ Ω | infy∈∂Ω |x − y| > δ}, 2) |∇ψδ| ∼ O(δ−1), and 3)
|ψδ| ≤ |Z|+ sup |W |. For such test functions, we see that

Jε[ψδ] ≤
ε

2
CW δ

−1 +

∫
Ω

e−ψδ

Z1
+
eψδ

Z2
dx (33)

where CW is a constant depending on W and Z but is independent of δ. Then choosing for instance
δ(ε) = ε1/2 and applying the dominated convergence theorem for the second term on the right hand side,
we obtain

lim sup
ε→0

Jε[Φ
∗
ε ] ≤ lim sup

ε→0
Jε
[
ψδ(ε)

]
≤ G(Z)|Ω|. (34)

Together with the lower bound (32), the conclusion (31) follows, and the proof of Step 1 is complete.
Step 2. We claim that

lim
ε→0

Φ∗ε (x) = Z (35)

holds uniformly for x ∈ K. To prove the claim, we first observe that because G is convex, we have

∆(G(Φ∗ε )) = G′′(Φ∗ε )|∇Φ∗ε |2 +
1

ε
G′(Φ∗ε )

2 ≥ 0 (36)
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where we used the fact that ε∆Φ∗ε = G′(Φ∗ε ). Thus the function x 7→ G(Φ∗ε (x)) is subharmonic. Then, if
B = Br is a ball centered at x0 ∈ K with radius r = d(∂Ω, ∂K) = inf{|x − y| |x ∈ ∂Ω, y ∈ ∂K}, we
have ∫

B
G(Φ∗ε ) dx ≥ G(Φ∗ε (x0))|B|. (37)

Thus
Jε[Φ

∗
ε ] ≥

∫
Ω
G(Φ∗ε ) dx =

∫
Ω\B

G(Φ∗ε ) dx+

∫
B
G(Φ∗ε ) dx

≥ G(Z)|Ω\B|+G(Φ∗ε (x0))|B|
= G(Z)|Ω|+ (G(Φ∗ε (x0))−G(Z))|B|.

(38)

Thus, from (31), we have
lim
ε→0

Jε[Φ
∗
ε ] = G(Z)|Ω|, (39)

and recalling that G(y) attains its global minimum at y = Z, we obtain that G(Φ∗ε (x0)) → G(Z) and thus
that Φ∗ε (x0) → Z as ε → 0. The convergence is uniform in K because we can choose a ball B of radius r
for each x0 ∈ K and because the convergence rate in (39) does not depend on the choice of x0.

The fact that (35) holds completes the proof of Theorem 1 because we have that ρ∗ε (x) = −G′(Φ∗ε (x))
and G′(Z) = 0. �

Next we consider the case of (BL) boundary conditions.

THEOREM 2. Let I0 > 0 be given and let Φ∗ε be the unique solution of the Poisson-Boltzmann equation

− ε∆Φ∗ε = ρ∗ε (40)

with

ρ∗ε = I0

(
e−Φ∗ε∫

Ω e
−Φ∗ε dx

− eΦ∗ε∫
Ω e

Φ∗ε dx

)
(41)

and with boundary condition Φ∗ε |∂Ω = W . Then for each compact K ⊂ Ω, we have

lim
ε→0

sup
x∈K
|ρ∗ε (x)| = 0. (42)

PROOF. The unique solution of (40)–(41) with Dirichlet data W is the minimizer of the functional

Iε[ψ] =
ε

2

∫
Ω
|∇ψ|2 dx+ I0 log

(∫
Ω
e−ψ dx

∫
Ω
eψ dx

)
(43)

on the set A = {ψ ∈ H1(Ω) | eψ, e−ψ ∈ L1(Ω), ψ|∂Ω = W} [5].
Step 1. For the functional defined above in (43), we have

lim
ε→0

min
ψ∈A

Iε[ψ] = lim
ε→0

Iε[Φ
∗
ε ] = 2I0 log |Ω|. (44)

The proof of (44) closely follows that of (31). First, we observe that by Cauchy-Schwarz inequality we have

Iε[Φ
∗
ε ] =

ε

2

∫
Ω
|∇Φ∗ε |2 dx+ I0 log

(∫
Ω
e−Φ∗ε dx

∫
Ω
eΦ∗ε dx

)
≥ I0 log

(∫
Ω

1 dx

)2

= 2I0 log |Ω|.

(45)

Next, we take as test functions ψδ ∈ A with the following properties: 1) ψδ is supported in Ω\Ωδ, 2)
|∇ψδ| ∼ O(δ−1), and 3) |ψδ| ≤ sup |W |. Using these test functions, we obtain, as in the proof of (31),
taking for instance δ(ε) = ε

1
2 and using dominated convergence,

lim sup
ε→0

Iε[Φ
∗
ε ] ≤ lim sup

ε→0
Iε[ψδ(ε)] ≤ 2I0 log |Ω|. (46)
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The second inequality holds because, on one hand the limit limε→0 ε
∫

Ω |∇ψδ|
2dx = 0, in view of the

scaling of δ and the fact that the measure of the support of ψδ vanishes in the limit, and on the other hand by
the Lebesgue dominated convergence theorem whereby limε→0

∫
Ω e
±ψδ(x)dx = |Ω|. Combining (45) and

(46), we obtain (44).
Step 2. We have

lim
ε→0

∫
Ω
e−Φ∗ε dx

∫
Ω
eΦ∗ε dx = |Ω|2. (47)

Indeed, we estimate as in (45),

Iε[Φ
∗
ε ] ≥ I0 log

(∫
Ω
e−Φ∗ε dx

∫
Ω
eΦ∗ε dx

)
≥ 2I0 log |Ω|. (48)

By (44), the left hand side converges to 2I0 log |Ω| in the limit as ε → 0. Thus the middle term also
converges to the same value, and (47) follows.
Step 3. We have the L1 convergence

lim
ε→0
‖ρ∗ε‖L1 = 0. (49)

Toward the proof of (49), we set

Ai(ε) =
1

|Ω|

∫
Ω
e−ziΦ

∗
ε dx (50)

for i = 1, 2, with z1 = 1, z2 = −1, and we claim that

lim
ε→0

∥∥∥∥1− e−ziΦ
∗
ε

Ai(ε)

∥∥∥∥
L1

= 0. (51)

In order to show (51), we take advantage of the strong correlation between the two concentrations. Denoting
by ‖ · ‖ the L2 norm and by (·, ·) the L2 inner product, we have

‖u‖2‖v‖2 = |(u, v)|2 + ‖z‖2‖v‖2, (52)

where, assuming |u| > 0 and v 6= 0 in L2,

z = u− (u, v)

(v, v)
v = u

(
1− (u, v)

(v, v)

v

u

)
. (53)

Setting u = eΦ∗ε/2 and v = e−Φ∗ε/2, (52) together with the Cauchy-Schwarz inequality gives∫
Ω
eΦ∗ε dx

∫
Ω
e−Φ∗ε dx = |Ω|2 +

∫
Ω
eΦ∗ε

(
1− e−Φ∗ε

A1(ε)

)2

dx

∫
Ω
e−Φ∗ε dx

≥ |Ω|2 +

(∫
Ω

∣∣∣∣1− e−Φ∗ε

A1(ε)

∣∣∣∣ dx)2

.

(54)

Then, since the left hand side converges to |Ω|2 by (47), we obtain the conclusion (51) for i = 1. The i = 2
case is obtained analogously by switching u, v in the definition of z.

From (51) we have

lim
ε→0
‖ρ∗ε‖L1 ≤

1

|Ω|
lim
ε→0

(∥∥∥∥1− e−Φ∗ε

A1(ε)

∥∥∥∥
L1

+

∥∥∥∥1− eΦ∗ε

A2(ε)

∥∥∥∥
L1

)
= 0, (55)

and thus, (49) holds.
Step 4. We prove bounds on Φ∗ε uniform in ε. More precisely, for all ε > 0 and x ∈ Ω, we have

inf W ≤ Φ∗ε (x) ≤ supW. (56)

Indeed, suppose Φ∗ε attains an interior global maximum value exceeding supW , say at x0 ∈ Ω. Then at x0

we must have ∆Φ∗ε ≤ 0, so that
e−Φ∗ε (x0)∫
Ω e
−Φ∗εdx

− eΦ∗ε (x0)∫
Ω e

Φ∗εdx
≥ 0 (57)



8 PETER CONSTANTIN, MIHAELA IGNATOVA, AND FIZAY-NOAH LEE

Rearranging the terms in (57), we obtain(
eΦ∗ε (x0)

)2
≤
∫

Ω e
Φ∗εdx∫

Ω e
−Φ∗εdx

≤ |Ω|−2

(∫
Ω
eΦ∗εdx

)2
(58)

where the second inequality follows from

|Ω|2 ≤
∫

Ω
eΦ∗εdx

∫
Ω
e−Φ∗εdx. (59)

Thus, Φ∗ε must be constant, but this is a contradiction, because Φ∗ε (x0) > supW . The upper bound is proved
and the lower bound is proved analogously.
Step 5. We have the L2 convergence

lim
ε→0
‖ρ∗ε‖L2 = 0. (60)

Indeed, we obtain

lim
ε→0

∥∥∥∥1− e−ziΦ
∗
ε

Ai(ε)

∥∥∥∥
L2

= 0 (61)

for i = 1, 2, z1 = 1, z2 = −1, from (51), because∫
Ω

∣∣∣∣1− e−ziΦε

Ai(ε)

∣∣∣∣2 dx ≤ ∥∥∥∥1− e−ziΦε

Ai(ε)

∥∥∥∥
L1

∥∥∥∥1− e−ziΦε

Ai(ε)

∥∥∥∥
L∞

(62)

and, because (56) yields a uniform bound of the L∞ norm independent of ε.
Step 6. The map x 7→ (ρ∗ε (x))2 is subharmonic.
Recalling (41),

ρ∗ε = I0

(
e−Φ∗ε∫

Ω e
−Φ∗ε dx

− eΦ∗ε∫
Ω e

Φ∗ε dx

)
, (63)

a direct computation gives

∆ρ∗ε = ρ∗ε

(
I0

ε|Ω|

(
e−Φ∗ε

A1(ε)
+

eΦ∗ε

A2(ε)

)
+ |∇Φ∗ε |2

)
. (64)

Thus, ρ∗ε∆ρ
∗
ε ≥ 0, from which it follows that ∆(ρ∗ε )

2 = 2ρ∗ε∆ρ
∗
ε + 2|∇ρ∗ε |2 ≥ 0.

We conclude now the proof of Theorem 2. As in the proof of Theorem 1, we fix x0 ∈ K and consider
the ball B = Br centered at x0 with radius r = d(∂Ω, ∂K). By subharmonicity, we have

‖ρ∗ε‖2L2 =

∫
Ω

(ρ∗ε (x))2 dx ≥ |B|(ρ∗ε (x0))2. (65)

Thus in light of (60), we obtain the desired conclusion (42). �

Finally, we consider the two remaining cases of (US) boundary conditions.

THEOREM 3. Let Z1 > 0 and I2 > 0 be given and let Φ∗ε be the unique solution of the Poisson-
Boltzmann equation

− ε∆Φ∗ε = ρ∗ε (66)
with

ρ∗ε =
e−Φ∗ε

Z1
− I2

eΦ∗ε∫
Ω e

Φ∗ε dx
(67)

and with boundary condition Φ∗ε |∂Ω = W . Then for each compact K ⊂ Ω, we have

lim
ε→0

sup
x∈K
|ρ∗ε (x)| = 0. (68)
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PROOF. To prove Theorem 3, it is useful to consider first the auxiliary problem of solving

− ε∆φ∗ε = ρ̃∗ε (69)

with

ρ̃ε =
e−φ

∗
ε

Z̃1

− I2
eφ
∗
ε∫

Ω e
φ∗ε dx

(70)

with boundary conditions
φ∗ε (x)|∂Ω = W̃ (x) = W (x) + w (71)

with w > 0 a constant to be specified, and Z̃1 defined by

log Z̃−1
1 = log γ1 +W + w = logZ1

−1 + w. (72)

We fix w > 0 large enough so that
1

Z̃1

− I2

|Ω|
> 0. (73)

We emphasize that such a choice of w depends on γ1, W , I2 and |Ω|, but does not depend on ε. The
condition (73) is used below in the proof of (87).

The unique solution of (69)–(71) is the minimizer of the functional

Hε[ψ] =

∫
Ω

(
ε

2
|∇ψ|2 +

e−ψ

Z̃1

)
dx+ I2 log

∫
Ω
eψ dx (74)

on the set Ã = {ψ ∈ H1(Ω) | eψ, e−ψ ∈ L1(Ω), ψ|∂Ω = W̃}.
For Hε[·], we observe that from Jensen’s inequality, we have the lower bound

Hε[ψ] ≥
∫

Ω

(
e−ψ

Z̃1

+
I2

|Ω|
ψ

)
dx+ I2 log |Ω| (75)

so that defining

K(y) =
e−y

Z̃1

+
I2

|Ω|
y, (76)

we can write
Hε[ψ] ≥

∫
Ω
K(ψ) dx+ I2 log |Ω|. (77)

The function K(y) attains its unique global minimum at y = Z ′ where

Z ′ = log
|Ω|
I2Z̃1

. (78)

Step 1. We have the limit

lim
ε→0

min
ψ∈Ã

Hε[ψ] = lim
ε→0

Hε[φ
∗
ε ] = K(Z ′)|Ω|+ I2 log |Ω|. (79)

We use a similar argument as in the proof of (31). The lower bound corresponding to (32) is given by

Hε[ψ] ≥
∫

Ω
K(ψ) dx+ I2 log |Ω| ≥ K(Z ′)|Ω|+ I2 log |Ω|. (80)

The upper bound corresponding to (34) is given by considering test functions ψδ ∈ Ã satisfying 1) ψδ − Z ′
is supported in Ω\Ωδ, 2) |∇ψδ| ∼ O(δ−1), and 3) |ψδ| ≤ |Z ′|+ sup |W̃ |.
Step 2. We have

lim sup
ε→0

∫
Ω
eφ
∗
ε dx <∞. (81)

Indeed, by definition, we get

Hε[φ
∗
ε ] =

∫
Ω

(
ε

2
|∇φ∗ε |2 +

e−φ
∗
ε

Z̃1

)
dx+ I2 log

∫
Ω
eφ
∗
ε dx ≥ I2 log

∫
Ω
eφ
∗
ε dx (82)



10 PETER CONSTANTIN, MIHAELA IGNATOVA, AND FIZAY-NOAH LEE

so the conlusion follows from (79).
Step 3. We claim a uniform upper bound on φ∗ε

lim sup
ε→0

sup
x∈Ω

φ∗ε (x) <∞. (83)

The estimate

eφ
∗
ε ≤ max

{(
1

I2Z̃1

∫
Ω
eφ
∗
εdx

) 1
2

, esup W̃

}
(84)

follows from a maximum principle argument. Indeed, if supΩ φ
∗
ε = sup∂Ω φ

∗
ε , then there is nothing to prove.

So we may assume supΩ φ
∗
ε > sup∂Ω φ

∗
ε . Let x0 ∈ Ω be a point where the maximum value is attained. At

this point we have ∆φ∗ε ≤ 0 and therefore ρ̃∗ε ≥ 0. That is,

e−φ
∗
ε (x0)

Z̃1

− I2
eφ
∗
ε (x0)∫

Ω e
φ∗ε dx

≥ 0, (85)

thus,
1

I2Z̃1

∫
Ω
eφ
∗
ε dx ≥ e2φ∗ε (x0) ≥ e2φ∗ε , (86)

which yields (84). Now, from (84) and (81), we deduce (83).
Step 4. We have

lim sup
ε→0

∫
Ω
e−φ

∗
ε dx <∞. (87)

From (79) and (75), we obtain that there exists a constantC independent of ε such that for all ε small enough,∫
Ω

(
e−φ

∗
ε

Z̃1

+
I2

|Ω|
φ∗ε

)
dx < C. (88)

Then, because |φ∗ε | ≤ exp |φ∗ε |, we have∫
Ω

(
e−φ

∗
ε

Z̃1

− I2

|Ω|
e|φ
∗
ε |
)
dx < C (89)

from which it follows that∫
Ω

e−φ
∗
ε

Z̃1

dx−
∫
φ∗ε<0

I2

|Ω|
e−φ

∗
ε dx < C +

∫
φ∗ε≥0

I2

|Ω|
eφ
∗
ε dx < C ′ (90)

where C ′ is independent of ε, due to (81). The proof of (87) is concluded by noting that the left hand side is
bounded below by (

1

Z̃1

− I2

|Ω|

)∫
Ω
e−φ

∗
ε dx (91)

and recalling (73).
Step 5. We have

lim sup
ε→0

sup
x∈Ω
|φ∗ε (x)| <∞. (92)

We claim that

e−φ
∗
ε ≤ max


(
I2Z̃1

|Ω|2

∫
Ω
e−φ

∗
εdx

) 1
2

, e− inf W̃

 (93)

holds. Indeed, we may assume without loss of generality that infΩ φ
∗
ε < inf∂Ω φ

∗
ε . For x0 ∈ Ω such that

φ∗ε (x0) = infΩ φ
∗
ε , we know that 0 ≥ −ε∆φ∗ε (x0) = ρ̃∗ε (x0). That is,

e−φ
∗
ε (x0)

Z̃1

− I2
eφ
∗
ε (x0)∫

Ω e
φ∗ε dx

≤ 0 (94)
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which, after rearranging and using Cauchy-Schwarz, gives

e−2φ∗ε ≤ e−2φ∗ε (x0) ≤ I2Z̃1
1∫

Ω e
φ∗εdx

≤ I2Z̃1

|Ω|2

∫
Ω
e−φ

∗
εdx. (95)

In view of (87) we have that e−φ
∗
ε (and hence−φ∗ε ) is uniformly bounded from above for all ε small enough.

Together with (83) we obtain (92).
Step 6. We claim

lim
ε→0

∥∥∥∥∥1− eφ
∗
ε

1
|Ω|
∫

Ω e
φ∗εdx

∥∥∥∥∥
L2

= 0. (96)

We denote

Aε =
1

|Ω|

∫
Ω
eφ
∗
εdx. (97)

Doing a Taylor expansion of log x around Aε and evaluating at x = eφ
∗
ε , we have

φ∗ε = log eφ
∗
ε = logAε +

1

Aε
(eφ
∗
ε −Aε)−

1

2ξ2
(eφ
∗
ε −Aε)2 (98)

where ξ > 0 is a value in between eφ
∗
ε and Aε. In particular,

ξ ≤ max{eφ∗ε , Aε}. (99)

Thus, if view of the uniform bounds (92) on φ∗ε , we obtain that ξ ≤ C for some C > 0 independent of ε, for
all ε small enough. Therefore, for small ε,

logAε ≥ φ∗ε −
1

Aε
(eφ
∗
ε −Aε) +

1

2C2
(eφ
∗
ε −Aε)2. (100)

Integrating and using the definition of Aε, we obtain

logAε ≥
1

|Ω|

(∫
Ω
φ∗εdx+

1

2C2

∫
Ω

(eφ
∗
ε −Aε)2dx

)
. (101)

Then we compute,

Hε[φ
∗
ε ] ≥

∫
Ω

e−φ
∗
ε

Z̃1

dx+ I2 log

∫
Ω
eφ
∗
ε dx

≥
∫

Ω

e−φ
∗
ε

Z̃1

+
I2

|Ω|
φ∗ε dx+

I2

2C2|Ω|

∫
Ω

(eφ
∗
ε −Aε)2dx+ I2 log |Ω|

≥K(Z ′)|Ω|+ I2 log |Ω|+ I2

2C2|Ω|

∫
Ω

(eφ
∗
ε −Aε)2dx.

(102)

By (79), the left hand side converges toK(Z ′)|Ω|+I2 log |Ω| in the limit ε→ 0. It follows that eφ
∗
ε−Aε → 0

in L2. Furthermore, due to the uniform bounds (92) on φ∗ε , we obtain 1 − eφ∗ε /Aε → 0 in L2 in the limit
ε→ 0, thus completing the proof of (96).
Step 7. We have

lim
ε→0

∥∥K(φ∗ε )−K(Z ′)
∥∥
L1 = 0. (103)

From the lower bound (77) and the bound K(φ∗ε ) ≥ K(Z ′), we deduce that

Hε[φ
∗
ε ]− (K(Z ′)|Ω|+ I2 log |Ω|) ≥

∫
Ω

(
K(φ∗ε )−K(Z ′)

)
dx (104)

and from (79), the left hand side converges to 0 and thus (103) follows.
Step 8. We establish

lim
ε→0
‖φ∗ε − Z ′‖L2 = 0. (105)



12 PETER CONSTANTIN, MIHAELA IGNATOVA, AND FIZAY-NOAH LEE

As in the proof of (96), we consider the Taylor expansion of K,

K(φ∗ε ) = K(Z ′) +K ′(Z ′)(φ∗ε − Z ′) +
K ′′(ξ)

2
(φ∗ε − Z ′)2 (106)

where ξ is a value in between Z ′ and φ∗ε . In particular, since K ′′(y) = e−y/Z̃1, we have

K ′′(ξ) ≥ min

(
e−φ

∗
ε

Z̃1

,
e−Z

′

Z̃1

)
. (107)

Then, by the uniform bounds (92) on φ∗ε , we conclude that K ′′(ξ) ≥ C for some C > 0 independent of ε,
for all ε small enough. Thus, recalling that K ′(Z ′) = 0, we obtain for small ε,

K(φ∗ε )−K(Z ′) ≥ C

2
(φ∗ε − Z ′)2, (108)

and (105) follows from (103) upon integrating (108) over Ω and taking the limit ε→ 0.
Step 9. We have

lim
ε→0
‖ρ̃∗ε‖L2 = 0. (109)

We recall from (78)
I2

|Ω|
=
e−Z

′

Z̃1

(110)

and thus, in view of

K(y) =
e−y

Z̃1

+
I2

|Ω|
y,

we get
e−φ

∗
ε

Z̃1

− I2

|Ω|
= K(φ∗ε )−K(Z ′)− I2

|Ω|
(φ∗ε − Z ′). (111)

Therefore, ∥∥∥∥e−φ∗εZ̃1

− I2

|Ω|

∥∥∥∥
L1

≤ ‖K(φ∗ε )−K(Z ′)‖L1 +
I2

|Ω|
‖φ∗ε − Z ′‖L1 . (112)

Then (105) together with (103) gives

lim
ε→0

∥∥∥∥e−φ∗εZ̃1

− I2

|Ω|

∥∥∥∥
L1

= 0. (113)

Next, since

ρ̃∗ε =

(
e−φ

∗
ε

Z̃1

− I2

|Ω|

)
+

(
I2

|Ω|
− I2

eφ
∗
ε∫

Ω e
φ∗ε dx

)
, (114)

by the triangle inequality, we obtain

‖ρ̃∗ε‖L2 ≤
∥∥∥∥e−φ∗εZ̃1

− I2

|Ω|

∥∥∥∥
L2

+
I2

|Ω|

∥∥∥∥∥1− eφ
∗
ε

1
|Ω|
∫

Ω e
φ∗εdx

∥∥∥∥∥
L2

≤
∥∥∥∥e−φ∗εZ̃1

− I2

|Ω|

∥∥∥∥
1
2

L∞

∥∥∥∥e−φ∗εZ̃1

− I2

|Ω|

∥∥∥∥
1
2

L1

+
I2

|Ω|

∥∥∥∥∥1− eφ
∗
ε

1
|Ω|
∫

Ω e
φ∗εdx

∥∥∥∥∥
L2

.

(115)

Then the conclusion (109) follows from the uniform bounds on φ∗ε , (96) and (113).
Step 10. The map x 7→ (ρ̃∗ε (x))2 is subharmonic.
Indeed, from the definition (70) and the equation (69) it follows that

∆ρ̃∗ε = ρ̃∗ε

[
|∇φ∗ε |2 +

1

ε

(
e−φ

∗
ε

Z̃1

+ I2
eφ
∗
ε∫

Ω e
φ∗ε dx

)]
(116)

and subharmonicity is deduced from ∆(ρ̃∗ε )
2 ≥ 2ρ̃∗ε∆ρ̃

∗
ε .
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Step 11. We claim that ρ∗ε = ρ̃∗ε .
To prove the claim, we define Ψ∗ε = φ∗ε − w. Then, we compute

−ε∆Ψ∗ε = −ε∆φ∗ε =
e−φ

∗
ε

Z̃1

− I2
eφ
∗
ε∫

Ω e
φ∗ε dx

=
e−(φ∗ε−w)

Z1
− I2

eφ
∗
ε−w∫

Ω e
φ∗ε−w dx

=
e−Ψ∗ε

Z1
− I2

eΨ∗ε∫
Ω e

Ψ∗ε dx

(117)

where the second line follows from multiplying the first fraction by ew/ew and the second by e−w/e−w. On
the other hand, we have that (Ψ∗ε )|∂Ω = W . Thus, by uniqueness of solutions of the Dirichlet problem (66),
we conclude that Ψ∗ε = Φ∗ε , and the first line of (117) implies that ρ∗ε = ρ̃∗ε .

The proof of Theorem 3 using steps 9, 10 and 11 is concluded following the same reasoning as in the
proof of Theorem 2, namely using (109) and (65).

�

THEOREM 4. Let Z2 > 0 an I1 > 0 be given, and let Φ∗ε be the unique solution of the Poisson-
Boltzmann equation

− ε∆Φ∗ε = ρ∗ε (118)

with

ρ∗ε = I1
e−Φ∗ε∫

Ω e
−Φ∗ε dx

− eΦ∗ε

Z2
(119)

and with boundary condition Φ∗ε |∂Ω = W . Then for each compact K ⊂ Ω, we have

lim
ε→0

sup
x∈K
|ρ∗ε (x)| = 0. (120)

The proof of Theorem 4 is very similar to the proof of Theorem 3 and is omitted.

3. Time Asymptotic Interior Electroneutrality

In this section, we consider boundary conditions (BL) and (US) where global existence of smooth
solutions and nonlinear stability of unique steady states have been established in [5] and [6]. In these stable
regimes, we show that ρ→ 0 uniformly on compact sets K ⊂ Ω in the limit of small ε and large time t.

THEOREM 5. (Blocking Boundary Conditions) Let (c1, c2,Φ, u) be solutions of the 2D NPNS system
subject to (BL) conditions. Assume that the initial conditions satisfy ci(0) ≥ 0, ci(0) ∈ H1(Ω), i = 1, 2,
u(0) ∈ (H1

0 (Ω))2, divu(0) = 0. We assume ‖c1(0)‖L1 = ‖c2(0)‖L1 = I0. Then for any compact K ⊂ Ω
and δ > 0, there exists ε′ = ε′(K, δ) > 0 such that for all ε ≤ ε′ there exists tε such that for all t ≥ tε, we
have supx∈K |ρ(x, t)| ≤ δ. Thus,

lim
ε→0

lim
t→∞

sup
x∈K
|ρ(x, t)| = 0. (121)

PROOF. Under the conditions of the theorem, from [5], we have that for each ε > 0 there exists a unique
steady Boltzmann state solving (40), (41) such that

lim
t→∞
‖ρ(t)− ρ∗ε‖L∞ = 0. (122)

Then the result follows from Theorem 2. �

THEOREM 6. (Uniformly Selective Boundary Conditions) Let (c1, c2,Φ, u) be solutions of the 2D NPNS
system subject to (US) and corresponding to initial data lying in a compact subset of H1(Ω)2 × H1

0 (Ω)2

and obeying the natural side conditions ci(0) ≥ 0, divu(0) = 0. Then for any compact K ⊂ Ω and δ > 0,
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there exists ε′ = ε′(K, δ) > 0 such that for all ε ≤ ε′ there exists tε such that for all t ≥ tε, we have
supx∈K |ρ(x, t)| ≤ δ. Thus,

lim
ε→0

lim
t→∞

sup
x∈K
|ρ(x, t)| = 0. (123)

PROOF. We distinguish three cases, depending on the type of boundary condition. If both c1 and c2 have
selective boundary conditions, then there exists a unique Boltzmann state, with Zi, i = 1, 2 fixed by (14) and
solving (24) with ρ∗ given in (25). By [5] the charge density of the solution of the NPNS system converges
uniformly in time to ρ∗ε . Then the limit of vanishing Debye length ε → 0 follows from Theorem 1. If the
cation concentration c1 obeys selective boundary conditions and the anion concentration c2 has blocking
boundary conditions, that is if S1 6= ∅ and S2 = ∅, then the Boltzmann state is determined by constants Z1

given in (14) for i = 1 and I2 given by the integral of the initial data I2 =
∫

Ω c2(0)dx. The Boltzmann
state obeys (66) with ρ∗ε given by (67). By results in [5] it follows that for any ε > 0 the charge density ρ of
the NPNS solution converges uniformly in time to ρ∗ε . The vanishing Debye length result follows then from
Theorem 3. Finally, the case in which the anions have selective boundary conditions and the cations have
blocking boundary conditions follows similarly, using Theorem 4. �

REMARK 1. Solutions of NPNS in 3D with blocking or uniform selective boundary conditions and
whose initial data are small perturbations of Boltzmann steady states, exist globally, are smooth, and con-
verge in time to the Boltzmann steady state [6]. The known basin of stability of the Boltzmann state depends
on ε. Theorems 1–4 are valid in 3D and the proofs of results corresponding to Theorems 5–6 are the same.

4. Maximum Principle for Dirichlet Boundary Conditions

We consider the case of Dirichlet boundary conditions, and prove bounds which are uniform in the
Debye length.

THEOREM 7. We take a smooth solution (c1, c2,Φ, u) of the NPNS system with (DI) boundary condi-
tions. We consider d = 2, 3 and assume the initial data and boundary conditions are smooth. Then the ionic
concentrations ci obey the following uniform in time bounds

ci(x, t) ≤ Γ = max

{
sup
∂Ω

γ1, sup
∂Ω

γ2, sup
Ω
c1(0), sup

Ω
c2(0)

}
, i = 1, 2. (124)

PROOF. We define mi(t) = supΩ ci(x, t), i = 1, 2, and M(t) = max{m1(t),m2(t)}. Fix Γ′ > Γ. We
suppose for the sake of contradiction that for some t > 0, we have M(t) ≥ Γ′. Then, by continuity, there
exists a first time t0 > 0 when M(t0) = Γ′ is attained. Without loss of generality, we assume m1(t0) = Γ′.
We distinguish two cases: m2(t0) < Γ′ and m2(t0) = Γ′. We first consider the case m2(t0) < Γ′. Since
Γ′ > sup∂Ω γ1, there exists an interior point x0 ∈ Ω where c1(x0, t0) = Γ′. Thus, evaluating (1) at the
maximal point (x0, t0) and using (2), we obtain

∂tc1(x0, t0) ≤ −D1

ε
c1(x0, t0)(c1(x0, t0)− c2(x0, t0)) < −D1

ε
Γ′(Γ′ − Γ′) = 0 (125)

where we used the fact that at an interior maximal point the gradient vanishes and the Laplacian is non-
positive. This is a contradiction, since, by the choice of t0, we have ∂tc1(x0, t0) ≥ 0.

For the case m2(t0) = Γ′, we need a different argument. Since m1(t0) = m2(t0) = Γ′ > Γ, by
continuity we know that for a short time interval leading up to t0, the maximal points for ci, i = 1, 2, are
attained in the interior. That is, there exists δ > 0 such that for all s ∈ [t0 − δ, t0], there exist interior points
xi(s) ∈ Ω such that ci(xi(s), s) = mi(s). Thus for i = 1 and for each s ∈ [t0 − δ, t0] and r < s, we have

m1(s)−m1(r) = sup
Ω
c1(x, s)− sup

Ω
c1(x, r)

≤ c1(x1(s), s)− c1(x1(s), r).
(126)
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Then, dividing both sides by s− r and taking the limit supremum, we obtain as in the case m2(t0) < Γ′,

lim sup
r→s−

m1(s)−m1(r)

s− r
≤ ∂tc1(x1(s), s)

≤ −D1

ε
m1(s)(m1(s)−m2(s))

≤ −D1

2ε
m2

1(s) +
D1

2ε
m2

2(s).

(127)

Similarly for i = 2, we deduce

lim sup
r→s−

m2(s)−m2(r)

s− r
≤ D2

2ε
m2

1(s)− D2

2ε
m2

2(s). (128)

Multiplying (127) by D2 and (128) by D1 and adding, we obtain

lim sup
r→s−

(
D2

m1(s)−m1(r)

s− r
+D1

m2(s)−m2(r)

s− r

)
≤ 0 (129)

for any s ∈ [t0 − δ, t0]. Thus, by monotonicity we have

D2m1(t0 − δ) +D1m2(t0 − δ) ≥ D2m1(t0) +D1m2(t0) = (D1 +D2)Γ′. (130)

In other words, at a strictly earlier time than t0, we have m1(t0− δ) ≥ Γ′ or m2(t0− δ) ≥ Γ′, in either case,
a contradiction. Therefore the proof is complete. �

REMARK 2. In two dimensions the smoothness of solutions follows from the fact that the initial data and
boundary conditions are smooth. The degree of smoothness required by the result is ci ∈ C2(Ω) ∩ C1(Ω̄)
locally in time. The velocity does not enter in a quantitative manner in the arguments. In the case of 3D
NPNS, although it does not participate quantitatively, the velocity needs to be assumed to be regular enough
for the Navier-Stokes solutions to be known to exist.

5. Electroneutral Boundary Conditions

In this last section, we consider electroneutral boundary conditions (EN) and show that in this case, the
charge density ρ converges to 0 at an exponential rate. In contrast to the results of Section 3, we can show
here that the convergence holds for any fixed ε > 0, and the rate is independent of ε.

THEOREM 8. For global solutions (c1, c2,Φ, u) of the NPNS system with (EN) boundary conditions,
there exist constants λ > 0, depending on Ω and Di, and C > 0, depending additionally on initial condi-
tions, such that

‖ρ(t)‖L2 ≤ Ce−λt, t ≥ 0 (131)

holds.

REMARK 3. Global regularity of solutions of NPNS in 2D, or of Nernst-Planck equations coupled to
time dependent Stokes equations in 3D, is a consequence of the a priori L2 control (131) [7]. In the case
of 3D NPNS, we must assume that the velocity is regular enough (for instance, u ∈ L4(dt;H1(Ω)3)). The
arguments in the proof of Theorem 8 do not involve the velocity in a quantitative manner.

PROOF. We consider the equations satisfied by ρ = c1 − c2 and σ = c1 + c2. Dividing (1) by Di and
summing in i we obtain

Dt

(
c1

D1
+

c2

D2

)
= ∆σ + div (ρ∇Φ) (132)

where
Dt = ∂t + u · ∇ (133)



16 PETER CONSTANTIN, MIHAELA IGNATOVA, AND FIZAY-NOAH LEE

is the material derivative. Similarly, if we subtract the equation for i = 2 from that of i = 1, we obtain

Dt

(
c1

D1
− c2

D2

)
= ∆ρ+ div (σ∇Φ). (134)

Then, we observe
c1

D1
+

c2

D2
=

1

D1D2
(D2c1 +D1c2) =

1

D1D2
((D2 −D1)c1 +D1(c1 + c2))

=
1

D1D2

(
D2 −D1

2
c1 +

D1 +D2

2
c1 +D1c2

)
,

(135)

so, in term of ρ and σ,
c1

D1
+

c2

D2
=

1

D1D2

(
D2 −D1

2
ρ+

D1 +D2

2
σ

)
=

1

D1D2
(δρ+Dσ)

(136)

where

δ =
D2 −D1

2

D =
D1 +D2

2
.

(137)

Similar calculations give
c1

D1
− c2

D2
=

1

D1D2
(Dρ+ δσ). (138)

Therefore, ρ and σ satisfy the differential equations
1

D1D2
Dt(δρ+Dσ) = ∆σ + div (ρ∇Φ) (139)

1

D1D2
Dt(Dρ+ δσ) = ∆ρ+ div (σ∇Φ). (140)

Then, we multiply (139) by σ and integrate by parts, and using the boundary conditions (EN), we get

1

D1D2

(
d

dt

∫
Ω

D

2
σ2 dx+

∫
Ω
δ(∂tρ)σ dx+

∫
Ω
δ(u · ∇ρ)σ dx

)
+

∫
Ω
|∇σ|2 dx = −

∫
Ω
ρ∇Φ · ∇σ dx.

(141)
Next, we multiply (140) by ρ and integrate by parts, and using the boundary conditions (EN) and the
incompressibility condition divu = 0, we obtain

1

D1D2

(
d

dt

∫
Ω

D

2
ρ2 dx+

∫
Ω
δ(∂tσ)ρ dx−

∫
Ω
δ(u · ∇ρ)σ dx

)
+

∫
Ω
|∇ρ|2 dx =

∫
Ω

div (σ∇Φ)ρ dx.

(142)
For the integral on the right hand side, we use the Poisson equation for Φ to get∫

Ω
div (σ∇Φ)ρ dx =

∫
Ω
ρ∇Φ · ∇σ dx− 1

ε

∫
Ω
σρ2 dx ≤

∫
Ω
ρ∇Φ · ∇σ dx (143)

where we used the fact that σ ≥ 0, which in turn follows from the fact that c1, c2 ≥ 0. The initial concentra-
tions are nonnegative c1(0), c2(0) ≥ 0, and the nonnegativity in preserved [5, 7]. Using (143), we add (141)
and (142) to deduce

1

D1D2

d

dt

∫
Ω

(
D

2
(ρ2 + σ2) + δρσ

)
dx+

∫
Ω
|∇σ|2 + |∇ρ|2 dx ≤ 0. (144)

Next, we define

σ̄ =
1

|Ω|

∫
Ω
σ dx, ρ̄ =

1

|Ω|

∫
Ω
ρ dx. (145)
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Then, we obtain∫
Ω

(
D

2
(ρ2 + σ2) + δρσ

)
dx

=

∫
Ω

(
D

2
− δ2

2D

)
ρ2 +

δ2

2D
(ρ− ρ̄)2 +

D

2
(σ − σ̄)2 + δρ(σ − σ̄) +

D

2

(
σ̄ +

δ

D
ρ̄

)2

dx. (146)

By (137), the first term on the right hand side of (146) is positive. Next, we make two observations. First,

Q1 =

∫
Ω

δ2

2D
(ρ− ρ̄)2 +

D

2
(σ − σ̄)2 + δρ(σ − σ̄) dx

=

∫
Ω

δ2

2D
(ρ− ρ̄)2 +

D

2
(σ − σ̄)2 + δ(ρ− ρ̄)(σ − σ̄) dx

=
1

2

∫
Ω

(
δ

D
1
2

(ρ− ρ̄) +D
1
2 (σ − σ̄)

)2

dx ≥ 0.

(147)

Second, we observe that by integrating (139) and using the boundary conditions (EN), we reach the conclu-
sion that the quantity δρ̄ + Dσ̄ is independent of time. Therefore, taking the time derivative of (146), we
arrive at

d

dt

∫
Ω

(
D

2
(ρ2 + σ2) + δρσ

)
dx =

d

dt

(∫
Ω

(
D

2
− δ2

2D

)
ρ2 dx+Q1

)
. (148)

Now, we denote

Q =
1

D1D2

(∫
Ω

(
D

2
− δ2

2D

)
ρ2 dx+Q1

)
, (149)

R =

∫
Ω
|∇σ|2 + |∇ρ|2 dx, (150)

so that (144) is equivalent to
d

dt
Q+R ≤ 0. (151)

Next we note that, by Poincaré’s inequality, we have the bound

Q1 ≤ C̃Ω

∫
Ω
|ρ− ρ̄|2 + |σ − σ̄|2 dx

≤ CΩR
(152)

for constants C̃Ω and CΩ depending on Ω and Di. We also have, again by the Poincaré inequality,

R ≥ C ′Ω
∫

Ω
ρ2 dx (153)

for C ′Ω depending only on Ω. Combining (152) and (153), we obtain

R ≥ CDQ (154)

where CD is a constant depending on Ω and Di. So using (154), the differential inequality (151) gives
d

dt
Q+ CDQ ≤ 0, (155)

so that Q(t) ≤ e−CDtQ(0). Finally, defining

P =
1

D1D2

∫
Ω

(
D

2
− δ2

2D

)
ρ2 dx (156)

and recalling that Q1 ≥ 0, we have
Q ≥ P (157)
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so that
P (t) ≤ e−CDtQ(0). (158)

That is,
‖ρ(t)‖2L2 ≤ Ce−CDt (159)

where

C = D1D2

(
D

2
− δ2

2D

)−1

Q(0). (160)

Therefore, the proof of Theorem 8 is complete. �

We prove now a maximum principle.

THEOREM 9. For global smooth solutions (c1, c2,Φ, u) of the NPNS system with (EN) boundary con-
ditions, the ionic concentrations ci obey the uniform in time bounds

ci(x, t) ≤ max

{
sup

Ω
c1(0), sup

Ω
c2(0)

}
, i = 1, 2. (161)

PROOF. The idea of the proof is as follows. We define

mi(t) = sup
Ω
ci(x, t), i = 1, 2,

m(t) = max{m1(t),m2(t)},
M(t) = max

s≤t
m(s).

(162)

Then the statement of the theorem is equivalent to the statement that M(t) = M(0) for all t ≥ 0. For the
sake of contradiction, if we assume that M(t) in fact increases, then we have M ′(t) > 0 for some t > 0. At
time t, we deduce that (without loss of generality) M(t) = m1(t) ≥ m2(t) and that ∂tc1(x, t) > 0 for all
x ∈ B1

t = {x ∈ Ω̄ | c1(x, t) = M(t)}. Then, an argument like that leading up to (125) allows us to deduce
that in fact B1

t ⊂ ∂Ω. But then by Hopf’s lemma, we conclude that ∂nc1(x, t) > 0 for x ∈ Bt ⊂ ∂Ω.
However, then the boundary conditions force ∂nc2(x, t) < 0, c2(x, t) = M(t). Consequently, it follows
that at time t, c2 attains an interior value exceeding M(t), which is a contradiction.

In order to provide a rigorous proof of Theorem 9, we note that in view of the fact that ci(x, t), i = 1, 2
are smooth, we have that mi,m,M are Lipschitz in t on any interval [0, T ]. Indeed, there exist xi(t) ∈ Ω̄
such that mi(t) = ci(xi(t), t). Then, for t− s > 0 we have

ci(xi(s), t)− ci(xi(s), s)
t− s

≤ mi(t)−mi(s)

t− s
≤ ci(xi(t), t)− ci(xi(t), s)

t− s
,

and therefore ∣∣∣∣mi(t)−mi(s)

t− s

∣∣∣∣ ≤ sup
Ω̄×[0,T ]

|∂tci|.

In particular, mi,m,M are differentiable a.e. and satisfy the fundamental theorem of calculus. This level
of regularity is sufficient.

We prove the following facts.
(I) Let m : [0,∞)→ R be locally Lipschitz (meaning Lipschitz on [0, T ] for any T > 0), and let

M(t) = max
s≤t

m(s). (163)

Suppose for some t > 0, M ′(t),m′(t) both exist and M ′(t) > 0. Then M(t) = m(t) and M ′(t) = m′(t).
In order to check (I), we observe that M ′(t) > 0 implies that M(s) < M(t) < M(r) for s < t < r.

If not, then we had to have M(s) = M(t) for some s < t. Then because it is nondecreasing, M must
be constant on the interval [s, t], so that the left sided derivative of M at t is 0, a contradiction. A similar
argument is used for t < r. Next, we observe that M ′(t) > 0 implies that m(t) = M(t). If not, then
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M(t) = m(s) for some s < t, but then, from the previous observation, we obtain M(s) < M(t) = m(s) ≤
M(s), which is a contradiction. Lastly, we take s < t and compute

M(t)−M(s) = m(t)−M(s) ≤ m(t)−m(s) (164)

so that dividing by t− s and taking the limit s→ t−, we obtain, M ′(t) ≤ m′(t). Similarly, by considering
s > t, we obtain M ′(t) ≥ m′(t).
(II) Let ci(x, t) : Ω̄ × [0,∞) → R be a smooth function with Ω ⊂ Rd an open bounded set with smooth
boundary. Let

mi(t) = sup
x∈Ω̄

ci(x, t). (165)

For each t, defineBi
t = {x ∈ Ω̄ | ci(x, t) = mi(t)}. Supposem′i(t) exists for some t > 0. Then ∂tci(x, t) =

m′i(t) for each x ∈ Bi
t .

Indeed, we take s < t and x ∈ Bi
t and compute

mi(t)−mi(s) = ci(x, t)−mi(s) ≤ ci(x, t)− ci(x, s) (166)

from which we conclude thatm′i(t) ≤ ∂tci(x, t). A similar argument for s > t gives the opposite inequality.
An analogous argument gives the following fact.
(III) Suppose m1(t) and m2(t) are locally Lipschitz, and let

m(t) = max{m1(t),m2(t)}. (167)

Suppose m′(t),m′1(t),m′2(t) exist for some t > 0. Then for all i ∈ {1, 2} such that mi(t) = m(t), we have
m′i(t) = m′(t).

To prove Theorem 9, we assume for the sake of contradiction that for some T > 0 we have M(T ) >
M(0). We define

Ai = {t ∈ (0, T ) |m′i(t) exists}, i = 1, 2,

Am = {t ∈ (0, T ) |m′(t) exists},
AM = {t ∈ (0, T ) |M ′(t) exists},
A = A1 ∩A2 ∩Am ∩AM .

(168)

Since all the functions under consideration are locally Lipschitz, we know that A has full measure, |A| = T .
So, by the fundamental theorem of calculus, there exists some t ∈ A ⊂ (0, T ) such that M ′(t) > 0.
By the considerations above, we conclude without loss of generality that ∂tc1(x, t) = M ′(t) > 0 and
c1(x, t) = m1(t) = M(t) ≥ m2(t) for all x ∈ B1

t .
We claim that B1

t ⊂ ∂Ω. Indeed, if there were some x ∈ B1
t ∩Ω, then evaluating (1) at (x, t), and using

∇c1(x, t) = 0 and ∆c1(x, t) ≤ 0, we obtain ∂tc1(x, t) ≤ 0, a contradiction. Now we fix x ∈ B1
t ⊂ ∂Ω.

Then, at this boundary point (and at time t) the function F = −∂tc1 − D1
ε ρ satisfies F < 0. We take a

small open subset U ⊂ Ω that shares an open boundary portion with Ω, including the point x. We choose
the subset to be small enough i.e. uniformly close enough to x, so that F|U (·, t) ≤ 0. Then, restricted to U ,
we have that c1 satisfies, at time t,

−D1∆c1 + (u−D1∇Φ) · ∇c1 = F ≤ 0. (169)

Thus, by Hopf’s lemma we conclude that ∂nc1(x, t) > 0. Then, the boundary conditions imply that
∂nc2(x, t) < 0 and c2(x, t) = M(t). That is, c2 attains an interior value strictly greater than M(t) at
time t, a contradiction. This completes the proof.

�

We prove now exponential decay in Lp for all p <∞.

COROLLARY 1. For global smooth solutions (c1, c2,Φ, u) of the NPNS system with (EN) boundary con-
ditions, there exist constants λp > 0 depending on Ω, Di and p < ∞, and Cp > 0 depending additionally
on initial conditions, such that

‖ρ(t)‖Lp ≤ Cpe−λpt, t ≥ 0 (170)
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holds for 1 ≤ p <∞.

PROOF. The proof follows by interpolation from Theorem 8 and Theorem 9. Indeed, from Theorem 8
it follows that the result holds for 1 ≤ p ≤ 2, and from Theorem 9 we know that ρ(t) is bounded in L∞ in
time. The inequality

‖ρ(t)‖Lp ≤ ‖ρ(t)‖
2
p

L2‖ρ(t)‖
1− 2

p

L∞ (171)
implies thus exponential convergence in time of the Lp norms, 2 ≤ p <∞. �
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