Introduction to PDE

The method of characteristics

1 First Order Quasilinear PDE

We study

$$
\begin{equation*}
\sum_{j=1}^{n} a_{j}(x, u) \frac{\partial u}{\partial x_{j}}=b(x, u) \tag{1}
\end{equation*}
$$

where a, b are smooth functions of $n+1$ independent variables, $x \in \mathbb{R}^{n}$ and $u \in \mathbb{R}$.

Definition 1 An integral surface for (1), $\Sigma \subset \mathbb{R}^{n+1}$ is a set

$$
\Sigma=\left\{\bar{x}=\left(x, x_{n+1}\right) \in U \subset \mathbb{R}^{n+1} \mid x_{n+1}=u(x), \quad u \text { solves }(1)\right\}
$$

Here U is an open set. Notice that the normal to Σ at $\left(x, x_{n+1}\right)$ is

$$
\nu(\bar{x})=((\nabla u)(x),-1)
$$

where $(\nabla u)(x)=\left(\partial_{1} u(x), \ldots, \partial_{n} u(x)\right)$ and we denote $\partial_{i}=\frac{\partial}{\partial_{x_{i}}}$. Thus, (1) can be seen as the requirement that $(a, b) \perp \nu$, i.e. the vector (a, b) is tangent to Σ.

Definition 2 The direction $(a, b) \in \mathbb{R}^{n+1}$ is called the characteristic direction.

The characteristic directions define a vector field that is tangent to integral surfaces of (1). The integral curves of this field are called characteristic curves. The characteristic curves are thus solutions of

$$
\begin{equation*}
\frac{d x_{i}}{a_{i}}=\frac{d x_{n+1}}{b}, \quad i=1, \ldots, n \tag{2}
\end{equation*}
$$

Introducing an artificial parameter t we rewrite (2) as

$$
\left\{\begin{array}{l}
\frac{d x_{i}}{d t}=a\left(x_{1}, \ldots, x_{n+1}\right) \tag{3}\\
\frac{d x_{n+1}}{d t}=b\left(x_{1}, \ldots, x_{n+1}\right)
\end{array}\right.
$$

Now (3) is an autonomous system of ODEs and from standard facts about ODE it possesses an $n+1$-parameter family of solutions. This family represents an n-parameter family of characteristic curves because replacing t by $t+c$ produces the same characteristic curve.

Proposition 1 Let

$$
\Sigma_{u}=\left\{\left(x_{1}, \ldots, x_{n+1}\right) \mid x_{n+1}=u\left(x_{1}, \ldots x_{n}\right)\right\}
$$

be the graph of a C^{1} function defined in some open set in \mathbb{R}^{n}. Then Σ_{u} is an integral surface for (1) if and only if Σ_{u} is a union of characteristic curves.

Proof. If Σ_{u} is the graph of u and if through each point $P \in \Sigma$, passes a characteristic curve, then it follows that the tangent to this curve belongs to the tangent space to Σ_{u} at P. If $P=\bar{x}=\left(x, x_{n+1}\right)$ this means that $\nu(\bar{x}) \perp(a, b)$ which implies that u solves the equation (1).

On the other hand, assume that Σ_{u} is an integral surface for (1). Let $P=\left(x^{(0)}, x_{n+1}^{(0)}\right) \in \Sigma_{u}$. Let γ be the characteristic curve passing through P. We need to show that $\gamma \subset \Sigma_{u}$. Indeed, let us consider the expression $\left.F\left(x_{1}, \ldots x_{n+1}\right)=u\left(x_{1}, \ldots x_{n}\right)\right)-x_{n+1}$ and evaluate it along

$$
\gamma(t)=\left(x_{1}(t), \ldots x_{n+1}(t)\right)
$$

where t is a parameter and $P=\gamma(0)$ (with a slight abuse of notation). Let us set $f(t)=F(\gamma(t))$. The fact that $P \in \Sigma_{u}$ means that $f(0)=0$. On the other hand,

$$
\begin{aligned}
& \frac{d f}{d t}=\sum_{j=1}^{n} \frac{\partial u}{\partial x_{j}}(x(t)) \frac{d x_{j}}{d t}-\frac{d x_{n+1}}{d t} \\
& =\sum_{j=1}^{n} \frac{\partial u}{\partial x_{j}}(x(t)) a_{j}\left(x(t), x_{n+1}(t)\right)-b\left(x(t), x_{n+1}(t)\right)
\end{aligned}
$$

Substracting the equation (1) obeyed by u we have

$$
\begin{aligned}
& \frac{d f}{d t}=\sum_{j=1}^{n} \partial_{j} u(x(t))\left[a_{j}\left(x(t), x_{n+1}(t)\right)-a_{j}(x(t), u(x(t)))\right] \\
& +b(x(t), u(x(t)))-b\left(x(t), x_{n+1}(t)\right)
\end{aligned}
$$

and thus

$$
\begin{aligned}
& \frac{d f}{d t}=\sum_{j=1}^{n} \partial_{j} u(x(t))\left[a_{j}(x(t), u(x(t))-f(t))-a_{j}(x(t), u(x(t)))\right] \\
& +b(x(t), u(x(t)))-b(x(t), u(x(t))-f(t))
\end{aligned}
$$

The last expression can be viewed as a nice ODE for $f(t)$. Because $f(0)=$ 0 and the function $g(t)=0$ solves the same ODE, it follows from ODE uniqueness theory that $f(t)=0$ for all t.

1.1 The Cauchy problem for the quasilinear equation

We want to construct integral surfaces by the method of characteristics. Because integral surfaces are union of characteristics, we are lead naturally to the following procedure to construct them: Consider an arbitrary $n-1$ dimensional surface in \mathbb{R}^{n+1}. At each point on it, consider the characteristic curve passing through the point. The union of these curves should be (in most cases) an integral surface. Let $\Gamma \subset \mathbb{R}^{n+1}$ be a nice $n-1$-dimensional surface in \mathbb{R}^{n+1} given locally by

$$
\Gamma=\left\{\left(x_{1}, \ldots, x_{n+1}\right) \mid \quad x_{j}=f_{j}(s), j=1, \ldots n+1, s \in D \subset \mathbb{R}^{n-1}\right\}
$$

where D is an open set and f_{j} are smooth enough (C^{2} is sufficient). Fix $s \in D$. Let us solve the characteristic equations

$$
\left\{\begin{array}{l}
\frac{d x_{i}}{d t}=a_{j}(\bar{x}), \quad j=1, \ldots n \tag{4}\\
\frac{d x x_{n+1}}{d t}=b(\bar{x})
\end{array}\right.
$$

with $P=\left(f_{1}(s), \ldots f_{n+1}(s)\right)$ as initial datum. We obtain the function $\left(x_{1}(s, t), \ldots x_{n+1}(s, t)\right)$ satisfying (4) and

$$
\begin{equation*}
x_{j}(s, 0)=f_{j}(s), \quad j=1, \ldots, n+1 \tag{5}
\end{equation*}
$$

Consider I_{s} the maximal interval of existence for $\bar{x}(s, \cdot)$ and let

$$
\begin{equation*}
\Sigma=\left\{y \in \mathbb{R}^{n+1} \mid \quad y_{j}=x_{j}(s, t), s \in D, t \in I_{s}\right\} \tag{6}
\end{equation*}
$$

In order for Σ to be locally the graph of a function of $\left(x_{1}, \ldots x_{n}\right)$ we need the matrix $\left(\partial_{s} x_{j}, \partial_{t} x_{j}\right)_{j=1, \ldots n}$ to be invertible. Locally, that is all that is needed:

Theorem 1 Let $f_{1}, \ldots f_{n+1}: D \subset \mathbb{R}^{n-1} \rightarrow \mathbb{R}$ be C^{2}. Assume that at $s_{0} \in D$ we have

$$
\operatorname{Det}\left(\begin{array}{llll}
\frac{\partial f_{1}}{\partial s_{1}}\left(s_{0}\right), & \cdots & \frac{\partial f_{1}}{\partial s_{n-1}}\left(s_{0}\right), & a_{1}^{(0)} \tag{7}\\
\cdots & \cdots & \cdots & \cdot \\
\frac{\partial f_{n}}{\partial s_{1}}\left(s_{0}\right), & \cdots & \frac{\partial f_{n}}{\partial s_{n-1}}\left(s_{0}\right), & a_{n}^{(0)}
\end{array}\right) \neq 0
$$

where $a_{j}^{(0)}=a_{j}\left(f_{1}\left(s_{0}\right), \ldots f_{n+1}\left(s_{0}\right)\right)$. Then there exists a neighborhood D_{0} of s_{0}, an open set $U \subset \mathbb{R}^{n}$ containing $x^{(0)}=\left(f_{1}\left(s_{0}\right), \ldots, f_{n}\left(s_{0}\right)\right)$ and a solution $u(x)$ of (1) defined for $x \in U$ so that

$$
\Gamma_{0}=\left\{y \in \mathbb{R}^{n+1} \mid \quad x_{j}=f_{j}(s), s \in D_{0}\right\}
$$

is included in $\Sigma=\left\{x \in U \times \mathbb{R} \mid \quad x_{n+1}=u(x)\right\}$.
Remark 1 If condition (7) is violated, it may still happen that one can solve the problem $\Gamma_{0} \subset \Sigma$. If this is possible, the necessarily (a, b) is tangent to Γ. Indeed, if we have a solution u of (1) and if

$$
f_{n+1}(s)=u\left(f_{1}(s), \ldots f_{n}(s)\right)
$$

differentiating we obtain

$$
\begin{equation*}
\frac{\partial f_{n+1}}{\partial s_{k}}=\sum_{j=1}^{n}\left(\partial_{j} u\right) \frac{\partial f_{j}}{\partial s_{k}}, \quad k=1, \ldots, n-1 \tag{8}
\end{equation*}
$$

The fact that (7) is not true implies that there exist $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \neq 0$ such that

$$
\begin{equation*}
\sum_{k=1}^{n-1} \alpha_{k} \frac{\partial f_{j}}{\partial s_{k}}+\alpha_{n} a_{j}=0, \quad j=1, \ldots, n \tag{9}
\end{equation*}
$$

Multiplying (8) by α_{k} and summing we obtain, using (9) and the equation (1)

$$
\begin{align*}
& \sum_{k=1}^{n-1} \alpha_{k} \frac{\partial f_{n+1}}{\partial s_{k}}=\sum_{j=1}^{n}\left(\partial_{j} u\right) \sum_{k=1}^{n-1} \alpha_{k} \frac{\partial f_{j}}{\partial s_{k}} \tag{10}\\
& =-\alpha_{n} \sum_{j=1}^{n}\left(\partial_{j} u\right) a_{j}=-\alpha_{n} b
\end{align*}
$$

Thus, in view of (9) and (10), the tangent vector

$$
\sum_{k=1}^{n-1} \alpha_{k} \frac{\partial f_{j}}{\partial s_{k}}, \quad j=1, \ldots, n+1
$$

is equal to $-\alpha_{n}(a, b)$, so it is characteristic.
In general, if the condition (7) is violated and there exists a solution, there exist infinitely many solutions.

A particular case of a Cauchy problem is when $x_{n}=t$ is singled out, and $\Gamma=$ $\left\{\left(x_{1}, \ldots, x_{n-1}, 0\right)\right\}$. Then the parameterization is given by $s=x$, functions $f_{j}(x)=x_{j}$ for $j=1, \ldots, n-1, f_{n}=0$ and $f_{n+1}(x)=u_{0}(x)$. The problem then becomes: solve

$$
\begin{equation*}
a_{n}(x, t, u) \partial_{t} u(x, t)+\sum_{j=1}^{n-1} a_{j}(x, t, u(x, t)) \partial_{j} u(x, t)=b(x, t, u(x, t)) \tag{11}
\end{equation*}
$$

with initial datum $u(x, 0)=u_{0}(x)$. The theorem above says that this has a local solution around $x_{0} \in \mathbb{R}^{n-1}$ if $a_{n}\left(x_{0}, 0, u_{0}\left(x_{0}\right)\right) \neq 0$.

2 The Cauchy problem for general first order equations

We are concerned with the equation

$$
\begin{equation*}
F(x, u(x), \nabla u(x))=0 \tag{12}
\end{equation*}
$$

where $x \in \mathbb{R}^{n}, u \in C^{1}$ (or smoother) and $F(x, z, p)$ is assumed to be smooth enough in its variables in $\mathbb{R}^{2 n+1}$. The theory is local, but for simplicity of exposition we will not carry around excessive notation regarding the domains of F and u. If we want to formulate (12) in geometric terms we need to consider n-dimensional integral surfaces in $\mathbb{R}^{2 n+1}$:

$$
\begin{equation*}
\Sigma=\left\{(x, z, p) \in \mathbb{R}^{2 n+1} \mid z=u(x), u \text { solves (12), } p_{j}=\partial_{j} u(x), j=1, \ldots n .\right\} \tag{13}
\end{equation*}
$$

Then, considering the zero level set

$$
\begin{equation*}
Z=\{(x, z, p) \mid F(x, z, p)=0\} \tag{14}
\end{equation*}
$$

the equation (12) means $\Sigma \subset Z$. Surfaces like Σ (i.e. with $z=u(x)$, $p=\nabla u(x)$ for some $u)$ satisfy some restrictions. Let us consider a point (x, z, p) on such a surface and let $(\delta x, \delta z, \delta p)$ denote the components of a tangent vector to Σ at (x, z, p). Then, obviously

$$
\begin{equation*}
\delta z=\sum_{i=1}^{n}\left(\partial_{i} u\right) \delta x_{i}=\sum_{i=1}^{n} p_{i} \delta x_{i} \tag{15}
\end{equation*}
$$

where p_{j} are the components of p. Also

$$
\begin{equation*}
\delta p_{i}=\sum_{j=1}^{n} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} \delta x_{j} \tag{16}
\end{equation*}
$$

We see that the n components δx determine the rest of the components $(\delta z, \delta p)$, and any choice of δx will produce via (15) and (16) a tangent vector to Σ. The fact that the matrix $\left(\frac{\partial^{2} u}{\partial x_{j} \partial x_{k}}\right)$ is symmetric (if $u \in C^{2}$) is reflected in the following property of the tangent space at (x, z, p). If $(\delta x, \delta z, \delta p)$ and $(\overline{\delta x}, \overline{\delta z}, \overline{\delta p})$ are two tangent vectors, then

$$
\begin{equation*}
\sum_{i=1}^{n}\left(\delta p_{i} \overline{\delta x_{i}}-\overline{\delta p_{i}} \delta x_{i}\right)=0 \tag{17}
\end{equation*}
$$

Now (15) and (17) can be written simply in terms of differential forms. Considering the one-form $\alpha=p d x-d z$ in $\mathbb{R}^{2 n+1}$ (where $p d x=\sum_{i=1}^{n} p_{i} d x^{i}$), then (15) means that

$$
\begin{equation*}
\alpha=p d x-d z=0 \text { at } \Sigma, \tag{18}
\end{equation*}
$$

and (17) means that $d(d z-p d x)=0$ at Σ i.e.

$$
\begin{equation*}
\omega=\sum d p_{i} \wedge d x_{i}=0 \text { at } \Sigma . \tag{19}
\end{equation*}
$$

Let us emphasize that the forms α and ω are respectively a one-form and a two-form defined in all $\mathbb{R}^{2 n+1}$ and do not depend on Σ. Let us consider now a solution u of (12). Differentiating in the direction x_{i} we obtain

$$
\begin{equation*}
\frac{\partial F}{\partial x_{i}}+\left(\partial_{i} u\right)\left(\frac{\partial F}{\partial z}\right)+\sum_{j=1}^{n}\left(\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}\right) \frac{\partial F}{\partial p_{j}}=0 \tag{20}
\end{equation*}
$$

If $(x, z, p) \in \Sigma$ we can write (20) as

$$
\begin{equation*}
\frac{\partial F}{\partial x_{i}}+p_{i}\left(\frac{\partial F}{\partial z}\right)+\sum_{j=1}^{n}\left(\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}\right) \frac{\partial F}{\partial p_{j}}=0 \tag{21}
\end{equation*}
$$

We look at the group $\sum_{j=1}^{n}\left(\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}\right) \frac{\partial F}{\partial p_{j}}$ and compare it to the rule (16) that gives the δp components in terms of the δx components. It is fairly natural
(but very far from obvious) to consider the tangent vector at (x, z, p) whose components are given by

$$
\begin{equation*}
\delta x_{i}=\frac{\partial F}{\partial p_{i}}(x, z, p) \tag{22}
\end{equation*}
$$

and then (16) provides

$$
\begin{equation*}
\delta p_{i}=\sum_{j=1}^{n} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} \frac{\partial F}{\partial p_{j}} \tag{23}
\end{equation*}
$$

Thus (21) becomes

$$
\begin{equation*}
\frac{\partial F}{\partial x_{i}}+p_{i} \frac{\partial F}{\partial z}+\delta p_{i}=0 \tag{24}
\end{equation*}
$$

and (15) provides

$$
\begin{equation*}
\delta z=\sum_{i=1}^{n} p_{i} \frac{\partial F}{\partial p_{i}} \tag{25}
\end{equation*}
$$

The absolutely remarkable fact about (22), (24), (25) is that they give you a tangent vector $(\delta x, \delta z, \delta p)$ to an integral surface Σ at a point (x, z, p) in terms only of (x, z, p) and the equation they solve, $F(x, z, p)=0$, without having to know the solution u of (12). This fortunate choice of $\delta x=\nabla_{p} F$ merits a brief discussion. So, what would be some good reasons to even consider this recipe? Obviously, this choice is a generalization from the quasilinear situation $F=a(x, z) p-b(x, z)$. However, in general $\nabla_{p} F$ depends on p, and in the quasilinear case it does not. (By the way, this is why we got away in the quasilinear case with studying integral surfaces $\Sigma=\{z=u(x)\}$, i.e. graphs, and did not have to go to the cotangent space). Another justification of the choice is that the geometric significance of $\mathbb{R}_{x}^{n} \times \mathbb{R}_{z} \times \mathbb{R}_{p}^{n}$ is that of the product (switching order) $T^{*} X \times \mathbb{R}$ of the cotangent space with the target space, and p are local coordinates in the cotangent fiber at $x \in X$. Then a vector $\nabla_{p} F$ defines indeed a tangent vector field to X, and not many such are available if we know only F, and the point (x, z, p). This is one of those instances in which the only general thing available is pretty good. Another justification comes from a geometric insight given by the Monge cones. Let us consider $n=2$ and fix x and z. The equation $F(x, z, p)=0$ can be viewed as an equation for the two direction numbers p_{1} and p_{2} of the tangent plane to the graph of u. The equation of the plane, at some point $(x, z) \in \Sigma^{\prime}=\{(x, z) \mid z=u(x)\}$ is

$$
\zeta-z=p_{1}\left(\xi-x_{1}\right)+p_{2}\left(\eta-x_{2}\right)
$$

Let us assume that we can eliminate, say p_{2} from $F(x, z, p)=0$ and get $p_{2}=p_{2}\left(p_{1}\right)$. (With a slight abuse of notation, now p_{2} is a function of x, z and p_{1}, but we keep x and z fixed). The family of possible tangent planes to Σ^{\prime} at (x, z) forms thus a one-parameter family whose "envelope" is in general a cone, the Monge cone. This is obained by solving the system

$$
\left\{\begin{array}{l}
\zeta-z=p_{1}\left(\xi-x_{1}\right)+p_{2}\left(p_{1}\right)\left(\eta-x_{2}\right) \\
0=\left(\xi-x_{1}\right)+\frac{d p_{2}}{d p_{1}}\left(p_{1}\right)\left(\eta-x_{2}\right)
\end{array}\right.
$$

In general, if we have a one-parameter family of surfaces in \mathbb{R}^{3} given by $G(\xi, \eta, \zeta, \lambda)=0,(\lambda$ being the parameter $)$, the envelope is obtained by solving simultaneousy $G=0$ and $\partial_{\lambda} G=0$ which yields (two equations for four unknowns) a surface, the envelope. This surface has the property that it is tangent to the one-parameter family of surfaces along the curves γ_{λ} obtained by solving the same system with λ fixed (two equations for three unknowns). In our case, the tangent line to the Monge cone lying in tangent plane to Σ obeys

$$
\left\{\begin{array}{l}
\delta z=p_{1} \delta x_{1}+p_{2}\left(p_{1}\right) \delta x_{2} \\
0=\delta x_{1}+\frac{d p_{2}}{d p_{1}}\left(p_{1}\right) \delta x_{2}
\end{array}\right.
$$

Now if the function $p_{2}\left(p_{1}\right)$ came from solving $F=0$ then (differentiating) it follows that

$$
\frac{d p_{2}}{d p_{1}}=-\frac{\partial_{p_{1}} F}{\partial_{p_{2}} F}
$$

and so

$$
\delta x_{1}=\left(\frac{\partial_{p_{1}} F}{\partial_{p_{2}} F}\right) \delta x_{2}
$$

so the tangent line with direction numbers $\left(\delta x_{1}, \delta x_{2}\right)$ is the same as the one with direction numbers $\left(\frac{\partial F}{\partial p_{1}}, \frac{\partial F}{\partial p_{2}}\right)$. The tangent vector $\delta x=\nabla_{p} F$ is therefore the common tangent to the Monge cone and Σ^{\prime}.

Ok, so motivated somewhat the choice of the tangent direction $\delta x=\nabla_{p} F$. Let us return to the business of integrating the system. We have from (22), (24) and (25) a tangent field to Σ at (x, z, p) given by

$$
\left\{\begin{array}{l}
\delta x=\nabla_{p} F(x, z, p) \\
\delta z=p \cdot \nabla_{p} F(x, z, p)=\sum_{i=1}^{n} p_{i} \frac{\partial F}{\partial p_{i}} \\
\delta p=-\nabla_{x} F-p \partial_{z} F
\end{array}\right.
$$

These are called the bicharacteristic directions, the associated ODE system

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=\nabla_{p} F(x, z, p) \tag{26}\\
\frac{d z}{d t}=p \cdot \nabla_{p} F(x, z, p) \\
\frac{d p}{d t}=-\nabla_{x} F-p \partial_{z} F
\end{array}\right.
$$

the bicharacteristic system, and its solutions, bicharacteristics. We have a $2 n$ family of bicharacteristics. Let us start by observing that the value of F does not change along bicharacteristics:

$$
\begin{aligned}
& \frac{d}{d t} F(x(t), z(t), p(t))=\left(\nabla_{x} F\right) \frac{d x}{d t}+\left(\partial_{z} F\right) \frac{d z}{d t}+\left(\nabla_{p} F\right) \frac{d p}{d t} \\
& =\left(\nabla_{x} F\right)\left(\nabla_{p} F\right)+\left(\partial_{z} F\right)\left(p \nabla_{p} F\right)-\left(\nabla_{p} F\right)\left(\nabla_{x} F+p \partial_{z} F\right) \\
& =0
\end{aligned}
$$

This implies that if a bicharacteristic starts in $Z=\{(x, z, p) \mid F=0\}$, it stays in Z. So, we are lead to the following procedure to find integral surfaces. We start with an $n-1$ parameter surface Γ in $\mathbb{R}^{2 n+1}$ included in Z and on which $\alpha=p d x-d z$ equals to zero (so it can be part of a graph). This means that we start with $2 n+1$ functions $\left(f_{1}(s), \ldots, f_{n}(s), u_{0}(s), g_{1}(s), \ldots, g_{n}(s)\right)$ of $n-1$ parameters satisfying

$$
\begin{equation*}
F\left(f(s), u_{0}(s), g(s)\right)=0 \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial u_{0}}{\partial s_{k}}=\sum_{j=1}^{n} g_{j}(s) \frac{\partial f_{j}}{\partial s_{k}}, \quad k=1, \ldots, n-1 . \tag{28}
\end{equation*}
$$

We assume that the $n-1$ "horizontal" components (δx) of the tangent plane to Γ, together with the δx component of the bicharacteristic direction are linearly independent, i.e.

$$
\operatorname{Det}\left(\begin{array}{cccc}
\frac{\partial f_{1}}{\partial s_{1}}, & \cdots & \frac{\partial f_{1}}{\partial s_{n-1}} & \frac{\partial F}{\partial p_{1}} \tag{29}\\
\dddot{\dddot{ }} & \cdots & \cdots & \cdots \\
\frac{\partial f_{n}}{\partial s_{1}}, & \cdots & \frac{\partial f_{n}}{\partial s_{n-1}} & \frac{\partial F}{\partial p_{n}}
\end{array}\right) \neq 0
$$

at some s_{0}. We form then the bicharacteristic curves $X(s, t), Z(s, t), P(s, t)$, solving

$$
\left\{\begin{array}{l}
\frac{d X}{d t}=\nabla_{p} F, \quad X(s, 0)=f(s) \tag{30}\\
\frac{d Z}{d t}=P \nabla_{p} F, \quad Z(s, 0)=u_{0}(s) \\
\frac{d P}{d t}=-\nabla_{x} F-P \partial_{z} F, \quad P(s, 0)=g(s)
\end{array}\right.
$$

Then, locally, the n-dimensional surface given parametrically by

$$
\begin{equation*}
\Sigma=\{(x, z, p) \mid x=X(s, t), z=Z(s, t), p=P(s, t)\} \tag{31}
\end{equation*}
$$

is the graph of a function u

$$
\Sigma=\{(x, z, p) \mid z=u(x), p=\nabla u\}
$$

satisfying $F\left(x, u(x), \nabla_{x} u(x)\right)=0$. The function $u(x)$ is defined by $u(x)=$ $Z(s, t)$ where $x=X(s, t)$. Let us sketch informally the proof. The Jacobian condition (29) means that for small $\left|s-s_{0}\right|+|t|$ we can invert the relation $x=X(s, t)$ and find s, t as functions of x. Then the recipe

$$
\begin{equation*}
u(x)=Z(s, t) \tag{32}
\end{equation*}
$$

defines a function $u(x)$ for x near $x_{0}=f\left(s_{0}\right)=X\left(s_{0}, 0\right)$. Differentiating $u(X(s, t))=Z(s, t)$ we obtain

$$
\left\{\begin{array}{l}
\sum_{j=1}^{n} \frac{\partial X_{j}}{\partial s_{k}}\left(\partial_{j} u\right)(X)=\frac{\partial Z}{\partial \partial_{k}}, \quad k=1, \ldots, n-1 \tag{33}\\
\sum_{j=1}^{n} \frac{\partial X_{j}}{\partial t}\left(\partial_{j} u\right)(X)=\frac{\partial Z}{\partial t}
\end{array}\right.
$$

On the other hand, we claim that

$$
\left\{\begin{array}{l}
\sum_{j=1}^{n} \frac{\partial X_{j}}{\partial \partial_{k}} P_{j}=\frac{\partial Z}{\partial \partial_{s}}, \quad k=1, \ldots, n-1 \tag{34}\\
\sum_{j=1}^{n} \frac{\partial X_{j}}{\partial t} P_{j}=\frac{\partial Z}{\partial t}
\end{array}\right.
$$

hold. Admitting this for a moment, let us note that the matrix $\left(\nabla_{s} X, \partial_{t} X\right)$ is injective for $\left|s-s_{0}\right|+|t|$ small, and therefore we deduce that

$$
\begin{equation*}
(\nabla u)(x)=P(s, t) \quad \text { when } x=X(s, t) . \tag{35}
\end{equation*}
$$

This implies that u solves (12) because $F(X(s, t), Z(s, t), P(s, t))=0$. So, it remains only to verify that (34) holds. The second equation in (34) is part of the bicharacteristic equations (30). The proof that

$$
F_{k}(s, t)=\sum_{j=1}^{n} P_{j}(s, t) \frac{\partial X_{j}}{\partial s_{k}}(s, t)-\frac{\partial Z}{\partial s_{k}}(s, t)=0
$$

is done by considering the evolution in t at fixed s. First of all, $F_{k}(s, 0)=$ 0 because of (28) and the facts that $P_{j}(s, 0)=g_{j}(s), X_{j}(s, 0)=f_{j}(s)$, $\frac{\partial Z}{\partial s_{k}}(s, 0)=\frac{\partial u_{0}}{\partial s_{k}}, \frac{\partial X_{j}}{\partial s_{k}}(s, 0)=\frac{\partial f_{j}}{\partial s_{k}}$. Now we differentiate:

$$
\begin{align*}
& \frac{d F_{k}}{d t}=\sum_{j=1}^{n} \frac{d P_{j}}{d t} \frac{\partial X_{j}}{\partial s_{k}}+\sum_{j=1}^{n} P_{j} \frac{\partial^{2} X_{j}}{\partial t \partial s_{k}}-\frac{\partial}{\partial s_{k}}\left(\frac{\partial Z}{\partial t}\right) \\
& =-\sum_{j=1}^{n}\left(\frac{\partial F}{\partial x_{j}}+\frac{\partial F}{\partial z} P_{j}\right) \frac{\partial X_{j}}{\partial s_{k}}+\sum_{j=1}^{n} P_{j} \frac{\partial}{\partial s_{k}}\left(\frac{\partial F}{\partial p_{j}}\right)-\frac{\partial}{\partial s_{k}}\left(P \cdot \frac{\partial F}{\partial p}\right) \\
& =-\sum_{j=1}^{n}\left(\frac{\partial F}{\partial x_{j}}+\frac{\partial F}{\partial z} P_{j}\right) \frac{\partial X_{j}}{\partial s_{k}}-\sum_{j=1}^{n}\left(\frac{\partial P_{j}}{\partial s_{k}}\right)\left(\frac{\partial F}{\partial p_{j}}\right) \tag{36}\\
& =-\frac{\partial}{\partial s_{k}} F(X(s, t), Z(s, t), P(s, t))+\left(\frac{\partial F}{\partial z}\right)\left(\frac{\partial Z}{\partial s_{k}}\right)-\frac{\partial F}{\partial z} \sum_{j=1}^{n} P_{j} \frac{\partial X_{j}}{\partial s_{k}} \\
& =-\frac{\partial}{\partial s_{k}} F-\frac{\partial F}{\partial z} F_{k}
\end{align*}
$$

We are almost done: we note that, because $F(X(s, t), Z(s, t), P(s, t))=0$, we know that $\frac{\partial}{\partial s_{k}} F=0$. Thus, at fixed s, F_{k} satisfies the ODE

$$
\left\{\begin{array}{l}
\frac{d F_{k}}{d t}=-\frac{\partial F}{\partial z} F_{k} \tag{37}\\
F_{k}(s, 0)=0
\end{array}\right.
$$

and thus F_{k} is identically 0 .

3 Exercises

1. Solve

$$
\partial_{t} u+c \partial_{x} u=0
$$

with $x \in \mathbb{R}, t \in \mathbb{R}, c \in \mathbb{R}$ and initial condition $u(x, 0)=u_{0}(x)$.
2. Solve

$$
\sum_{j=1}^{n} x_{j} \partial_{j} u=m u
$$

with $m \in \mathbb{R}$ and with the boundary condition

$$
u\left(x_{1}, \ldots x_{n-1}, 1\right)=g\left(x_{1}, \ldots x_{n-1}\right)
$$

3. Take $m \geq 1,0<\alpha<1$. Show that the equation

$$
\alpha x \partial_{x} u+y \partial_{y} u=m u
$$

with $x \in \mathbb{R}, y>0$ initial value $u(x, 0)=0$ has infinitely many solutions.
Hint: Consider

$$
u(x, y)=\int_{0}^{y} \eta^{m-1}\left(\int_{0}^{x \eta^{-\alpha}} f(\xi) d \xi\right) d \eta
$$

for arbitrary nice f. Check the homogeneity

$$
u\left(\lambda^{\alpha} x, \lambda y\right)=\lambda^{m} u
$$

differentiate in λ and set $\lambda=1$.
4. Solve

$$
\partial_{t} u+a(u) \partial_{x} u=0
$$

with initial data $u(x, 0)=u_{0}(x)$. How do the characteristic curves look like? If u_{0} is a smooth function (say C^{1}) with compact support, does there exist a time $T>0$ so that $u(x, t)$ exists for all $x \in \mathbb{R}$ and $0 \leq t<T$, and is smooth? Can the solution stay smooth for all time if u_{0} is like that and if $a(u)$ is non-degenerate (say $a^{\prime}(u) \neq 0$ in places of interest)?
5. Consider $\bar{x}=\left(x_{1}, \ldots x_{n}, t\right)$, where we denoted x_{n+1} by t. Consider the equation (12) for the case

$$
F(\bar{x}, z, p)=p_{n+1}+H(\bar{x}, p),
$$

where $p=\left(p_{1}, \ldots p_{n}\right)$. In other words, consider the Hamilton-Jacobi equation

$$
\partial_{t} u+H\left(x, t, \nabla_{x} u\right)=0
$$

Prove that the bicharacteristics are given by the classical Hamiltonian system of ODEs

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=\nabla_{p} H \\
\frac{d p}{d t}=-\nabla_{x} H
\end{array}\right.
$$

together with

$$
\frac{d z}{d t}=p \nabla_{p} H-H
$$

6. Consider the eikonal equation

$$
c^{-2}\left(\frac{\partial \psi}{\partial t}\right)^{2}=\sum_{j=1}^{n}\left(\frac{\partial \psi}{\partial x_{j}}\right)^{2}
$$

where $c>0$ is a constant. Solve the bicharacteristic equations for the initial value problem for ψ with data $\psi(x, 0)=\psi_{0}(x)$. (Do not expect to explicitly compute the solution $\psi(x, t))$.

