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ABSTRACT. We establish the existence and uniqueness of an ergodic invariant measure for 2D fractionally
dissipated stochastic Euler equations on the periodic box, for any power of the dissipation term.

1. Introduction

Because of the combined effects of rapid rotation and small aspect ratio, much of large scale atmospheric
turbulence is dominated by two dimensional dynamics. In this setting, the role of molecular dissipation is
negligible, but other forms of dissipation do exist [HPGS95, PBH00, PH02, SBH+02]. Two dimensional
turbulence has been extensively studied theoretically [Kra67, Bat69, RS92, FL94, Con97, FJMR02],
experimentally [PT97, PT98, VLPC+02, BPSS02] and numerically [PSC00, CP01]. See also the re-
views [Fri95, Tab02] and references therein. In such forced dissipative systems a common approach, both
numerically and theoretically, is to use a frequency-localized stationary gaussian (white in time) stochastic
process as a proxy for “generic” energy injection, see e.g. [Nov65, FS84, Eyi96, AFS08, BS09, KS12].

The simplest form of dissipation, wave-number independent friction, leads to the damped-driven Euler
equations [Ber00, CR07]. Unfortunately, the ergodic theory for the stochastically forced damped-driven
Euler equations seems to be far from reach at the moment: this is in part due to the lack of compactness
or continuous dependence in a suitable Polish space. The natural space for 2D Euler, L∞ ∩ L1 vorticity, is
ill-suited to study the ergodic theory for SPDEs in the Markovian framework with the existing tools.

Weak wave-number dependence in the dissipation can be viewed as remedy for the difficulties encoun-
tered with damped and driven Euler equations. Our goal here is to address the question of what is the lowest
power of dissipation in the fractionally dissipated Euler equations that allows the development of a rigorous
ergodic theory. In the case of very weak wave-number dependence this question turns out to be quite non-
trivial. Recently, the use of fractional dissipation as a regularizing term in models arising in fluid mechanics
has become quite common, see e.g. [CCW01, Wu02, KNV07, CCGO09, CV10, Kis10, CCV11, HKR11,
CV12, CW12] and references therein.

In this work we establish the existence and uniqueness of an ergodic invariant measure for the fraction-
ally dissipative 2D Euler equation in vorticity form

dω + (Λγω + u · ∇ω)dt = σdW,

u = K ∗ ω, (1.1)

ω(0) = ω0,

where Λγ = (−∆)γ/2 is the fractional Laplacian, and γ is allowed to take any value in (0, 2]. Here K is
the Biot-Savart kernel, so that ∇⊥ · u = ω and ∇ · u = 0. The equations evolve on the periodic box T2 =
[−π, π]2. The noise is white in time, colored in space, and degenerate, in the sense that it is supported on
only finitely many Fourier modes. This work is part of a larger goal to understand inviscid limits for weakly
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dissipated, stochastically forced Euler equations and related systems, in the class of invariant measures. See
also [EKMS00, Kuk04, CR07, BS09, Kup10, KS12, GHSV13] and containing references.

There exists a fairly well-developed ergodic theory of the stochastic Navier-Stokes equations in two
dimensions. As far as we know, the study of stochastic Navier-Stokes goes back to the 1960’s [Nov65],
with the rigorous mathematical framework initially developed by [BT72, VKF79, Cru89]. The ergodic
theory for 2D stochastic NSE, and other nonlinear SPDEs, was initiated by [FM95, DPZ96] around the
Doob-Khasminskii theorem. This setting requires finite time smoothing of the Markov semigroup (the
Strong Feller property) and a strong form of irreducibility. As such, these initial works required a very
non-degenerate noise structure, that is stochastic forcing in all Fourier modes. Following these pioneering
works, a number of authors have addressed the case of increasingly degenerate stochastic forcing [Fer99,
Mat99, Mat02b, BKL01, EMS01, EH01, KS01, KS02, MY02, Mat03]. These authors realized the es-
sential role played by Foias-Prodi-type estimates (determining modes) [FP67] for obtaining ergodicity in
nonlinear SPDEs. More recently, in a series of works [MP06, HM06, HM08, HM11] the unique ergod-
icity and mixing properties of the stochastic Navier-Stokes equations have been established for a class of
very degenerate (hypoelliptic) stochastic forcings. In particular these authors introduced a notion of time
asymptotic smoothing for the Markov semigroup and connected this property with unique ergodicity. We
will make central use of this “asymptotic strong Feller” property here. For further recent developments and
background on the ergodic theory of nonlinear SPDEs we refer the reader to [Kup10, Deb11, KS12] and
references therein. The time asymptotic and statistically stationary behavior of the damped stochastic Euler
has been studied in e.g. [BF00, BF12, GHSV13], but only in the context of weak solutions both in the PDE
and probabilistic sense, which is far from the Markovian framework used here.

If the wave number dependence in the dissipation is strong enough, i.e. for γ ∈ (1, 2), the equation
is semilinear and the argument in [HM06] appears to go through without major new ideas. The reason
is that Λγ is smoothing by γ derivatives, while u · ∇ω = ∇ · (uω) has a one derivative loss. Moreover,
at the technical level, when γ ∈ (1, 2) one can simply work with the phase space L2, where we have
existence, uniqueness, and continuous dependence on data for the SPDE. Therefore, one can show the
Markovian semigroup is Feller, obtain the needed exponential moment bounds, and the asymptotic strong
Feller property, all in the L2 phase space.

On the other hand, the quasilinear case γ ∈ (0, 1] is hard for the following reasons: It appears from
the above naive derivative counting that the case γ ∈ (0, 1] requires a new idea in order to appeal to Foias-
Prodi-type arguments. No continuous dependence on data in the L2 phase space is available, and even
uniqueness might fail in L2 for (1.1), so the Markovian framework breaks down in this space. To make sure
we have uniqueness in the SPDE, we work in the phase space Hr with r > 2. The essential challenge now
is that there is no cancellation property for the nonlinear term in Hr, and so obtaining moments becomes a
highly non-trivial task. Moments are used extensively throughout the analysis: usually polynomial moments
(with at most linear time-growth) are used to obtain the existence of invariant measures, while exponential
moments are used essentially in obtaining the uniqueness. Furthermore, due to this lack of cancellation in
Hr, even establishing the Feller property is not trivial.

Our new ideas, which allow us to overcome the above mentioned technical difficulties are as follows.
We developed a way to use the inherent parabolic smoothing in the equation, combined with a stopping time
argument, to obtain the Feller property. The smoothing also takes care (after an arbitrarily small transient
smoothing time) of the problem with the naive derivative counting. In order to obtain estimates on the
gradient of the Markov semigroup, we need to make use of exponential moments. Since we do not have
them inHr, we first need to address the control equation for the velocity fields in L2, which only require the
available Lp exponential moments. We then use the instantaneous smoothing and interpolation to obtain the
needed decay estimates in Hr. Parabolic smoothing may thus be also viewed as a tool to bootstrap available
moment information from Lp to Hr. Our exponential moment estimates make use of a sharpening of a
lower bound on the dissipation term in Lp from [CC04]. This appears to be new, and may also be of some
independent interest.
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1.1. Mathematical Setting and Assumptions on the Noise. The size of the periodic domain is chosen
so that for convenience the lowest eigenvalue of −∆, and hence of the fractional Laplacian Λγ , is equal to
1. Lebesgue spaces are denoted as usual by Lp with 1 ≤ p ≤ ∞. For any s > 0 we shall denote by Hs as
the Hilbert space of mean zero elements ω ∈ L2(T2) such that ‖Λsω‖2L2 <∞.

Throughout this manuscript fix r > 2. We will be considering pathwise, that is probabilistically strong,
solutions. Hence we fix a stochastic basis S = (Ω,F ,P, {Ft}t≥0,W ). The noise term in (1.1) is given
explicitly as

σdW =
∑
k∈Z

σk(x)dW k(t) (1.2)

where we denote the set of forced modes by Z ⊂ Z2
0:= Z2 \ {(0, 0)}. For s ≥ 0 we will use the notation

‖σ‖2Hs :=
∑
k∈Z
‖σk‖2Hs

Similarly we adopt for any p ≥ 2,

‖σ‖pLp =

∫
T2

(∑
k∈Z
|σk(x)|2

)p/2
dx.

We assume for simplicity that for |Z| < ∞ and Z is symmetric with respect to k 7→ −k. Also, to
simplify the exposition we consider the following explicit structure1 for the σk. As in [HM06], let {qk}k∈Z
be a collection of non-zero real numbers and let ek(x) = sin(k · x) for k ∈ Z ∩ Z2

+ and ek(x) = cos(k · x)
for k ∈ Z ∩ Z2

−, where Z2
+ = {k = (k1, k2) ∈ Z2 : k2 > 0, or k2 = 0 and k1 > 0}, and Z2

− = −Z2
+. We

then let

σk(x) = qkek(x) (1.3)

for any k ∈ Z . For many of the below results we need Z to contain a sufficiently large ball around the origin
in Z2. That is, we assume there exists a sufficiently large integer N > 0 such that

{k ∈ Z2 : 0 < |k| ≤ N} ⊂ Z.

1.2. Well-posedness and Markovian Framework. For initial data ω0 ∈ Hr, it may be shown that
(1.1) has a unique global in time probabilistically strong, i.e. pathwise, solution in Hr. More precisely we
have the following well-posedness result:

PROPOSITION 1.1 (Well-posedness). Fix a stochastic basis S = (Ω,F ,P, {Ft}t≥0,W ) and consider
any r > 2, γ > 0. Suppose, for simplicity that σ takes the form (1.3). Then, for any ω0 ∈ Hr there exists a
unique ω = ω(t, ω0) = ω(t, ω0, σW ) satisfying (1.1), in the time integrated sense and with the regularity

ω ∈ L∞([0,∞);Hr) ∩ L2
loc([0,∞);Hr+γ/2)

almost surely.

By making use of the change of variable ω̄ = ω − σW , this existence and uniqueness result can be
established using standard methods in a similar fashion to the 2D Euler/Navier-Stokes equation. See e.g.
[CF88, MB02]. Note however that the local and global existence for strong, pathwise solutions of the 2D
and 3D Euler equations has been treated in a much more general setting, with multiplicative noise and in the
presence of boundaries in [GHV13], and see also the references therein. See e.g. [Roz90, DPZ92, PR07]
for more on the general well-possedness theory for SPDE.

On the other hand, the fractional dissipation term present in (1.1) leads to smoothing properties which
we would not expect from the damped Euler equation. We will show in Theorem 1.2 that solutions smooth
to an arbitrary degree regularity after an arbitrarily short time. With this smoothing effect we show in
Proposition 3.1 that solutions dependent continuously on initial conditions in the Hr topology.

1For Proposition 1.1 and Theorems 1.2–1.4 we in fact do not require any other assumptions on the noise term, except for
‖σ‖Hs <∞ with s = r + 2. In fact, these results hold with more general, possibly state-dependent (multiplicative) noise.
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With this basic well-posedness in hand we may associate Markov transition functions to (1.1) by defining

Pt(ω0, A) = P(ω(t, ω0) ∈ A) for any t ≥ 0, A ∈ B(Hr). (1.4)

This defines the Markovian semigroup, also denoted {Pt}t≥0

Ptϕ(·) = Eϕ(ω(t, ·)) =

∫
Hr

ϕ(ω0)Pt(·, dω0), for any ϕ ∈Mb(H
r), (1.5)

whereMb(H
r) denotes the collection of bounded, real valued, Borel measurable functions mapping from

Hr. We will denote Cb(Hr) to be the collection of continuous real valued functions mapping from Hr. We
will show in Section 3 below, that {Pt}t≥0 is Feller meaning that Pt maps Cb(Hr) into Cb(Hr) for every
t ≥ 0. Let us recall that for any Borel probability measure µ, the dual semigroup P ∗t acts as

P ∗t µ(·) =

∫
Hr

Pt(ω0, ·)dµ(ω0).

Note that P ∗t may be defined to act on any finite signed Borel measure µ. Then µ ∈ Pr(Hr) is an invariant
measure for {Pt}t≥0 if P ∗t µ = µ for all t ≥ 0.

1.3. Notation. For the sake of readability, throughout this manuscript we shall adopt the following
notational conventions. All constants are deterministic and independent of time.

(i) C shall denote a sufficiently large positive constant that depends on r, γ, and on the constants
arising in the Sobolev, Poincaré, Burkholder-Davis-Gundy, and other inequalities. The value of
C may change from line to line. When the constant C depends on other parameters λ, we shall
explicitly remind the reader of this dependance by writing C(λ).

(ii) P(x) shall denote a polynomial of the type 1 + xq, where the degree of the polynomial is sup-
pressed in the notation. We shall also write P(x, y) to denote a polynomial 1 + xq1 + yq2 , where
again the dependence on q1 and q2 is suppressed.

(iii) E(κ, x) shall denote the function exp(κ(1 + x2)). Below, κ shall always take the form κ =
1/(CP(‖σ‖)) for a suitable norm ‖ · ‖ of σ, which we will specify, and a universal constant C as
in (i) above.

1.4. Main Results. We now turn to describe the main results of the work, and to lay out some of the
challenges involved in their proofs. As mentioned above, at the heart of our argument is obtaining moment
bounds in high Sobolev spaces for solutions of (1.1). The first main result gives polynomial moment bounds
for the Hr+α(t) norm of ω(t), with α(t) increasing, and these bounds grow only linearly in time. This
secular growth is in turn essential for the existence and uniqueness results below (cf. Theorems 1.4 and 1.5).

THEOREM 1.2 (Polynomial Sobolev Moments and Smoothing). Fix r > 2, γ > 0, and let m ≥ 0 and
Tm > 0 be arbitrary. Define

α(t) =

{
mtT−1

m , t ∈ [0, Tm],

m, t > Tm.
(1.6)

Then, for any T > 0 and any q ≥ 2 we have

E

(
sup
t∈[0,T ]

‖Λr+α(t)ω(t)‖q
L2 +

∫ T

0
‖Λr+γ/2+α(t)ω(t)‖2L2‖Λr+α(t)ω(t)‖q−2

L2 dt

)
≤ CP(E‖ω0‖Hr) + CTP(‖σ‖Hr+m), (1.7)

where C = C(q, Tm,m) is a sufficiently large constant, independent of T . The polynomial P is given
explicitly in (2.21) below.



UNIQUE ERGODICITY FOR FRACTIONALLY DISSIPATIVE 2D EULER 5

We emphasize that m, the number of derivatives we want to gain, and Tm, the time in which this gain
is achieved, can be taken arbitrarily large, respectively arbitrarily small. This is a quantitative control on the
parabolic smoothing effects inherent in the equations. The techniques outlined in the proof of Theorem 1.2
below, combined with the arguments in [FT89, Mat02a], may be used to show that in fact the equations lie
in a Gevrey-class when t > 0.

The main difficulty in establishing Theorem 1.2 is that in high Sobolev spaces Hs with s > 0, unlike
the case s = 0, we do not have that

∫
Λs(u · ∇ω)Λsωdx = 0. In order to obtain bounds that do not blow

up in finite time, we use a commutator estimate which shows that the Hs norm is under control globally, if
the expected value of the H1 norm to a large power is integrable in time. In turn, to obtain such polynomial
moments for the H1 norm, upon integration by parts, it is sufficient to obtain polynomial moment bounds
for high Lp norms of the solution. The latter is achieved using that the nonlinear term vanishes in Lp, and
the positivity of the fractional Laplacian in Lp, see [CC04] and Appendix A below. The above described
argument of bootstrapping moments from Lp to H1 and then to Hr+α(t) is given in Subsection 2.1 below.

While the polynomial moments established in Theorem 1.2 are sufficient in order to establish the exis-
tence and regularity of invariant measures of (1.1), in order to establish gradient estimates for the Markov
semigroup, which is an essential step for uniqueness of invariant measures, exponential moments are needed.
As with the case of the Navier-Stokes equations (γ = 2), classical arguments can be used to establish ex-
ponential moments for the L2 norm of the solution. However in the Naver-Stokes case L2 is also the phase
space where the Markov semigroup evolves. In the fractional case considered here the Markov semigroup is
evolving on Hr, and this discrepancy between the space where exponential moments are available and the
phase space causes a number of difficulties. At this stage, in order to be able to use the parabolic smoothing
property we make critical use of of exponential moments for any large Lp norm of which is the next result.

THEOREM 1.3 (Exponential Lebesgue Moments). Let p ≥ 2 be even, and T > 0 be arbitrary. There
exists κ0 > 0 with

κ0 =
1

C(p)P(‖σ‖Lp)
,

such that for every κ ∈ (0, κ0] we have

E exp
(
κ‖ω(T )‖2Lp

)
+ E

∫ T

0
exp

(
κ‖ω(t)‖2Lp

)
dt ≤ CEE(κ, ‖ω0‖2Lp) + CκT (1.8)

where C = C(p). Moreover, for every κ in this range we have that

E exp

(
κ

∫ T

0
‖ω(s)‖2Lpds

)
≤ eTEE(κ1/2, ‖ω0‖2Lp) (1.9)

holds.

We notice that the growth in time of (1.8) is only linear, and the exponential growth in time of (1.9) is
at a rate that is independent of σ. The proof of Theorem 1.3, given in Subsection 2.2 below, is based on the
Itō Lemma in Lp [DPZ92, Kry10], and a Poincaré inequality in Lp for fractional powers of the Laplacian,
given in Proposition A.1. More precisely, for p ≥ 2 even, we prove that∫

T2

θp−1(x)Λγθ(x)dx ≥ 1

Cγ
‖θ‖pLp +

1

p
‖Λγ/2(θp/2)‖2L2

holds, with an explicit constant Cγ ≥ 1 given by (A.5) below. The lower bound (A.1), but without the Lp

norm of θ on the right side, was proven by Córdoba and Córdoba in [CC04]. Since θp/2 is not of zero mean
when p ≥ 4 is even, this lower bound does not however follow directly from [CC04]. Note that in the case
γ = 2 we have a local operator, −∆, and the above estimate easily follows using integration by parts. In the
fractional case, due to the lack of a Leibniz rule, we need a different argument, given in Appendix A below.

In the next theorem we establish the Feller property for the Markov semigoup Pt associated to (1.1), and
prove the existence of an ergodic invariant measure for the dual semigroup, which additionally is supported
on smooth functions.
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THEOREM 1.4 (Existence and Regularity of Invariant Measures). Let r > 2 and γ > 0. The system
(1.1) defines, for t ≥ 0 a Feller semigroup Pt on Hr. There exists an ergodic invariant measure µ for
{Pt}t≥0. Moreover, every invariant measure µ of Pt is supported on C∞ and∫

Hr

‖ω‖qHsdµ(ω) <∞

for every s ≥ r, and for any q ≥ 2.

In the classical case of the stochastic Navier-Stokes equations, the Feller property follows directly from
a continuous dependence estimate on data in the phase space L2. In the fractional case with γ � 1,
we face two complicating factors. The standard continuous dependence on data estimates in Hr do not
appear to work since we cannot control stray terms arising from linearization, as can be seen from a naive
accounting based on the number of derivatives. In fact, for the deterministic Euler equation the continuous
dependence on data in Hr should not be expected; cf. [Mas07]. To overcome this difficulty we make
careful use of a parabolic smoothing argument, by controlling the difference of two Hr+α(t) solutions in
Hr−1+α(t). Coupled with the bounds available from Theorem 1.2, with m = 1 and Tm sufficiently small,
this allows us to control the difference of the solutions in Hr, for any strictly positive time. Even leaving the
regularity issue aside, in contrast to the classical case where the Feller property is an immediate “pathwise”
inference from the Dominated Convergence Theorem, due lack of cancellations here we must invoke a
delicate stopping time and density argument. This is the content of Proposition 3.2 below. See also the
recent work [GHKVZ13] where a similar approach has been used to address multiplicative noise.

With the Feller property now in hand the existence and regularity of invariant measure now follows from
Theorem 1.2 with the aid of standard long-time averaging arguments. While we only go so far as to give
the details for the C∞ support of µ we believe it should be possible to show that µ is in fact supported on
Gevrey-class functions. It is also worth emphasizing that up to this point in the work our arguments extend
trivially to any additive noise with a sufficiently smooth σ and indeed even to certain classes state dependent
noise structures. The proof of Theorem 1.4 is given at the end of Section 3.1.

THEOREM 1.5 (Uniqueness of Invariant Measures). Let r > 2 and γ > 0. There exists an N =
N(γ, r, ‖σ‖L6/γ ), such that if the ball of radiusN in Z2

0 lies inside Z , then there exists a unique and ergodic
invariant measure.

The proof of Theorem 1.5 is carried out in Section 4 and consists of two principal steps. First we
establish a certain time-asymptotic smoothing property of the Markov semigroup associated to (1.1). More
specifically, we establish that Pt satisfies the so-called asymptotically strong Feller property, which was
introduced in [HM06], and is recalled here in Definition 4.1 below. In practice this is achieved through
an estimate on the gradient of the Markov semigroup obtained in Proposition 4.2. In this setting, using
some tools from Malliavin calculus, the gradient estimate boils down to constructing a suitable “control”,
which assigns to every perturbation in the initial data a perturbation in the noise. This perturbation in the
chosen so that the global dynamics is controlled by the dynamics on a sufficiently large, but finite, number
of determining Fourier modes (Foias-Prodi estimates). Asymptotically, as t→∞, one has to show that the
size of this control vanishes, which encodes the time-asymptotic smoothing of the Markov semigroup.

For γ small the difficulty here is twofold, even in the so called “essentially elliptic” case, where we
force all the determining modes of the system. First, even if this number of modes N is sufficiently large, a
simple derivative count shows that for the control to decay one has to use the parabolic smoothing described
in Theorem 1.2. This aside, a second difficulty arises: we do not have exponential moments for the Hs

norms of the solution when s ≥ 1, and such exponential moments appear to play an indispensable role
in such gradient estimates. We overcome this difficulty by first proving that the H−1 norm of the control
decays, which only requires exponential moments for the Lp norm of the solution, available by Theorem 1.3.
We then use the smoothing effects and interpolation to bootstrap this H−1 decay to a decay in Hr.

The second step is to establish that Pt is weakly irreducible at 0, meaning that 0 is in the support of every
invariant measure. This property follows from uniform estimates on the stationary solution established after
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Proposition 3.4 and the following property of the equations: the unforced dynamics are driven to 0, and
moreover this fixed point is stable under perturbations in the forcing. The precise estimates which lead to
the weak irreducibility property are given in Section 5.

Combining these two main steps, the asymptotic strong Feller property and the weak irreducibility, we
now rely on the following fundamental result:

Theorem [HM06, Theorem 3.16] Let µ and ν be two distinct ergodic invariant probability measures
for Pt. If Pt is asymptotically strong Feller at ω, then ω 6∈ suppµ ∩ suppν.

Using the above result, in view of Theorem 1.4 we may now infer the uniqueness of invariant measures.

2. A Priori Estimates. Moment Bounds and Instantaneous Smoothing

In this section we establish the following moment bounds for solutions ω(t, ω0) of (1.1). For the sake of
generality, we consider possibly random initial data, but the moment bounds obtained here will be applied
in forthcoming sections with deterministic initial conditions.

2.1. Polynomial Moments and Smoothing Estimates. The goal of this subsection is to prove Theo-
rem 1.2, which is achieved in several steps. The first step is to obtain an moment bound for Lp norms of
ω. The second step is to bootstrap using a commutator estimate and obtain polynomial moments for the H1

norm of the vorticity. The last step is to use the inherent parabolic regularization in the equation to further
bootstrap and prove polynomial moment bounds on high Sobolev norms. We emphasize that all the moment
bounds obtained in this subsection grow at most linearly with time. This is essential in order to establish the
existence of invariant measures below in Section 3.

2.1.1. Estimates for ω in Lp, p ≥ 2. We now prove moment bounds for Lp norms of the solution, with
p ≥ 2, and even. Applying the Itō lemma pointiwse in x and the stochastic Fubini theorem, we obtain the
following Lp version of the Itō lemma (see also [Kry10])

d‖ω‖pLp =

(
−p
∫
T2

ωp−1Λγωdx+
p(p− 1)

2

∑
l∈Z

∫
T2

σ2
l ω

p−2dx

)
dt+ p

∑
l∈Z

(∫
T2

σlω
p−1dx

)
dW l

=:

(
−pT1,p +

p(p− 1)

2
T2,p

)
dt+ p

∑
l∈Z

Sl,pdW
l. (2.1)

Using Proposition A.1, we have a lower bound on the fractional Laplacian

pT1,p = p

∫
T2

ωp−1Λγωdx ≥ 1

Cγ
‖ω‖pLp +

∫
T2

∣∣∣Λγ/2(ωp/2)
∣∣∣2 dx (2.2)

where Cγ ≥ 1 may be computed explicitly. A standard Hölder and ε-Young bound for the second term on
the right side of (2.1) yields

p(p− 1)

2
T2,p ≤ p2‖σ‖2Lp‖ω‖

p−2
Lp ≤

1

2Cγ
‖ω‖pLp + C‖σ‖pLp (2.3)

where Cγ is the constant appearing in (2.2). We integrate (2.1) on [0, T ], take expected values and use the
estimate (2.2)–(2.3) to arrive at

E‖ω(T )‖pLp +

∫ T

0
E‖ω(s)‖pLpds ≤ CE‖ω0‖pLp + CT‖σ‖pLp . (2.4)

2.1.2. Estimates for ω in H1. We now obtain moment bounds for the H1 norm of the vorticity. First
we deal with quadratic moments by appealing to the Itō lemma in H1

d‖ω‖2H1 + 2‖ω‖2
H1+γ/2dt =

(
‖σ‖2H1 − 2

∫
T2

u · ∇ω∆ωdx

)
dt+ 2

∑
l∈Z

(∫
T2

σl∆ωdx

)
dW l. (2.5)
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Upon integration by parts, using that∇ · u = 0, the nonlinear term may be bounded as∣∣∣∣∫
T2

u · ∇ω∆ωdx

∣∣∣∣ =

∣∣∣∣∫
T2

∇ω : ∇u · ∇ωdx
∣∣∣∣ ≤ ‖∇ω‖2L2+ε‖∇u‖

L
2+ε
ε

(2.6)

where ε = ε(γ) := 2γ/(4− γ) is defined such that Hγ/4 ⊂ L2+ε by Sobolev embedding. Using that∇u is
given by a matrix of Riesz transforms acting on ω, and the Gagliardo-Nirenberg estimate, the right side of
(2.6) is further bounded as

‖∇ω‖2L2+ε‖∇u‖
L

2+ε
ε
≤ C‖ω‖

L
2+ε
ε
‖ω‖2

H1+
γ
4
≤ C‖ω‖

L
4
γ
‖ω‖

γ
2+γ

L2 ‖ω‖
2− γ

2+γ

H1+
γ
2

≤ ‖ω‖2
H1+

γ
2

+ C‖ω‖2L2‖ω‖
2(2+γ)
γ

L
4
γ

≤ ‖ω‖2
H1+γ/2 + C‖ω‖

4
γ

+4

L
4
γ

(2.7)

for some sufficiently large constant C that depends on γ ∈ (0, 2] and the size of the periodic box. Letting

pγ = 4 +
4

γ
, (2.8)

and using once more the Hölder and Poincaré inequalities, (2.5) gives

d‖ω‖2H1 + ‖ω‖2H1dt ≤
(
‖σ‖2H1 + C‖ω‖pγLpγ

)
dt+ 2

∑
l∈Z

(∫
T2

σl∆ωdx

)
dW l (2.9)

and hence, upon integrating on [0, T ] and taking expected values we arrive at

E‖ω(T )‖2H1 +

∫ T

0
E‖ω(s)‖2H1ds ≤ E‖ω0‖2H1 + T‖σ‖2H1 + C

∫ T

0
E‖ω(s)‖pγLpγ ds

≤ E‖ω0‖2H1 + CE‖ω0‖
pγ
Lpγ + CT

(
‖σ‖2H1 + ‖σ‖pγLpγ

)
. (2.10)

In the last inequality above we have appealed to the Lpγ moment bound (2.4) above.
In Section 2.1.3 below we will in fact need bounds on E‖ω‖q

H1 , with q ≥ 2 possibly large, depending
on γ. To this end, we apply the Itō formula to the function ϕ(x) = xq/2, and x(t) = ‖ω(t)‖2H1 and obtain
as in (2.9) that

d‖ω‖q
H1 ≤

q

2
‖ω‖q−2

H1

(
−‖ω‖2H1 + ‖σ‖2H1 + C‖ω‖pγLpγ

)
dt

+ q‖ω‖q−2
H1

∑
l∈Z

(∫
T2

σl∆ωdx

)
dW l +

q(q − 2)

2
‖σ‖2H1‖ω‖q−2

H1 dt (2.11)

for any q ≥ 2. Integrating (2.11) on [0, T ], taking expected values and using the ε-Young inequality three
times, we arrive at

E‖ω(T )‖q
H1 +

q

8

∫ T

0
E‖ω(s)‖q

H1ds ≤ E‖ω0‖qH1 + CT‖σ‖qH1 + C

∫ T

0
E‖ω(s)‖

qpγ
2
Lpγ ds

≤ E‖ω0‖qH1 + CE‖ω0‖
qpγ/2

Lqpγ/2
+ CT

(
‖σ‖qH1 + ‖σ‖qpγ/2

Lqpγ/2

)
≤ CP(E‖ω0‖H1) + CTP(‖σ‖H1) (2.12)

where in the second inequality we have used the Hölder inequality, and the moment bound (2.4) for the
Lqpγ/2 norm. Here C depends on the parameter q.

2.1.3. Estimates for ω in Hr+α(t), smoothing. In this final step of the proof of Theorem 1.2, we make
estimates on the L2 norm of Λr+α(t)ω(t). Here for the sake of brevity we define

s(t) = r + α(t)
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and note that s(t) > 2 for all t ≥ 0. The Itō lemma in L2, applied to Λs(t)ω, yields

d‖Λsω‖2L2 + 2‖Λs+γ/2ω‖2L2dt− 2α̇(t)‖Λs(log Λ)1/2ω‖2L2dt

=

(
‖σ‖2Hs − 2

∫
T2

u · ∇ω(−∆)sωdx

)
dt+ 2

∑
l∈Z

(∫
T2

σl(−∆)sωdx

)
dW l, (2.13)

where we have used that

d

dt
|k|2s(t) = 2α̇(t) log(|k|)|k|2s(t) =

{
2mT−1

m log(|k|)|k|2s(t), t ∈ [0, Tm],

0, t > Tm.

In order to bootstrap from (2.13) to compute higher moments we now make a second application of the Itō
lemma with ϕ(x) = xq/2. We obtain

d‖Λsω‖q
L2 + q‖Λs+γ/2ω‖2L2‖Λsω‖q−2

L2 dt− qα̇(t)‖Λs(log Λ)1/2ω‖2L2‖Λsω‖q−2
L2 dt

=
q

2
‖Λsω‖q−2

L2

(
‖σ‖2Hs − 2

∫
T2

u · ∇ω(−∆)sωdx

)
dt+ q‖Λsω‖q−2

L2

∑
l∈Z

(∫
T2

σl(−∆)sωdx

)
dW l

+
q(q − 2)

2
‖Λsω‖q−4

L2

∑
l∈Z

(∫
T2

σl(−∆)sωdx

)2

dt. (2.14)

Now, since for any γ > 0 there exists N∗ = N∗(γ,m, Tm) > 0 such that

α̇ log(|k|) ≤ mT−1
m log(|k|) ≤ 1

2
|k|γ , for all |k| ≥ N∗ (2.15)

and possibly choosing N∗ larger so that Nγ/2
∗ > mT−1

m we have

α̇(t)‖Λs̃(t)(log Λ)1/2ω‖2L2 = α̇(t)
∑
k∈Z2

0

|k|2s(t) log |k||ω̂k|2

≤ 1

2
‖Λs(t)+γ/2ω‖2L2 +N2s−2+γ

∗ 11t≤Tm‖ω‖2H1 (2.16)

Thus, with (2.16) and (2.14) we may thus conclude

d‖Λsω‖q
L2 +

q

2
‖Λs+γ/2ω‖2L2‖Λsω‖q−2

L2 dt

≤ q

2
‖Λsω‖q−2

L2

(
(q − 1)‖σ‖2Hs +N2s−2+γ

∗ 11t≤Tm‖ω‖2H1 + 2

∣∣∣∣∫
T2

u · ∇ω(−∆)sωdx

∣∣∣∣) dt
+ q‖Λsω‖q−2

L2 〈Λsσ,Λsω〉dW. (2.17)

To estimate the nonlinear term on the right side of (2.14), since∇ · u = 0, we may rewrite∫
T2

(K ∗ ω) · ∇ω(−∆)sωdx =

∫
[Λs, (K ∗ ω) · ∇]ωΛsωdx

where [Λs, f ·∇]g = Λs(f ·∇g)− f ·Λsg. We now use the commutator estimate (B.4) of Lemma B.1, with
ε = 1

4 , and conclude

2

∣∣∣∣∫
T2

(K ∗ ω) · ∇ω(−∆)sωdx

∣∣∣∣ ≤ C(1 + ‖ω‖p
H1) +

1

4
‖ω‖2

Hs+γ/2 . (2.18)

with C = C(m) since s ≤ r +m and where

p =
4((4 + γ)(r +m+ γ)− 4)

γ(6 + γ)
. (2.19)
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Putting together (2.18) with (2.17) we obtain with an appropriate usage of the ε-Young inequality.

d‖Λsω‖q
L2 +

q

8
‖Λs+γ/2ω‖2L2‖Λsω‖q−2

L2 dt

≤ C
(
N2r+2m−2+γ
∗ ‖ω‖2H1 + ‖σ‖2Hr+m + (1 + ‖ω‖p

H1)
)q/2

dt+ q‖Λsω‖q−2
L2 〈Λsσ,Λsω〉dW. (2.20)

We now conclude the desired results by integrating (2.20) over any interval [0, t] ⊂ [0, T ], taking a supre-
mum in t and then taking expected values. Applying standard arguments using the Burkholder-Davis-Gundy
inequality to the martingale terms, we obtain

E

(
sup
t∈[0,T ]

‖Λs(t)ω(t)‖q
L2 +

∫ T

0
‖Λs(t)+γ/2ω‖2L2‖Λs(t)ω‖q−2

L2 dt

)

≤ CE‖Λrω0‖qL2 + CE
(∫ T

0
1 + ‖σ‖qHr+m + ‖ω‖

pq
2

H1ds

)
≤ CE

(
‖Λrω0‖qL2 + ‖ω0‖

pq
2

H1 + ‖ω0‖
ppγq

4

L
ppγq

4

)
+ CT

(
1 + ‖σ‖qHr+m + ‖σ‖

pq
2

H1 + ‖σ‖
ppγq

4

L
ppγq

4

)
. (2.21)

for any T > 0 and q ≥ 2, with C = C(q,m, Tm), where p is given by (2.19) and pγ is given by (2.8).

2.2. Exponential Moments in Lp, p ≥ 2. The purpose of this section is to establish exponential
moments for the Lp norms of the solution, i.e. prove Theorem 1.3.

2.2.1. Pointwise in time exponential moments. In this subsection we obtain pointwise in time exponen-
tial moment bounds for the Lp norms of solutions, that grow only linearly in time, i.e. estimate (1.8).

For p ≥ 2 and κ > 0, to be determined, we now consider the function

ψκ(x) = exp
(
κ(1 + x)2/p

)
(2.22)

which is smooth in a neighborhood of [0,∞). We note that

ψ′κ(x) =
2κ

p
(1 + x)

2−p
p ψκ(x)

ψ′′κ(x) = −2κ(p− 2)

p2
(1 + x)

2−2p
p ψκ(x) +

4κ2

p2
(1 + x)

2(2−p)
p ψκ(x) ≤ κ(1 + x)

2−p
p ψ′κ(x).

Let x(t) = ‖ω(t)‖pLp . By the Itō Lemma, and (2.1) we have that

dψκ(x) = ψ′κ(x)

(
−pT1,p +

p(p− 1)

2
T2,p

)
dt+

p2

2
ψ′′κ(x)

∑
l∈Z

S2
l,pdt+ p

∑
l∈Z

ψ′κ(x)Sl,pdW
l (2.23)

Using (2.2) and (2.3) we find

−pT1,p +
p(p− 1)

2
T2,p ≤ −

1

Cγ
‖ω‖pLp + C‖σ‖pLp .

with Cγ ≥ 1, while the Hölder inequality implies

∑
l∈Z

S2
l,p ≤

∑
l∈Z

(∫
T2

σlω
p−1dx

)2

≤ ‖σ‖2Lp‖ω‖
2(p−1)
Lp
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Hence we obtain

dψκ(x) ≤ ψ′κ(x)

(
− 1

Cγ
‖ω‖pLp + C‖σ‖pLp + κ(1 + ‖ω‖pLp)

2−p
p ‖σ‖2Lp‖ω‖

2(p−1)
Lp

)
dt

+ pψ′κ(x)
∑
l∈Z

Sl,pdW
l

≤ ψ′κ(x)

(
− 1

Cγ
‖ω‖pLp + C‖σ‖pLp + κ‖σ‖2Lp‖ω‖

p
Lp

)
dt+ pψ′κ(x)

∑
l∈Z

Sl,pdW
l (2.24)

Now for any κ = κ(p, ‖σ‖Lp) sufficiently small so that

κ
(
1 + Cγ‖σ‖2Lp

)
≤ 1

2
, (2.25)

where C(p) is the constant in (2.24), and any T > 0, by integrating (2.24) we find

Eψκ(x(T )) ≤ Eψκ(x(0)) + E
∫ T

0
ψ′κ(x(t))

(
− 1

2Cγ
‖ω‖pLp + C‖σ‖pLp

)
ds. (2.26)

Using (2.25) we next estimate

ψ′κ(x)

(
− 1

4Cγ
‖ω‖pLp + C‖σ‖pLp

)
≤ 2κ

p
exp

(
κ(1 + ‖ω‖pLp)

2/p
)(
− 1

4Cγ
‖ω‖pLp + C‖σ‖pLp

)
≤ 2κ

p
exp

(
κ(1 + 4CCγ‖σ‖pLp)

2/p
)
≤ Cκ. (2.27)

To see this one has to treat separately the cases when ‖ω‖pLp is larger or smaller than 4CCγ‖σ‖pLp . Combin-
ing (2.26) with (2.27) we obtain that

E exp
(
κ‖ω(T )‖2Lp

)
+

1

4pCγ
E
∫ T

0
exp

(
κ‖ω(t)‖2Lp

)
dt ≤ CE exp

(
κ‖ω0‖2Lp

)
+ CκT (2.28)

where κ = κ(p, ‖σ‖−1
Lp ) is such that (2.25) holds, and C = C(p). We note that the right side of (2.28) grows

only linearly in p.
2.2.2. Exponential moments for the time-integral. In this subsection we prove estimates for the expo-

nential of the time integral of the Lp norms, i.e. bound (1.9). For this purpose, let p ≥ 2 be even and

X(t) = (1 + ‖ω(t)‖pLp)
2/p + ε

∫ t

0
‖ω(s)‖2Lpds

where ε = ε(p) > 0 is to be determined later, and apply the Itō lemma to the C2 function

ψκ(X) = exp (κX) .

In order to do this, we first use (2.1) and obtain

dX =
2

p
(1 + ‖ω‖pLp)

2−p
p d‖ω‖pLp −

(p− 2)

p2
(1 + ‖ω‖pLp)

2−2p
p d‖ω‖pLpd‖ω‖

p
Lp + ε‖ω‖2Lpdt

=
2

p
(1 + ‖ω‖pLp)

2−p
p

(
−pT1,pdt+

p(p− 1)

2
T2,pdt+ p〈σ, ωp−1〉dW

)
− (p− 2)(1 + ‖ω‖pLp)

2−2p
p |〈σ, ωp−1〉|2dt+ ε‖ω‖2Lpdt. (2.29)
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Here we used the shorthand notation 〈σ, g〉dW =
∑

l∈Z
∫
T2 σlgdxdW

l. Therefore, the Itō lemma applied
to ψκ(X) yields

dψκ(X) = ψ′κ(X)dX +
1

2
ψ′′κ(X)dXdX

= κψκ(X)
(
−2(1 + ‖ω‖pLp)

2−p
p T1,p + (p− 1)(1 + ‖ω‖pLp)

2−p
p T2,p

+ ε‖ω‖2Lp − (p− 2)(1 + ‖ω‖pLp)
2−2p
p |〈σ, ωp−1〉|2

)
dt

+ κψκ(X)2(1 + ‖ω‖pLp)
2−p
p 〈σ, ωp−1〉dW

+ κ2ψκ(X)(1 + ‖ω‖pLp)
2−p
p

∑
l∈Z

(∫
σlω

p−1dx

)2

dt. (2.30)

Using (2.2)–(2.3), the Hölder inequality, and the definition of ψκ we thus infer

dψκ(X) ≤ κψκ(X)
(
− 1

Cγ
(1 + ‖ω‖pLp)

2−p
p ‖ω‖pLp + C‖σ‖2Lp + ε‖ω‖2Lp + Cκ‖σ‖2Lp‖ω‖2Lp

)
dt

+ 2κψκ(X)(1 + ‖ω‖pLp)
2−p
p 〈σ, ωp−1〉dW. (2.31)

Next, we estimate

− 1

Cγ
(1 + ‖ω‖pLp)

2−p
p ‖ω‖pLp = − 1

Cγ
(1 + ‖ω‖pLp)

2−p
p (1 + ‖ω‖pLp) +

1

Cγ
(1 + ‖ω‖pLp)

2−p
p

= − 1

Cγ
(1 + ‖ω‖pLp)

2/p + 1 ≤ − 1

Cγ
‖ω‖2Lp + 1

since Cγ ≥ 1 and p ≥ 2. We thus obtain

dψκ(X) ≤ κψκ(X)
(
− 1

Cγ
‖ω‖2Lp + C(1 + ‖σ‖2Lp) + ε‖ω‖2Lp + Cκ‖σ‖2Lp‖ω‖2Lp

)
dt

+ 2κψκ(X)(1 + ‖ω‖pLp)
2−p
p 〈σ, ωp−1〉dW. (2.32)

We next choose κ, ε ∈ (0, 1] to be sufficiently small so that

Cκ(1 + ‖σ‖2Lp) ≤
1

2Cγ
, ε ≤ 1

2Cγ
, (2.33)

where Cγ is the constant appearing next to the negative term on the right side of (2.32). With this choice of
ε and κ, we may now integrate (2.32) on [0, t], take expected values to obtain

Eψκ(X(t)) ≤ Eψκ(X(0)) +

∫ t

0
ψκ(X(s))ds. (2.34)

The constant (1) in front of the second term on the right side of (2.34) is independent of σ because due to
(2.33) we have Cκ(1 + ‖σ‖2Lp) ≤ 1. From (2.34) and the Grönwall inequality we infer

E exp

(
κ‖ω(t)‖2Lp + εκ

∫ t

0
‖ω(s)‖2Lpds

)
≤ Eψκ(X(T )) ≤ eTEψκ(X(0)) (2.35)

for any T > 0, and in particular

E exp

(
εκ

∫ T

0
‖ω(s)‖2Lpds

)
≤ eTE exp

(
κ(1 + ‖ω0‖pLp)

2/p
)

(2.36)

holds for T > 0 and ε, κ chosen such that (2.33) holds. Note that without loss of generality we may take
ε = κ, which proves (1.9).
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3. The Feller Property. Existence and Regularity Properties of Invariant Measures

In this section we apply the a priori moment bounds derived in the Section 2 to establish that {Pt}t≥0 is
Feller and then to infer the existence and regularity properties of invariant measures for the dual semigroup.

3.1. Instantaneous Smoothing and the Feller Property. In order to establish the Feller property for
Pt we will need to following continuous dependence estimates which rely on a smoothing properties of (1.1)
established in Theorem 1.2

PROPOSITION 3.1 (Continuous Dependence in Hr). Fix m ≥ r, Tm > 0 and define

α(t) =

{
tmT−1

m , t ∈ [0, T ],

m, t > Tm.
(3.1)

Then for any ω0, ω̄0 ∈ Hr and for any τ ≥ 0

‖ω(τ, ω0)−ω(τ, ω̄0)‖2
Hr−1+α(τ)

≤ ‖ω0 − ω̄0‖2Hr−1 exp

(
C

∫ τ

0
1 + ‖ω(t, ω0)‖2

Hr+α(t) + ‖ω(t, ω̄0)‖2
Hr+α(t)dt

)
(3.2)

a.s., where the deterministic constant C depends on r,m, γ, Tm but is independent of τ and ω0, ω̄0 ∈ Hr.

PROOF OF PROPOSITION 3.1. For brevity of notation let ω(t) = ω(t, ω0), ω̄(t) = ω(t, ω̄0) and ρ =
ω − ω̄. Then ρ satisfies:

∂tρ+ Λγρ+B(ρ, ω) +B(ω̄, ρ) = 0, ρ(0) = ω0 − ω̄0. (3.3)

As in the proof of Theorem 1.2 we denote

s(t) = r − 1 + α(t)

and find that

1

2

d

dt
‖Λsρ‖2 + ‖Λs+γ/2ρ‖2−2α̇(t)‖Λs(log Λ)1/2ρ‖2

= −〈ΛsB(ρ, ω),Λsρ〉 − 〈ΛsB(ω̄, ρ),Λsρ〉

Repeating the computations leading to (2.16) we infer

d

dt
‖Λsρ‖2 + ‖Λs+γ/2ρ‖2 ≤C‖Λsρ‖2 + |〈ΛsB(ρ, ω),Λsρ〉|+ |〈ΛsB(ω̄, ρ),Λsρ〉|

=C‖Λsρ‖2 + T1 + T2. (3.4)

for a constant C = C(m,Tm).
For the first term T1, we use (B.2) and infer

|T1| ≤ ‖Λs((K ∗ ρ) · ∇ω)‖L2‖Λsρ‖L2

≤ C (‖Λs(K ∗ ρ)‖L2‖∇ω‖L∞ + ‖Λs∇ω‖L2‖K ∗ ρ‖L∞) ‖Λsρ‖L2

≤ C
(
‖Λs−1ρ‖L2‖Λs+1ω‖L2 + ‖Λs+1ω‖L2‖Λs−1ρ‖L2

)
‖Λsρ‖L2

≤ C‖Λr+αω‖L2‖Λsρ‖2L2 . (3.5)



14 PETER CONSTANTIN, NATHAN GLATT-HOLTZ, AND VLAD VICOL

On the other hand, for T2 we take advantage cancelations and make use of the commutator estimate (B.1) to
bound

|T2| ≤ C‖Λs((K ∗ ω̄) · ∇ρ)− (K ∗ ω̄) · ∇(Λsρ)‖L2‖Λsρ‖L2

≤ C (‖∇(K ∗ ω̄)‖L8/γ‖Λsρ‖L8/(4−γ) + ‖Λs(K ∗ ω̄)‖L8/γ‖∇ρ‖L8/(4−γ)) ‖Λsρ‖L2

≤ C
(
‖ ω̄‖L8/γ‖Λs+γ/4ρ‖L2 + ‖Λs−1ω̄‖L8/γ‖Λγ/4∇ρ‖L2

)
‖Λsρ‖L2

≤ C‖Λs+1ω̄‖L2‖Λs+γ/2ρ‖L2‖Λsρ‖L2

≤ 1

2
‖Λs+γ/2ρ‖2L2 + C‖Λr+αω̄‖2L2‖Λsρ‖2L2 . (3.6)

Combining (3.5) and (3.6) with (3.4) and applying the Grönwall lemma yields the desired result (3.2). �

With Proposition 3.1 now, in hand we now turn to establish the Feller property. Note that, since growth
of the distance between two solutions is controlled by the growth of each of the individual solutions in (3.2),
we need to make more careful use of stopping time arguments to establish Feller property than for the 2D
Navier-Stokes equations on the L2 phase space.

PROPOSITION 3.2. The Markov semigroup is Feller on Hr for any r > 2, i.e.

PT : Cb(H
r)→ Cb(H

r)

for any T ≥ 0.

PROOF OF PROPOSITION 3.2. Let ϕ ∈ Cb and T > 0 be given. Fix ω0 ∈ Hr. For any ω̄0 in Hr and
K > 0 we define the stopping times

τK(ω̄0) := inf
t≥0

{
sup
s∈[0,t]

‖ω(s, ω̄0)‖2
Hr+α(s) +

∫ t

0
‖ω(t, ω̄0)‖2

Hr+γ/2+α(t)dt ≥ κ1t+K

}
,

where α is defined precisely as in (3.1) with m = 1 and Tm = T . Here κ1 = C(T )P(‖σ‖Hr+m) is the
constant appearing in (1.7) corresponding to Tm = T and m = 1. In particular we emphasize that κ1 is
independent of ω̄0. We let

τK(ω0, ω̄0) = τK(ω0) ∧ τK(ω̄0).

Observe that, for any fixed K > 0, it immediately follow from Proposition 3.1, (3.2) that

‖ω(τK(ω0, ω̄0) ∧ T, ω0)− ω(τK(ω0, ω̄0) ∧ T, ω̄0)‖2
Hr−1+α(τK (ω0,ω̄0)∧T )

≤ ‖ω0 − ω̄0‖2Hr−1 exp (C(T ) (T (1 + 2κ1) + 2K)) . (3.7)

On the other hand, making use of the estimate (1.7) we have

P(τK(ω0, ω̄0) < T ) ≤P(τK(ω0) < T ) + P(τK(ω̄0) < T )

≤P

(
sup
s∈[0,T ]

‖ω(s, ω0)‖2
Hr+α(s) +

∫ T

0
‖ω(t, ω0)‖2

Hr+α(t)dt ≥ κ1T +K

)

+ P

(
sup
s∈[0,T ]

‖ω(s, ω̄0)‖2
Hr+α(s) +

∫ T

0
‖ω(t, ω̄0)‖2

Hr+α(t)dt ≥ κ1T +K

)

≤C(T )P(‖ω0‖+ ‖ω̄0‖)
K

(3.8)
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where we note that C is in particular independent of K > 0. Finally, for any ω̄0 ∈ Hr,

|PTϕ(ω0)− PTϕ(ω̄0)| =|Eϕ(ω(T, ω0))− Eϕ(ω(T, ω̄0))|
≤|Eϕ(ω(T, ω0))− Eϕ(ω(T, ω̄0))11τK(ω0,ω̄0)≥T |+ 2‖ϕ‖∞P(τK(ω0, ω̄0) < T )

≤|E (ϕ(ω(T ∧ τK(ω0, ω̄0), ω0))− Eϕ(ω(T ∧ τK(ω0, ω̄0), ω̄0))) 11τK(ω0,ω̄0)≥T |
+ 2‖ϕ‖∞P(τK(ω0, ω̄0) < T ). (3.9)

Using estimates (3.7)–(3.9), we now establish the desired continuity as follows. Let ε > 0 be given. In
view of (3.8) we may choose K such that

2‖ϕ‖∞P(τK(ω0, ω̄0) < T ) ≤ ε/4 (3.10)

for any ω̄0 ∈ BHr(ω0, 1). Having fixed K, we next use the Relich and Stone theorems and pick ϕ̃ ∈
Cb(H

r), Lipschitz continuous, such that

sup
ω̄∈BHr+1 (κ1T+K,0)

|ϕ̃(ω̄)− ϕ(ω̄)| ≤ ε/4. (3.11)

With these choices we apply the observations in (3.10), (3.11) to (3.9) and using (3.7), we obtain,

|PTϕ(ω0)− PTϕ(ω̄0)|

≤3ε

4
+ ‖∇ϕ̃‖∞E

(
‖ω(T ∧ τK(ω0, ω̄0), ω0)− ω(T ∧ τK(ω0, ω̄0), ω̄0)‖Hr11τK(ω0,ω̄0)≥T

)
≤3ε

4
+ ‖∇ϕ̃‖∞‖ω0 − ω̄0‖2Hr exp (C(T ) (T (1 + 2κ1) + 2K)) .

for any ω̄0 ∈ BHr(ω0, 1) and where we denote the Lipschitz constant associated with ϕ̃ by ‖∇ϕ̃‖∞. Thus,
by choosing

δ = ‖∇ϕ̃‖−1
∞ exp (−C(T ) (T (1 + 2κ1) + 2K)) ∧ 1

we infer that |PTϕ(ω0) − PTϕ(ω̄0)| < ε whenever ω̄0 ∈ BHr(δ, ω0). Since ε > 0 was arbitrary, the proof
of Proposition 3.2 is now complete. �

Proposition 3.2 is now used to establish the existence of an ergodic invariant measure with classical
arguments.

PROOF OF THEOREM 1.4. The existence of an invariant measure follows from Theorem 1.2 by showing
that the sequence of time average measures

µT (·) :=
1

T

∫ T

0
Pt(0, ·)dt =

1

T

∫ T

0
P(ω(t, 0) ∈ ·)dt

is tight in Pr(Hr). For this point the linear time growth bound in (1.7) is crucial. The weak sub-sequential
limit is then easily seen to be invariant with the aid of the Feller property.

Having shown that the set of invariant measures I is non-empty the existence of an ergodic measure
now follows from the following general argument. It is clear from linearity that I is convex, and due to
the Feller property I is seen to be closed. Due to the Proposition 3.4 we can see that the set of invariant
measures is tight, and hence I is compact. By Krein-Millman, I has an extremal point. Recalling that an
invariant measure is ergodic if and only if it is an extremal point of I (cf. [DPZ96]), we hence conclude the
proof of existence of an ergodic invariant measure.

The proof of Theorem 1.4 is therefore complete once the higher regularity properties of µ established.
This is carried out immediately below in Proposition 3.4. �

REMARK 3.3. The above strategy works for multiplicative noise as well. Indeed, the strategy of proof
in Proposition 3.2 has also been used recently in [GHKVZ13] to establish the Feller property for the 3D
stochastic primitive equations.
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3.2. Higher Regularity of Invariant Measures. We next show, again with the aide of Theorem 1.2
that any invariant measure µ of (1.1) must be supported on C∞.

PROPOSITION 3.4 (Higher Regularity). Fix r > 0 and consider an invariant measure µ for {Pt}t≥0

defined as a semigroup on Hr then, for any q ≥ 2,∫
Hr

‖ω‖qHsdµ(ω) <∞, for every s ≥ r. (3.12)

In particular µ is supported on Hs for every s ≥ r.

It follows from the proof of this proposition that if we let ω0,S such that ωS(t, ω0,S) be a stationary Hr

solution of (1.1) then

E‖ωS‖qHs ≤ CP(‖σ‖Hs). (3.13)

for any q and any s > r holds.

PROOF OF PROPOSITION 3.4. For any R > 0 and any integer N we define

ϕR,N (ω) = ‖PNω‖qHs ∧R

where PN is the project operator onto HN . Clearly ϕR,N ∈ Cb(Hr) so that by invariance∫
Hr

ϕR,N (ω)dµ(ω) =
1

T − 1

∫ T

1

∫
Hr

PtϕR,N (ω)dµ(ω)dt.

for any T > 1.
Applying Theorem 1.2 with m the s given here and with Tm = 1 we infer, for any ρ > 0

1

T − 1

∫ T

1

∫
BHr (ρ)

PtϕR,N (ω0)dµ(ω0)dt ≤ 1

T − 1

∫ T

1

∫
BHr (ρ)

E‖ω(t, ω0)‖qHsdµ(ω0)dt

≤ 1

T − 1

∫
BHr (ρ)

∫ T

0
E‖ω(t, ω0)‖q

Hr+α(t)dtdµ(ω0)

≤CP(ρ) + CTP(‖σ‖Hs)
T − 1

. (3.14)

Here α is defined as in (1.6). On the other hand we have that

1

T − 1

∫ T

1

∫
BHr (ρ)c

PtϕR,N (ω)dµ(ω)dt ≤ Rµ(BHr(ρ)c). (3.15)

Combining (3.14) and (3.15) we infer that for any R, ρ > 0∫
Hr

ϕR,N (ω)dµ(ω) ≤ CP(ρ) + CTP(‖σ‖Hs)
T − 1

+Rµ(BHr(ρ)c)

Since T > 1 was arbitrary to begin with∫
Hr

ϕR,N (ω)dµ(ω) ≤ CP(‖σ‖Hs) +Rµ(BHr(ρ)c),

so that finally, taking ρ→∞ we conclude that∫
Hr

ϕR,N (ω)dµ(ω) ≤ CP(‖σ‖Hs).

The desired result, (3.12), now follows from the monotone convergence theorem. �
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4. Gradient Estimates On the Markovian Semigroup

In this section we carry out certain estimates on the gradient of the Markov semigroup. These estimates
are used to establish certain time-asymptotic smoothing properties of these Markov operators, introduced in
[HM06]. To set up the gradient estimates, we recall the following topological notions from [HM06].

Let us define pseudo-metrics on Hr according to

dε(ω
1, ω2) := 1 ∧ ε−1‖ω1 − ω2‖Hr , (4.1)

and take

Lipε := {ϕ ∈ Cb(Hr) : ‖ϕ‖dε <∞},

where

‖ϕ‖dε := sup
ω1 6=ω2∈Hr

|ϕ(ω1)− ϕ(ω2)|
dε(ω1, ω2)

.

Then, for a finite signed Borelian measure µ, we define:

‖µ‖dε := sup
‖ϕ‖dε=1,ϕ∈Lipε

∫
Hr

ϕ(ω)µ(dω).

This is known in some of the literature as the Kantorovich distance associated to dε. Recall cf. [HM06,
Definition 3.8, Remark 3.9]

DEFINITION 4.1 (Asymptotic Strong Feller). We say that {Pt}t≥0 is asymptotically strong Feller
(ASF) at ω̃0 ∈ Hr if

lim
η→0

lim sup
n→∞

sup
ω0∈Bη(ω̃0)

‖Ptn(ω0, ·)− Ptn(ω̃0, ·)‖dεn = 0, (4.2)

for some increasing sequence tn and some εn → 0.

The goal of this section is to prove that the Markov semigroup Pt associated to (1.1) is ASF. Instead
of working directly with Definition 4.1 above, it was shown in [HM06, Proposition 3.12] that a sufficient
condition for establishing the ASF property of Pt, are suitable gradient estimates for Pt. These gradient
estimates are established in the next proposition, which is the main result of this section.

PROPOSITION 4.2 (Asymptotic Strong Feller for sufficiently many forced modes). Let r > 2, γ > 0.
Then there exists N = N(‖σ‖L6/γ , γ, r) such that if the ball of radius N in Z2

0 is fully contained in Z , then

‖∇Ptϕ(ω0)‖L(Hr) ≤ C
P(‖ω0‖Hr , ‖σ‖Hr+2)

mink∈Z |qk|2
E(κ1/2

γ , ‖ω0‖L6/γ ) (‖ϕ‖∞ + δ(t)‖∇ϕ‖∞) , (4.3)

for all t ≥ γ−1, any ϕ ∈ C1
b (Hr). Here

δ(t) = exp

(
−
tλ
γ/2
N

16

)
→ 0 as t→∞,

and κγ = (CP(‖σ‖L6/γ ))−1 is chosen to obey (4.21) below.

Recall that in (4.3) we have

‖Ψ(ω0)‖L(Hr) = sup
‖ξ‖Hr=1

|∇Ψ(ω0) · ξ|

for any Ψ ∈ C1
b (Hr), and where ∇Ψ(ω0) · ξ represents its Frechet derivative at ω0 in the direction ξ.

Before turning to the proof of Proposition 4.2, we show its connection to establishing the uniqueness of
the invariant measure.
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PROOF OF THEOREM 1.5. By Proposition 3.12 in [HM06], the gradient estimate obtained in Propo-
sition 4.2 implies the asymptotic strong Feller property (cf. Definition 4.1 above). On the other hand, the
weak irreducibly property established in Proposition 5.1 below, shows that ω = 0 lies in the support of every
invariant measure. Recalling that the collection of invariant measures for Pt is closed, convex, and compact,
all of whose extremal elements are ergodic, the uniqueness now follows from Theorem 3.16 in [HM06]. �

The remainder of this section is devoted to the proof of Proposition 4.2. We begin by relating (4.3) to a
certain control problem and recall some needed aspects of Malliavin calculus.

4.1. Some aspects of Malliavin Calculus and the Derivation of the Control Problem. Observe that
for any ω0, ξ ∈ Hr, t > 0 and any ϕ ∈ C1

b (Hr) we have

∇Ptϕ(ω0) · ξ = E∇ϕ(ω(t, ω0)) · J0,tξ (4.4)

where Js,tξ solves

∂tρ+ Λγρ+∇B(ω(t, ω0))ρ = 0,

ρ(s) = ξ, (4.5)

and we denote

∇B(ω)ρ = (K ∗ ρ) · ∇ω + (K ∗ ω) · ∇ρ = B(ρ, ω) +B(ω, ρ)

with K = ∇⊥(−∆)−1 being the Biot-Savart kernel.
Let us now very briefly recall some elements of Malliavin calculus in our setting. See [Nua09] (and

also, [Nua06, Mal97]) for further details. One of the central objects of the theory is the Malliavin derivative
D : L2(Ω)→ L2(Ω× L2(0, T ;L2)) which acts according to

DF =
N∑
k=1

∂xf

(∫ T

0
g1(s)dW, . . . ,

∫ T

0
gn(s)dW

)
gk

for “simple functions” S of the form

F = f

(∫ T

0
g1(s)dW, . . . ,

∫ T

0
gn(s)dW

)
where f : RN → R is any Schwartz class function, and g1 . . . gn are deterministic elements in L2(0, T ;L2).

Similarly, we may extend D to operate on vector valued random variables. In particular we have D :
L2(Ω;Hr)→ L2(Ω× L2([0, T ];L2);Hr) = L2(Ω;L2([0, T ];L2(Hr)) acting on simple functions S(Hr)
of the form

F =
M∑
k=1

Fkωk; Fk ∈ S, ωk ∈ Hr.

We may close this operator D in the space of such simple function S(Hr) under the norm

‖F‖1,2 = E‖F‖2Hr + E‖DF‖2Hr×L2(0,T ;L2) = E‖F‖2Hr + E‖DF‖2L2(0,T ;L2(Hr))

and define the space Malliavin-Sobolev space D1,2(Hr).
Two central ingredients in the Malliavin calculus are the chain rule

Dϕ(F ) = ∇ϕ(F ) ·DF for any F ∈ D1,2(Hr), ϕ ∈ C1
b (Hr). (4.6)

and the Malliavin integration by parts formula

E〈DF,K〉L2(0,T ;L2) = E
(
F

∫ T

0
KdW

)
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which holds for any K ∈ L2(Ω;L2
loc([0, T );L2) and any F ∈ D1,2(Hr). Here

∫ T
0 KdW is the Skorohod

integral which in fact is defined by this duality relation. It coincides with the more classical Itō integral
when K is adapted to {Ft}t≥0. See [Nua09] for further details.

We now define the operator

A0,tK = lim
ε→0

ω(t, ω0, σ(W + εK))− ω(t, ω0, σW )

ε
.

for any K ∈ L2(Ω;L2
loc([0,∞);L2)). On the other hand (cf. [Nua06]) we have

〈Dω,K〉L2(0,t;L2) = A0,tK.
Thus, according to the Malliavin chain rule and integration by parts formula

E(∇ϕ(ω(t, ω0)) · A0,tK) =E(〈D(ϕ(ω(t, ω0)),K〉L2(0,t;L2)) = E
(
ϕ(ω(t, ω0))

∫ t

0
KdW

)
. (4.7)

With these preliminaries in hand we now return to (4.4) and compute

∇Ptϕ(ω0) · ξ = E (∇ϕ(ω(t, ω0)) · A0,tK) + E (∇ϕ(ω(t, ω0)) · (J0,tξ −A0,tK))

= E
(
ϕ(ω(t, ω0))

∫ t

0
KdW

)
+ E (∇ϕ(ω(t, ω0))ρ(t, ξ,K, ω(t, ω0)))

which holds for any K ∈ L2(Ω;L2
loc([0,∞);L2)) and ρ is the solution of the “control problem”

∂tρ+ Λγρ+∇B(ω(t, ω0))ρ = −σK (4.8)

ρ(0) = ξ. (4.9)

In order to prove Proposition 4.2 we need a procedure to assign to every ξ ∈ Hr, with ‖ξ‖Hr = 1 an
element Kξ ∈ L2(Ω;L2

loc([0,∞);L2)) such that

lim
t→∞

(
sup

‖ξ‖Hr=1
E‖ρ(t, ξ,Kξ, ω(t, ω0))‖Hr

)
=: lim

t→∞
δ(t) = 0 (4.10)

and

sup
t≥0,‖ξ‖Hr=1

E
∣∣∣∣∫ t

0
Kξ(s)dW

∣∣∣∣ ≤ C <∞. (4.11)

The propose of Sections 4.2 and 4.3 is to establish (4.10), (4.11) for a suitable control Kξ which we will
define next.

For this purpose we introduce the classical projection operators: PN is the projection fromHr toHN =
span{ek : k ∈ Z2

0, |k| ≤ N}; and QN = 1 − PN is the projection on the orthogonal complement of HN .
Define σ∗ : Hr → L2 according to

(σ∗ω)k =

{
1
qk
〈ω, ek〉 k ∈ Z

0 otherwise.

As such that σσ∗ = 1 on HN and let

K = −λγ/2N σ∗PNρ (4.12)

with N to be determined below. The above choice of K implies that (4.8) is equivalent to

∂tρ+ Λγρ+∇B(ω(t, ω0))ρ = −λγ/2N PNρ (4.13)

The first observation is that even when attempting to show that E‖ρ(t)‖L2 → 0 as t→∞, for γ ∈ (0, 1)
we obtain an equation of the type

d

dt
‖ρ‖L2 ≤ C‖ρ‖L2

(
‖ω‖1+ε

H1 − λ
γ/2
N

)
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for some small 0 < ε < 1. Upon applying the Grönwall inequality and taking expected values, it seems that
the desired (exponential) decay on ρ in L2 may be obtained if we had that

E exp

(∫ T

0
‖ω(t)‖1+ε

H1 dt

)
(4.14)

grows at most exponentially in T . The main difficulty is that a bound on the exponential moment of the H1

norm in (4.14) is not available. Indeed, we are only able to prove exponential moments for the Lp norm of
ω, cf. Section 2.2 above.

To overcome this difficulty, the key step is to first show that the the expected value of the H−1 norm of
ρ decays, and then bootstrap this information to Hr norms.

4.2. Estimates on the Control Equation in H−1. Let v = K ∗ ρ and u = K ∗ ω. Convolving (4.13)
with K, we thus obtain

∂tv + Λγv + λ
γ/2
N PNv + u · ∇v +∇π + v · ∇u = 0, ∇ · v = 0, (4.15)

for some suitable mean-zero pressure π. Multiplying (4.15) by v and integrating over the torus yields
1

2

d

dt
‖v‖2L2 + ‖Λγ/2v‖2L2 + λ

γ/2
N ‖PNv‖

2
L2 = −

∫
(v · ∇u) · v ≤ ‖v‖2L2+ε‖∇u‖

L
2+ε
ε

(4.16)

where we let ε = ε(γ) = 2γ/(6− γ). This choice of ε, in view of (B.3) gives that

‖v‖2L2+ε‖∇u‖
L

2+ε
ε

= ‖v‖2
L

12
6−γ
‖∇u‖ 6

γ
≤ C‖Λγ/6v‖2L2‖ω‖

L
6
γ

≤ C‖Λγ/2v‖2/3
L2 ‖v‖

4/3
L2 ‖ω‖

L
6
γ

≤ 1

2
‖Λγ/2v‖2L2 + C‖v‖2L2‖ω‖3/2

L
6
γ

≤ 1

2
‖Λγ/2v‖2L2 +

κγ
2
‖v‖2L2‖ω‖2

L
6
γ

+ Cκ−3
γ ‖v‖2L2 (4.17)

where 0 < κγ � 1 is to be chosen later. Inserting (4.17) into (4.16), along with the standard lower bound
for ‖Λγ/2QNv‖2L2 , yields

d

dt
‖v‖2L2 + λ

γ/2
N ‖v‖

2
L2 ≤

d

dt
‖v‖2L2 + λ

γ/2
N ‖PNv‖

2
L2 + ‖Λγ/2QNv‖2L2

≤ κγ‖v‖2L2‖ω‖2L6/γ + Cκ−3
γ ‖v‖2L2 (4.18)

for some universal positive constant C. Assuming N is chosen sufficiently large so that

λ
γ/2
N

2
≥ Cκ−3

γ (4.19)

where C is the constant in (4.18), we thus obtain

d

dt
‖v‖2L2 ≤

(
κγ‖ω‖2L6/γ −

λ
γ/2
N

2

)
‖v‖2L2 (4.20)

where κγ is yet to be chosen. Upon applying the Grönwall inequality and taking expected values, we thus
obtain

E‖ρ(T )‖2H−1 = E‖v(t)‖2L2 ≤ ‖ξ‖2H−1E exp

(
κγ

∫ T

0
‖ω(t)‖2

L6/γdt−
λ
γ/2
N T

2

)
for any T > 0. Now, we choose

κγ =
1

C(1 + ‖σ‖4L6/γ )
(4.21)
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to be sufficiently small so that (1.9) holds with κ = κ
1/2
γ (see also (2.33) with ε = κ = κ

1/2
γ ). This allows

us to apply the estimate (1.9) with p = 6/γ, and obtain that

E‖ρ(T )‖2H−1 ≤ ‖ξ‖2H−1 exp

(
T −

λ
γ/2
N T

2

)
CE exp

(
κ1/2
γ ‖ω0‖2L6/γ

)
.

Therefore, if we ensure that N is sufficiently large so that

λ
γ/2
N

4
≥ 1 ∨ CP(‖σ‖L6/γ ) (4.22)

we have established the exponential decay of the H−1 norm of the control

E‖ρ(T )‖2H−1 ≤ ‖ξ‖2H−1 exp

(
−
λ
γ/2
N T

4

)
CE exp

(
κ1/2
γ ‖ω0‖2L6/γ

)
(4.23)

where κγ is a sufficiently small constant, that depends on γ and on ‖σ‖L6/γ .

4.3. Estimates on the Control in Hr. Next, we bootstrap the decay obtained in (4.23) for the H−1

norm, to a decay for the Hr norm of the control. As in Section 2.1.3 we need to appeal to the smoothing
effect encoded in the equations. This time we consider

s(t) =

{
r − 1 + tγ, t ∈ [0, Tγ ],

r, t > Tγ ,
(4.24)

where we let Tγ = γ−1. Note that for x > 0 and γ > 0 we have 4γ log x ≤ x2γ which is the reason why
we let ṡ(t) = γ on [0, Tγ ]. More precisely, this choice of slope in s(t) yields

2ṡ(t)‖(log Λ)1/2Λs(t)ρ‖2L2 ≤
1

2
‖Λs(t)+γ/2ρ‖2L2 .

In view of the above discussion, the Hs(t) energy estimate for the control equation yields

1

2

d

dt
‖Λsρ‖2L2 +

1

4
‖Λs+γ/2ρ‖2L2 +

λ
γ/2
N

4
‖Λsρ‖2L2

≤
∣∣∣∣∫ ΛsB(ρ, ω)Λsρdx

∣∣∣∣+

∣∣∣∣∫ ΛsB(ω, ρ)Λsρdx

∣∣∣∣ =: T1 + T2. (4.25)

Note that s(t) ≥ r − 1 > 1. Thus, Hs is an algebra, and we have a direct bound for T1 as

T1 ≤ C‖Λsρ‖L2‖K ∗ Λsρ‖L2‖∇ω‖Hs ≤ C‖ω‖Hs+1‖Λsρ‖2L2 . (4.26)

Here we also used the Poincaré inequality. To estimate the T2 term in (4.25) we note that
∫
B(ω,Λsρ)Λsρdx =

0, and appeal to the commutator (B.1). The Sobolev embedding (B.3), and the Poincaré inequality, letting
0 < ε� 1 we get

T2 ≤ C‖Λs−1ω‖
L

4+2ε
ε
‖∇ρ‖L2+ε‖Λsρ‖L2 + C‖ω‖

L
8
γ
‖Λsρ‖

L
8

4−γ
‖Λsρ‖L2

≤ C‖Λsω‖L2‖Λsρ‖2L2 + C‖ω‖H1‖Λs+γ/4ρ‖L2‖Λsρ‖L2

≤ 1

8
‖Λs+γ/2ρ‖2L2 + C

(
‖Λsω‖L2 + ‖ω‖2H1

)
‖Λsρ‖2L2 . (4.27)
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Therefore, inserting the estimates (4.26)–(4.27) into (4.25) and appealing to the Poincaré inequality we
obtain

d

dt
‖Λsρ‖2L2 +

1

8
‖Λs+γ/2ρ‖2L2+

λ
γ/2
N

2
‖Λsρ‖2L2

≤ C
(
1 + ‖ω‖2Hs+1

)
‖Λsρ‖2L2

≤ C
(
1 + ‖ω‖2Hs+1

)
‖Λ−1ρ‖δL2‖Λsρ‖δL2‖Λs+γ/2ρ‖2−2δ

L2

≤ 1

8
‖Λs+γ/2ρ‖2L2 + C(1 + ‖ω‖2/δ

Hs+1)‖Λ−1ρ‖L2‖Λsρ‖L2 (4.28)

where

δ =
γ

s+ 1 + γ
.

Note that by (4.24) we have γ/(r + 1 + γ) ≤ δ ≤ γ/(r + γ). After canceling the dissipative terms, we
divide both sides of (4.28) by ‖Λsρ‖L2 and obtain

d

dt
‖Λsρ‖L2 +

λ
γ/2
N

4
‖Λsρ‖L2 ≤ C

(
1 + ‖ω‖

2(r+1+γ)
γ

Hs+1

)
‖Λ−1ρ‖L2 . (4.29)

Using Duhamel’s formula, and taking expected values, we thus obtain that

E‖Λs(t)ρ(t)‖L2

≤ ‖Λr−1ξ‖L2 exp

(
−
tλ
γ/2
N

4

)

+ CE
∫ t

0
exp

(
−

(t− τ)λ
γ/2
N

4

)
‖ρ(τ)‖H−1

(
1 + ‖Λs(τ)+1ω(τ)‖

2(r+1+γ)
γ

L2

)
dτ

≤ ‖Λr−1ξ‖L2 exp

(
−
tλ
γ/2
N

4

)

+ C

(
E
∫ t

0
exp

(
−

(t− τ)λ
γ/2
N

2

)
‖ρ(τ)‖2H−1dτ

) 1
2 (

E
∫ t

0
1 + ‖Λs(τ)+1ω(τ)‖

4(r+1+γ)
γ

L2 dτ

) 1
2

. (4.30)

To conclude, we use estimate (4.23) which gives us exponential decay of E‖ρ(τ)‖2H−1 , and estimate (2.21),
which gives us a control2 of

∫ t
0 E‖Λs(τ)+1ω(τ)‖q

L2dτ , with any q ≥ 2. Therefore, from (2.21), (4.23), and
(4.30) we obtain

E‖Λs(t)ρ(t)‖L2

≤ ‖Λr−1ξ‖L2 exp

(
−
tλ
γ/2
N

4

)

+ C‖ξ‖H−1 exp

(
−
tλ
γ/2
N

8

)(
E(κγ , ‖ω0‖L6/γ )

)1/2(
P(‖ω0‖Hr) + CtP(‖σ‖Hr+2)

)1/2
. (4.31)

The degree of the polynomial P above may be computed explicitly3 solely in terms of r and γ. The coeffi-
cient κγ in the exponential function depends on γ and ‖σ‖L6/γ . Here we also used that the initial data ω0 is
in fact deterministic.

2Note that the s(t) in (2.21) is not the same as the s(t) in (4.24). The former is larger by 1 than the latter.
3In (4.31), we have P(x) = 1 + xn, where n is the smallest integer larger than 16(r+1+γ)((4+γ)(r+2+γ)−4)(1+γ)

γ3(6+γ)
, but this

explicit value is not important.
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To conclude the argument, we need to wait let t ≥ Tγ = γ−1, so that s(t) = r, and obtain

E‖ρ(t)‖Hr ≤ C‖ξ‖Hr−1 exp

(
−
tλ
γ/2
N

8

)(
E(κγ , ‖ω0‖L6/γ )

)1/2(
P(‖ω0‖Hr) + tP(‖σ‖Hr+2)

)1/2

≤ C‖ξ‖Hr−1 exp

(
−
tλ
γ/2
N

8

)
(1 + t)1/2E(κγ , ‖ω0‖L6/γ )P(‖ω0‖Hr , ‖σ‖Hr+2)

≤ C‖ξ‖Hr−1 exp

(
−
tλ
γ/2
N

16

)
E(κγ , ‖ω0‖L6/γ )P(‖ω0‖Hr , ‖σ‖Hr+2) (4.32)

whenever N is sufficiently large so that (4.19) and (4.22) holds.

4.4. Estimates on the Stochastic Integral Term. It finally remains to verify (4.11) for the choice K
given in (4.12). Let us first note that K is adapted. As such, with the Itō isometry we obtain that

E
∣∣∣∣∫ t

0
K(s)dWs

∣∣∣∣2 = E
∫ t

0
|λγ/2N σ∗PNρ(s)|2L2

ds

≤ λγN‖σ∗‖
2
L(Hr,L2)E

∫ ∞
0
‖PNρ‖2Hrds

≤ λ2r+2+γ
N ‖σ∗‖2L(Hr,L2)E

∫ ∞
0
‖ρ‖2H−1ds (4.33)

To prove (4.11), we combine (4.33) with (4.23) and obtain

sup
t≥0,‖ξ‖Hr=1

E
∣∣∣∣∫ t

0
Kξ(s)dWs

∣∣∣∣ ≤ Cλ2r+2+γ/2
N ‖σ∗‖2L(Hr,L2)EE(κ1/2

γ , ‖ω0‖2L6/γ )

≤ C P(‖σ‖L6/γ )

mink∈Z |qk|2
EE(κ1/2

γ , ‖ω0‖2L6/γ ) (4.34)

where we have used that ΛN is chosen to proportional to a polynomial in ‖σ‖L6/γ . The emphasis here is
that the above bound is independent of t and ξ.

REMARK 4.3. A different approach may be used to establish the asymptotic strong Feller property,
which does not require exponential moment estimates nor the use of Mallivan Calculus, but which retains
some of the spirit of the above estimates. Here one couples nearby solutions using the Girsanov theorem
and the Foias-Prodi estimates (see, e.g. [KS12]). Unfortunately, this framework appears to be ill-suited to
establish ergodic properties and mixing in the hypoelliptic forcing regime.

5. Weak Irreducibility

Let us denote by B(R) the ball of radius R about the origin in Hr.

PROPOSITION 5.1 (Weak Irreducibility). Let µ ∈ Pr(Hr) be invariant for {Pt}t≥0. Then, for any
ε > 0, we have µ(B(ε)) > 0, i.e. 0 ∈ supp(µ).

PROOF OF PROPOSITION 5.1. The proof is based on establishing two properties. First, we show that
there exists λ > 0, and δ1 > 0 such that

µ (B(λ)) ≥ δ1 (5.1)

for every invariant measure µ. Secondly, we prove that for any R > 0, η > 0, there exist T = T (R, η) > 0
and δ2 = δ2(R, η) > 0 such that

inf
‖ω0‖Hr≤R

PT (w0,B(η)) ≥ δ2 (5.2)

where we recall that PT (ω0,B(η)) = P(‖ω(T, ω0)‖Hr ≤ η).
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To see that (5.1) and (5.2) give the proof of the proposition, let µ ∈ Pr(Hr) be invariant, and hence

µ(A) = P ∗t µ(A) =

∫
Hr

Pt(ω0, A)dµ(ω0)

for any A in the Borelians on Hr. For η > 0 arbitrary, let T such that (5.2) holds, and let λ be as in (5.1).
Thus we obtain by letting R = λ that

µ(B(η)) =

∫
Hr

PT (ω0,B(η))dµ(ω0) ≥
∫
B(λ)

PT (ω0,B(η))dµ(ω0) ≥ δ1δ2 > 0.

It thus remains to establish (5.1) and (5.2).
In order to prove (5.1), let µ be invariant, and let ωS be an associated stationary solution of (1.1). From

the estimate (3.13), and the Poincaré inequality we conclude that

E‖ωS‖2Hr ≤ CP(‖σ‖Hr) <∞.
Therefore, we have

µ(B(λ)c) ≤ 1

λ2

∫
Hr

‖ω‖2Hrdµ(ω) =
1

λ2
E‖ωS‖2Hr ≤

CP(‖σ‖Hr)
λ2

,

and letting λ be sufficiently large (independently of µ), we obtain (5.1) with δ1 = 1/2, for example.
To establish (5.2), we consider the Ornstein-Uhlenbeck process Z given by

dZ + ΛγZdt = σdW, Z(0) = 0 (5.3)

and consider the change of variables

ω̄ = ω − Z
that obeys the PDE with random coefficients

∂tω̄ + Λγω̄ +B(ω̄ + Z, ω̄) +B(ω̄ + Z,Z) = 0, ω̄(0) = ω0. (5.4)

For δ, T > 0, we introduce the set

Ωδ,T =
{
w ∈ Ω: |W j

s (w)| ≤ δ, for all s ∈ [0, T ] and all j ∈ Z
}
. (5.5)

Using standard properties of Brownian motion, since |Z| < ∞ we know that for any δ, T > 0, there exists
δ2 = δ2(δ, T ) > 0 such that

P(Ωδ,T ) ≥ δ2 > 0. (5.6)

On the set where the Brownian motions stay close to the origin, one may use the representation of Z as a
stochastic convolution to establish the classical fact.

PROPOSITION 5.2. Let r > 2, γ > 0, and |Z| < ∞. For any δ, T > 0, there exists a deterministic
constant εδ,T > 0 such that εδ,T → 0 as δ → 0 for T fixed, and such that

sup
t∈[0,T ]

‖Z(t, w)‖Hr+2 ≤ εδ,T , for all w ∈ Ωδ,T , (5.7)

where Ωδ,T is as defined in (5.5).

Proposition (5.2) implies that for trajectories starting in Ωδ,T , the coefficients of the nonlinear PDE (5.4)
are small in Hr+1. Therefore, using the decay in time given by the dissipative operator Λγ , we may expect
that after waiting a sufficient amount of time, the shifted vorticity ω̄ is also small. More precisely, we have:

PROPOSITION 5.3 (Decay for the shifted equations). Let r > 2, γ > 0, and R, η > 0 be arbitrary.
Then there exist δ, T > 0 such that for any ω0 ∈ B(R),

‖ω̄(T, ω0)‖Hr ≤ η/2 on Ωδ,T , (5.8)

where Ωδ,T is as in (5.5).
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Assuming Proposition 5.3 holds, we may now easily complete the proof of (5.2). Indeed, for R, η > 0
given, we may find T = T (R, η) sufficiently large, and δ = δ(R, η) sufficiently small such that (5.8) holds.
In addition, since εδ,T → 0 as δ → 0, upon possibly further shrinking δ we can ensure that in (5.7) we have
εδ,T ≤ η/2. Then, it follows that

inf
‖ω0‖Hr≤R

P(‖ω(t, ω0)‖Hr ≤ η) ≥ inf
‖ω0‖Hr≤R

P(‖ω̄(t, ω0)‖Hr + ‖Z(t)‖Hr ≤ η) ≥ P(Ωδ,T ) ≥ δ2 (5.9)

by using (5.6). This concludes the prof of Proposition 5.1, modulo the proof of Proposition 5.3, which we
establish next. �

PROOF OF PROPOSITION 5.3. Fix some ω0 ∈ B(R). Throughout this proof we will work pathwise
on the set Ωδ,T , where δ and T will be chosen suitably at the end of the proof. This ensures in view of
Proposition 5.2 that for w ∈ Ωδ,T we have ‖Z(·, w)‖L∞(0,T ;Hr+2) ≤ ε = εδ,T .

We first obtain a decay estimate on for high Lp norms of the shifted vorticity ω̄. Let p ≥ 2 be even.
Multiplying (5.4) with ω̄p−1, integrating over T2, and using (2.2) we obtain

d

dt
‖ω̄‖pLp +

1

Cγ
‖ω̄‖pLp ≤ C‖K ∗ ω̄‖Lp‖∇Z‖L∞‖ω̄‖

p−1
Lp + C‖K ∗ Z‖L∞‖∇Z‖Lp‖ω̄‖p−1

Lp

≤ Cε‖ω̄‖pLp + Cε2‖ω̄‖p−1
Lp ≤ 2Cε‖ω̄‖pLp + Cεp+1 (5.10)

with Cγ ≥ 1. Therefore, if δ is chosen so that

2Cε ≤ 1

2Cγ
, (5.11)

we obtain from (5.10) that

d

dt
‖ω̄‖pLp +

1

2Cγ
‖ω̄‖pLp ≤ ε

p. (5.12)

Grönwall and (5.12) thus yield

‖ω̄(t)‖pLp ≤ ‖ω0‖pLp exp

(
− t

2Cγ

)
+ 2C(p)εp. (5.13)

Next, similarly to Section 2.1.2, we multiply (5.4) with ∆ω̄ and integrate over T2 to obtain

1

2

d

dt
‖∇ω̄‖2L2 + ‖Λγ/2∇ω̄‖2L2 =

∫
B(ω̄, ω̄)∆ω̄ +

∫
B(Z, ω̄)∆ω̄ +

∫
B(ω̄, Z)∆ω̄ +

∫
B(Z,Z)∆ω̄

:= T1 + T2 + T3 + T4. (5.14)

Similarly to (2.7) we estimate

|T1| ≤
∫
|∇K ∗ ω̄||∇ω̄|2 ≤ 1

2
‖Λγ/2∇ω̄‖2L2 + C‖ω̄‖pγLpγ ,

where

pγ = 4 +
4

γ
. (5.15)

On the other hand, upon integrating by parts, using the Poincaré inequality, the Sobolev embedding, and
estimate (5.7), we obtain

|T2|+ |T3|+ |T4| ≤ Cε‖∇ω̄‖2L2 + Cε2‖∇ω̄‖L2 ≤ 2Cε‖∇ω̄‖2L2 + Cε3.

Combining the above estimates yields

d

dt
‖∇ω̄‖2L2 + ‖∇ω̄‖2L2 ≤ Cε‖∇ω̄‖2L2 + Cε3 + C‖ω̄‖pγLpγ (5.16)
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for some positive constant C. Thus, if we assume that ε obeys (5.11), with possibly a larger universal
constant C, we obtain from (5.13) and (5.16) that

‖∇ω̄(t)‖2L2 ≤ ‖∇ω0‖2L2 exp

(
− t

2

)
+ Cε2 + C(pγ)‖ω0‖

pγ
Lpγ exp

(
− t

2Cγ

)
≤ C(pγ)(1 +Rpγ ) exp

(
− t

2Cγ

)
+ Cε2 (5.17)

for all t ≥ 0, since ω0 lies in the ball of radius R around the origin in Hr.
We complete the proof of the proposition using estimates that are similar to those in Section 2.1.3.

Taking an L2 inner product of (5.4) with Λ2rω̄, and using a commutator estimate for the term corresponding
to T2, we obtain

1

2

d

dt
‖ω̄‖2Hr +

3

4
‖ω̄‖2

Hr+γ/2 ≤
∣∣∣∣∫ [Λr, (K ∗ ω̄) · ∇]ω̄Λrω̄

∣∣∣∣+ C(ε+ ε2)‖ω̄‖2Hr + Cε2‖ω̄‖Hr , (5.18)

where [·, ·] denotes the usual commutator, and we have appealed to (B.2), the Poincaré inequality, the
Sobolev embedding, and estimate (5.7). Using the commutator estimate in Lemma B.1, we conclude that
there exists q = q(r, γ) ≥ 2, such that (5.18) becomes

d

dt
‖ω̄‖2Hr + ‖ω̄‖2

Hr+γ/2 ≤ C‖ω̄‖qH1 + Cε‖ω̄‖2Hr + Cε3. (5.19)

Again, in view of the smallness condition (5.11) on ε, with a possibly larger constant C, we conclude from
(5.19) that

‖ω̄(t)‖2Hr ≤ ‖ω0‖2Hr exp

(
− t

2

)
+ Cε3 + C(1 +Rpγ )q/2

∫ t

0
exp

(
− t− s

2

)
exp

(
− sq

4C(pγ)

)
ds

≤ C(1 +Rpγ )q/2 exp

(
− tq

4Cγ

)
+ Cε3. (5.20)

where q is as given in Lemma B.1, and pγ is given by (5.15).
The proof of (5.8) is now complete by letting δ be sufficiently small such that (5.11), and Cε3

δ,T ≤ η/4

hold, and then letting T be large enough so that C(1 +Rpγ )q/2 exp(−Tq/4Cγ) ≤ η/4. �

Appendix A. Lower bound for the fractional Laplacian in Lp

Let Td = (−π, π]d, and let θ(x) be a smooth enough scalar, and have zero mean, that is
∫
Td θ(x)dx = 0.

We recall (see e.g. [CC04, RS12] and references therein) the definition of the fractional Laplacian on the
torus. For γ ∈ (0, 2) we have

Λγθ(x) = P.V.

∫
Td

(θ(x)− θ(y))Kγ(x− y)dy

where for z 6= 0 the kernel Kγ is defined as

Kγ(z) = cd,γ
∑
k∈Zd

1

|z − 2πk|d+γ

and the normalization constant is

cd,γ =
2γΓ((n+ γ)/2)

|Γ(−γ/2)|πd/2
.

Let p ≥ 2 be even. The goal of this appendix is to prove:
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PROPOSITION A.1 (Fractional Lp Poincaré). Let p ≥ 2 be even, 0 ≤ γ ≤ 2, and let θ have zero mean
on Td, where d ≥ 1. Then∫

Td
θp−1(x)Λγθ(x)dx ≥ 1

Cd,γ
‖θ‖pLp +

1

p
‖Λγ/2(θp/2)‖2L2 (A.1)

holds, with an explicit constant Cd,γ ≥ 1 given by (A.5) below.

PROOF OF PROPOSITION A.1. Of course, unless θ has zero mean, we cannot expect (A.1) to hold, as
can be seen by letting θ = 1. Also, when p = 2, inequality (A.1) trivially holds (it’s just the Poincaré
inequality) by staring at the Fourier series. Hence for the rest of the proof we let p ≥ 4 be even. Lastly, the
case γ = 0 trivially holds, while the case γ = 2 is follows upon integration by parts.

For 0 < γ < 2 we have∫
θp−1(x)Λγθ(x)dx

= P.V.

∫∫
θp−1(x) (θ(x)− θ(y))Kγ(x− y)dydx

=
1

2
P.V.

∫∫ (
θp−1(x)− θp−1(y)

)
(θ(x)− θ(y))Kγ(x− y)dydx

=
1

2p
P.V.

∫∫ (
p
(
θp−1(x)− θp−1(y)

)
(θ(x)− θ(y))− 2

(
θp/2(x)− θp/2(y)

)2
)
Kγ(x− y)dydx

+
1

p
P.V.

∫∫ (
θp/2(x)− θp/2(y)

)2
Kγ(x− y)dydx

=
1

2p
P.V.

∫∫
fp(θ(x), θ(y))Kγ(x− y)dydx+

1

p
‖Λγ/2(θp/2)‖2L2 =:

1

2p
T +

1

p
‖Λγ/2(θp/2)‖2L2 (A.2)

where the double integral is over T2d, and we have defined

fp(a, b) = p(ap−1 − bp−1)(a− b)− 2(ap/2 − bp/2)2.

it can be easily seen that fp(a, b) ≥ 0 on R2 when p is even, and so the term T is positive. Usually the term
T is dropped in establishing lower bounds. The trick is that exactly T gives the lower bound (A.1).

We next claim that for p ≥ 4 even, and a, b ∈ R we have

fp(a, b) ≥
p− 2

2
(a− b)2ap−2. (A.3)

Assuming for the moment that (A.3) holds, let us prove (A.1). Since Kγ is positive, we have

T ≥ p− 2

2
P.V.

∫∫
(θ(x)− θ(y))2θ(x)p−2Kγ(x− y)dydx

≥ p− 2

2
cd,γ

∫∫
(θ(x)− θ(y))2θ(x)p−2 1

|x− y − 2π|d+γ
dydx

≥
(p− 2)cd,γ

2(2π + |diam(Td)|)d+γ

∫∫
(θ(x)− θ(y))2θ(x)p−2dydx

=
(p− 2)cd,γ

2(2π + |diam(Td)|)d+γ

∫∫ (
θp(x)− 2θp−1(x)θ(y) + θp−2(x)θ2(y)

)
dydx

≥
(p− 2)cd,γ

2(2π + |diam(Td)|)d+γ

∫
Td

(
θp(x)|Td| − 2

∫
Td
θp−1(x)θ(y)dy

)
dx. (A.4)

At this point we use that θ has zero mean, as it implies∫
Td
θp−1(x)θ(y)dy = 0
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for every x. It then follows from (A.4), that

T ≥
(p− 2)cd,γ |Td|

2(2π + |diam(Td)|)d+γ
‖θ‖pLp . (A.5)

This proves (A.1) with the constant

(p− 2)2γΓ((n+ γ)/2)|Td|
4p(2π + |diam(Td)|)d+γ |Γ(−γ/2)|πd/2

≥ 2γΓ((n+ γ)/2)|Td|
8(2π + |diam(Td)|)d+γ |Γ(−γ/2)|πd/2

=:
1

Cd,γ

for any p ≥ 4. It remains to prove the inequality (A.3), which we do next. �

PROOF OF ESTIMATE (A.3). First let b = 0. Then (A.3) holds, with equality. Next, let r = a/b. Since
p ≥ 4 is even, checking (A.3) is equivalent to verifying

gp(r) := p(rp−1 − 1)(r − 1)− 2(rp/2 − 1)2 ≥ p− 2

2
(r − 1)2rp−2 =: hp(r). (A.6)

First we verify (A.6) for negative values of the argument, i.e. at −r, with r > 0. We have

gp(−r)− hp(−r) = p(rp + rp−1 + r + 1)− 2(rp − 2(−1)p/2rp/2 + 1)− p− 2

2
(rp + 2rp−1 + rp−2)

=
p− 2

2
(rp − rp−2) + 2rp−1 + 4(−1)p/2rp/2 + pr + (p− 2)

=
p− 2

2
(rp − rp−2) + 2r((−r)(p−2)/2 − 1)2 + (p− 2)(r + 1)

≥ p− 2

2
(rp − rp−2 + r + 1) ≥ 0

It remains to check (A.6) for r ≥ 0. This inequality holds for r = 0. When r > 0 we can actually verify
that

gp(r) ≥ 2hp(r).

Indeed, letting

m(r) = rp/2−2 + . . .+ 1 =
rp/2−1 − 1

r − 1

we can explicitly write

gp(r)− 2hp(r)

(r − 1)2
= pm(r)(rp/2−1 + 1)− 4rp/2−1m(r)− 2m(r)2

= m(r)
(

(p− 4)rp/2−1 + p− 2m(r)
)
. (A.7)

If r ≤ 1 we are done, since m(r) ≤ m(1) = p/2 − 1, and hence p − 2m(r) ≥ 2. On the other hand, if
r > 1, we have

(p− 4)rp/2−1 + p− 2m(r) =
1

r − 1

(
(p− 4)rp/2 − (p− 2)rp/2−1 + pr − (p− 2)

)
=

q(r)

r − 1
. (A.8)

Note that q(1) = 0, and

2q′(r) = p(p− 4)rp/2−1 − (p− 2)2rp/2−2 + 2p ≥ 2q′(1) = p(p− 4)− (p− 2)2 + 2p = 2(p− 2) > 0.

This proves the right side of (A.8) is positive for r ≥ 1, and thus the right side of (A.7) is non-negative for
r ≥ 1 as well. As such, we infer (A.6) for all values of r, and hence the proof of (A.3) is complete. �
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Appendix B. Bound on the nonlinear term in Sobolev spaces

Recall the following classical commutator estimate. Let s > 1, p ∈ (1,∞), f and g be smooth zero-
mean functions on T2. Then we have the (Kenig-Ponce-Vega) commutator estimate

‖Λs(f · ∇g)− f · ∇Λsg‖Lp ≤ C (‖∇f‖Lp1‖Λsg‖Lp2 + ‖Λsf‖Lp3‖∇g‖Lp4 ) (B.1)

where 1/p = 1/p1 + 1/p2 = 1/p3 + 1/p4, and pi ∈ (1,∞), for a sufficiently large constant C that depends
only on s, p, pi and the size of the periodic box. Similarly, we also make use of the fractional calculus
(Kato-Ponce) inequality

‖Λs(fg)‖Lp ≤ C
(
‖Λsf‖Lp1‖g‖Lp2 + ‖Λsg‖Lp3‖f‖Lp4

)
, (B.2)

which is valid for sufficiently regular f, g, for a constant C independent of f, g, and for any choice of s ≥ 0,
1 < p <∞, 1 < pi ≤ ∞ and 1/p = 1/p1 + 1/p2 = 1/p3 + 1/p4. See, e.g. [Tay91, MS13].

For p ∈ [2,∞) and f as above we have the Sobolev embedding

‖f‖Lp ≤ C‖Λ1− 2
p f‖L2 (B.3)

for a sufficiently large constant C that depends only on p and the size of the periodic box.
The purpose of this appendix is to prove:

LEMMA B.1 (Commutator estimate). Let s > 1, γ ∈ (0, 2], and ω be smooth of zero-mean on T2.
Then, for any ε ∈ (0, 1) we have

T =

∣∣∣∣∫ [Λs, u · ∇]ωΛsωdx

∣∣∣∣ ≤ C‖ω‖qH1 + ε‖ω‖2
Hs+γ/2 (B.4)

where

q =
4((4 + γ)(s+ γ)− 4)

γ(6 + γ)

for a sufficiently large constant C that depends on ε, s, γ, and the size of the box.

PROOF OF LEMMA B.1. Let 0 < δ � 1 to be chosen precisely below, and p = 2 − δ. The Hölder
inequality and the commutator estimate (B.1) yield

T ≤ ‖[Λs, u · ∇]ω‖Lp‖Λsω‖
L

p
p−1

≤ C‖Λsω‖
L

2−δ
1−δ

(
‖ω‖

L
(2−δ)(4−δ)

δ
‖Λsω‖

L
4−δ

2
+ ‖Λs−1ω‖

L
2(2−δ)
δ
‖∇ω‖L2

)
by setting p1 = (2 − δ)(4 − δ)/δ, p2 = (4 − δ)/2, p3 = 2(2 − δ)/δ, and p4 = 2. Using the Sobolev
embedding (B.3) and the Poincaré inequality we obtain

T ≤ C‖Λs+
δ

2−δω‖L2‖Λ1− 2δ
(2−δ)(4−δ)ω‖L2‖Λs−

δ
4−δω‖L2 + C‖Λs+

δ
2−δω‖L2‖Λs−

δ
2−δω‖L2‖Λω‖L2

≤ C‖Λs+
δ

2−δω‖L2‖Λs−
δ

4−δω‖L2‖Λω‖L2 .

Letting δ be such that
δ

2− δ
=
γ

2
,

and interpolating, we further bound

T ≤ C‖Λs+
γ
2ω‖2−α

L2 ‖Λω‖1+α
L2

for a positive constant C that depends on γ, s, and the size of the domain, where

α =
γ(6 + γ)

(4 + γ)(2s− 2 + γ)
.

We conclude the proof of the lemma with the ε-Young inequality, and letting q = 2(1 + α)/α. �
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[PR07] C. Prévôt and M. Röckner. A concise course on stochastic partial differential equations, volume 1905 of Lecture
Notes in Mathematics. Springer, Berlin, 2007.

[PSC00] A. Pumir, B. I Shraiman, and M. Chertkov. Geometry of lagrangian dispersion in turbulence. Physical Review Letters,
85(25):5324–5327, 2000.

[PT97] J. Paret and P. Tabeling. Experimental observation of the two-dimensional inverse energy cascade. Physical review
letters, 79(21):4162–4165, 1997.

[PT98] J. Paret and P. Tabeling. Intermittency in the two-dimensional inverse cascade of energy: Experimental observations.
Physics of Fluids, 10:3126, 1998.

[Roz90] B. L. Rozovskiı̆. Stochastic evolution systems, volume 35 of Mathematics and its Applications (Soviet Series). Kluwer
Academic Publishers Group, Dordrecht, 1990. Linear theory and applications to nonlinear filtering, Translated from
the Russian by A. Yarkho.

[RS92] R. Robert and J. Sommeria. Relaxation towards a statistical equilibrium state in two-dimensional perfect fluid dy-
namics. Physical review letters, 69(19):2776–2779, 1992.

[RS12] L. Roncal and P.R. Stinga. Fractional laplacian on the torus. arXiv preprint arXiv:1209.6104, 2012.
[SBH+02] K.S. Smith, G. Boccaletti, C.C. Henning, I. Marinov, C. Y. Tam, I.M. Held, and G.K. Vallis. Turbulent diffusion in

the geostrophic inverse cascade. J. Fluid Mech., 469:13–48, 2002.
[Tab02] P. Tabeling. Two-dimensional turbulence: a physicist approach. Physics Reports, 362(1):1–62, 2002.
[Tay91] M.E. Taylor. Pseudodifferential operators and nonlinear PDE, volume 100 of Progress in Mathematics. Birkhäuser
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