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Abstract
A one-dimensional system describing the propagation of low Mach number flames in sprays is

studied. We show that pulsating waves may exist when the droplet distribution in the unburnt
region is spatially periodic. The range of possible propagation speeds may be either bounded or
unbounded, depending on the threshold temperatures of the burning and vaporization rates.

1 Introduction and main results

In view of the breadth of their potential applications and complexity, models for flame propagation
in sprays present significant analytical and computational challenges. It is therefore desirable to have
a good understanding of the basic phenomena when flame propagation involves both burning of the
gas and droplet evaporation that converts them into the flammable gas and provides an additional
source of fuel for the flame. We consider a simplified model for the propagation of one-dimensional
flames in sprays (see [16] for the background on this model) that involves three unknowns (T, Y, S):

• T (t, x) is the temperature of the mixture,

• Y (t, x) is the mass fraction of the gaseous reactant,

• S(t, x) represents the surface of the droplets that are, at time t, located at x. We are thus
making the – simplistic but not irelevant – assumption that, at every point in time and space,
the droplets have only one radius. Such a spray is called monodisperse.

The evolution of T , Y and S is described by the following system:
Tt − Txx = Y f(T )
Yt − Yxx = −Y f(T )− ∂t(S3/2)

St = −ϕ(T )S
(t, x) ∈ R2 (1.1)

The first two equations in (1.1) are the usual thermo-diffusive system but for the last term in the
equation for Y that represents the gas production due to evaporation of droplets. The last equation
describes the decrease in the number of droplets available because of the same process. The reaction
rate f and evaporation rate ϕ are smooth, and satisfy the following assumptions:

• we have f(0) = ϕ(0) = 0; moreover f and ϕ are nonnegative nondecreasing functions, uniformly
bounded from above:

0 ≤ ϕ(T ), f(T ) ≤ C, for 0 ≤ T < +∞; (1.2)
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• there exists 0 ≤ θv ≤ θi < +∞ such that f (resp. ϕ) is positive on (θi,+∞) (resp. (θv,+∞))
and zero outside. If θv = 0 we assume ϕ′(0) > 0.

The thresholds θv and θi are, respectively, called the boiling and ignition temperatures. The ignition
temperature can (and sometimes will) be taken equal to 0.

The system (1.1) has been considered in [7] where travelling fronts have been shown to exist
when the density of droplets in the unburnt region is uniform. In this paper we consider a different
physical setting: a periodic distribution of liquid droplets is located ”ahead of the front ”at −∞
(the convention is that the flame propagates from the right to the left). This leads to the following
boundary conditions as x → −∞:

T (t,−∞) = 0, Y (t,−∞) = Yu, lim
x→−∞

(S(t, x)− Su(x)) = 0, (1.3)

where

• Yu is a nonnegative quantity, that may be – and sometimes will be – 0;

• Su(x) is a smooth, positive, 1-periodic function.

The boundary conditions in the burned region, as x → +∞ are as follows. If we ask – which is quite
natural – that everything is burnt at +∞, then both S and Y shall be 0 at +∞:

S(+∞) = Y (+∞) = 0. (1.4)

We will see that the value Tb of T as x → +∞ will be determined automatically by the values of Yu

and the average of Su(x) over the period:

Tb = T (+∞) = Yu + 〈S3/2
u 〉. (1.5)

Here 〈g〉 denotes the average of a function g over its period.
As we have mentioned, should the droplet distribution Su at −∞ be constant, the system under

study would admit travelling waves [7]. The periodicity of the radius distribution at −∞ leads us to
replace this notion by the wider notion of pulsating waves [6, 17], namely solutions of (1.1)-(1.3) that
are time-periodic in some galilean reference frame. In more mathematical terms these are solutions
of (1.1) of the form T (t, x) = U(x + ct, x) with a function U that is periodic in the second variable.
Alternatively, there exists a speed c > 0 such that

(T, Y, S)(t, x− ct) is
1
c

periodic in t.

Our first result deals with the case of a positive ignition temperature.

Theorem 1.1 (Nonzero ignition temperature) Assume θi > 0. There exists a constant q0 ∈ (0, 1)
such that, if we have

θv

θi
≤ q0 and max(Yu, min

x∈[0,1]
Su(x)) ≥ 1

q0
(1.6)

then the problem (1.1)-(1.3) has a pulsating wave solution.

The first condition in (1.6) makes sure that the evaporation produces fuel at sufficiently low temper-
atures on the left. The second assumption means that there is enough fuel, either liquid or gaseous,
in the unburnt region. We also show that there exist two constants c0 and c1 that depend only on
the data of the problem so that the pulsating front speed c satisfies

0 < c0 ≤ c ≤ c1 < +∞.
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This means that the possible range of speeds is a priori bounded in the ignition case.
The case of a zero ignition temperature is treated separately. Following the terminology of the

thermo-diffusive systems we refer to it as the ’KPP case’, although the underlying physics, and,
potentially, the behavior of solutions, may vary according to the respective proportion of droplets
and gaseous fuel at −∞.

Theorem 1.2 Assume θi = θv = 0. There exists c0 > 0 such that the problem (1.1)-(1.3) has a
pulsating wave solution with the speed c0.

It is well known that, in the case of scalar reaction-diffusion equations

ut − uxx = uf(u)

with, for instance, f > 0 on [0, 1) and f(1) = 0, there exists c0 > 0 such that, for all c ≥ c0, the
above problem has travelling wave solutions that move with the speed c and connecting u = 0 to
u = 1. We would therefore like to see if this is the case here; we have a partial result in this direction.

Theorem 1.3 Assume, for simplicity, that f(T ) = ϕ(T ) = T for 0 ≤ T ≤ 1 and otherwise satisfy
the aforementioned assumptions.

(i) There exists c0 > 0 such that any pulsating wave solution to (1.1)-(1.3) has a velocity larger
than c0.

(ii) Assume in addition that Yu > 0. There exists c1 ≥ c0 such that, for all c ≥ c1, the problem
(1.1)-(1.3) has a pulsating wave solution that moves with the speed c.

We do not know whether c1 = c0, that is, if the range of speeds is a semi-infinite interval. In
particular, we do not know if there exists a pulsating front that moves with the minimal speed. It
is also not known whether the velocity spectrum is unbounded when Yu = 0.

We mention that while existence of pulsating fronts for a single reaction-diffusion equation has
been extensively studied [6, 17], the only result for reaction-diffusion systems that we are aware of,
is that of [15], where small (but non-trivial) perturbations of a planar travelling front have been
considered.

The paper is organized as follows. Sections 2 and 3 are devoted to the proof of Theorem 1.1:
in Section 2, we perform a priori estimates on potential pulsating wave solutions to (1.1)-(1.3);
in Section 3 we prove the actual existence by a degree argument allowed by the estimates of the
preceding section. In Section 4 we prove Theorem 1.2 by approximation by a sequence of problems
with ignition temperature. Section 5 is devoted to Theorem 1.3: it is done via a direct estimate
on the velocity, an additional weighted estimate for the temperature and a homotopy argument.
Possible extensions are discussed in Section 6.

2 The case of nonzero ignition temperature: a priori estimates

The main difficulty in deriving uniform bounds will be to bound Y . Indeed, as opposed to what
happens in a purely gaseous flame, there is a positive source term in the equation for Y due to
droplet evaporation. This may in turn cause a (mild) unboundedness for the function Y (t, x).
We do not see any convincing reason why the Cauchy problem for (1.1) would produce a solution
whose Y -component would be unbounded, but we are not able to prove it at the moment. It turns
out, however, that finding a lower bound for the velocity will help us, because this puts us in the
framework of periodic functions with a bounded period L = 1/c. This is a large restriction to the
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set of global solutions that we have to investigate, and this will help us in finding the upper bounds
that will in turn allow us to set up a degree argument.

It also turns out that the bounds that we shall find strongly depend on the value of Yu. If Yu is
large enough – larger than the ignition temperature θi – we will be faced with a flame in which the
presence of the spray neither helps, nor prevents, the propagation; the physics of the phenomenon is
that of a purely gaseous flame. As opposed to that, when Yu is small or 0, the propagation cannot
take place without the help of the evaporation process; in the limit Yu → 0 it is really this process
that governs the propagation. Thus we are confronted with two very different physics; a situation
which is described in detail for travelling waves in [7].

In what follows, we consider a pulsating wave solution (T, Y, S) to (1.1), with a speed c. System
(1.1) is then written in the reference frame of the wave; thus the system under study is now:

Tt − Txx + cTx = Y f(T )
Yt − Yxx + cYx = −Y f(T )− (∂t + c∂x)(S3/2)

St + cSx = −ϕ(T )S
(t, x) ∈ R2. (2.1)

As we have mentioned, the conditions at +∞ for temperature T cannot be chosen arbitrarily. Adding

up the equations for T and Y , then integrating the whole lot on (0,
1
c
)× R yields

(T + Y )(+∞) = Yu + 〈S3/2
u 〉.

This last value will be denoted by Tb(Yu, Su) – the burnt gas temperature; these considerations are
therefore summed up in the conditions at ±∞:

T (t,−∞) = 0, T (t, +∞) = Tb(Yu, Su)
Y (t,−∞) = Yu, Y (t, +∞) = 0

lim
x→−∞

(S(t, x)− Su(x)) = 0, S(t, +∞) = 0
(2.2)

and the periodicity condition

(T, Y, S)(t +
1
c
, x) = (T, Y, S)(t, x). (2.3)

2.1 A lower bound for the flame speed

The main result of this section is the following proposition. Hereafter we set

Su = inf
x∈[0,1]

Su(x). (2.4)

Proposition 2.1 If max(Yu, Su) is large enough, there exists c0 > 0, depending only on the data,
such that any solution (c, T, Y, S) of (2.1)-(2.3) satisfies: c ≥ c0.

Proof. Two cases should be distinguished.
1. The case of large Yu. Namely, we assume that we have

Yu > θi. (2.5)

As is classical, introduce the enthalpy function

W (t, x) = T (t, x) + Y (t, x); (2.6)
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we have
Wt −Wxx + cWx = −∂t(S3/2) ≥ 0; W (t,±∞) ≥ Yu. (2.7)

Letting t → +∞ yields W (t → +∞) ≥ Yu – moreover, this is true for all times as W is periodic in
time. Therefore we have

Tt − Txx + cTx ≥ (Yu − T )f(T ) := g(T ). (2.8)

Take any δ > 0 such that Yu − δ >
Yu + θi

2
and consider the travelling wave T δ(x + cδt), solution of

ut − uxx = gδ(u), u(t,−∞) = −δ, u(t, +∞) = Yu − δ.

Here gδ(u) = (Yu − δ − u)f(u) with the convention that f(u) = 0 for u < 0. The front speed cδ

is controlled from below by some c0 > 0 depending only on Yu, the smoothness of g and the size
of δ. We claim that c ≥ cδ; indeed assume the contrary: this makes T δ(x) a sub-solution to (2.8);
moreover, due to its limits at ±∞ we may, up to the correct translation, assume that T δ(x) ≤ T (0, x)

with a contact point x0. The maximum principle implies T (
1
c
, x) ≥ T δ(x); moreover the periodicity

in t implies that x0 is still a contact point between T (
1
c
, .) and T δ. This contradicts the strong

maximum principle.
2. The case of a large Su. We give the proof in the case of zero boiling temperature; the case
θv > 0 differs only by computational details. As φ′(0) > 0, there exist 0 < ϕ < ϕ such that

ϕT ≤ ϕ(T ) ≤ ϕT on [0, θi]. (2.9)

The non-increase of the lap number for a parabolic equation [1], combined with the fact that T (t, x)−
θi is a time-global solution for the (appropriately re-written to subtract θi) first equation of (2.1),
there exists a smooth, c−1-periodic function xi(t) such that

∀t ∈ R, x < xi(t) =⇒ T (t, x) < θi, x > xi(t) =⇒ T (t, x) > θi. (2.10)

Let x−i be the minimum value of xi; we may assume it to be 0. The function x 7→ θie
cx satisfies the

equation for T for x < 0 and is above T for (t, x) ∈ R×{0}; letting t → +∞ implies – after shifting
the time origin: T (t, x) ≤ θie

cx for (t, x) ∈ R× R−. Then we have

St + cSx ≥ −ϕTS ≥ −ϕθie
cxS, x < 0.

This implies – once again let t → +∞ and use the fact that S is
1
c
-periodic in t:

S(t, x) ≥ Suexp
(
−ϕθi

c2
ecx

)
, x < 0. (2.11)

Our goal is to find a sub-solution to the equation for Y in R × R−. Note that in this domain Y
satisfies

Yt + cYx − Yxx =
3
2
φ(T )S3/2 ≥ 3

2
ϕTS3/2.

To find an explicit sub-solution for Y we would be glad to replace T (t, x) by θie
cx; unfortunately it

is an upper bound for T ; not a lower bound. To make up for that we first assume c < 1 – otherwise
the proof would end here, then re-scale t and x in a parabolic fashion:

τ = c2t, ξ = cx. (2.12)
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Then T satisfies
Tτ − Tξξ + Tξ = 0 on R× R−; T (τ + c, ξ) = T (τ, ξ).

In particular, there exists τ0 ∈ [0, 1] such that T (τ0 + nc, 0) = θi for all n ∈ Z – these are the times
when the curve xi(t) hits zero. It follows that T (τ0 + nc, ξ) > θi for all ξ > 0. Without loss of
generality we may assume that τ0 = 0. Moreover, T is a super-solution to the advection equation
everywhere. This implies

∀(t, x) ∈ [0, 1]× R+, T (τ, ξ) ≥ T (τ, ξ)

where 
T τ − T ξξ + T ξ = 0 (0 < τ < 1, ξ > 0)

T (τ, 0) = 0 (0 < τ < 1)
T (0, ξ) = θi (ξ > 0)

The parabolic Harnack inequality implies the existence of C > 0 such that

∀τ ∈ [0, 1], T (τ, 1) ≥ Cθi. (2.13)

We may now construct yet another sub-solution Φ for T as
Φτ − Φξξ + Φξ = 0 (0 < τ < 1, ξ > 0)

Φ(τ, 1) = Cθi (0 < τ < 1)
Φ(0, ξ) = θi (0 ≤ ξ < 1)
Φ(0, ξ) = 0 (ξ < 0).

The maximum principle implies that Φ ≤ T , hence applying the parabolic Harnack inequality once
again we obtain, for a possibly different C > 0:

∀τ ∈ R+, T (τ, 0) ≥ Cθi.

Still working in the (τ, ξ) variables we end up with – let τ → +∞; use the time-periodicity of T :

∀(τ, ξ) ∈ R× R−, T (τ, ξ) ≥ Cθie
ξ. (2.14)

Consequently we obtain, for (τ, ξ) ∈ R× R−:

Yτ − Yξξ + Yξ ≥
Cϕθie

ξ

c2
S3/2

u exp
(
−3ϕθi

2c2
eξ

)
. (2.15)

An eventual sub-solution to (2.15) is obtained by setting the time-derivative equal to 0 and solving
the differential equation with the zero boundary conditions at ±∞; recall that the solution of

−u′′ + u′ = f on R−, u(0) = u(−∞) = 0

is

u(ξ) =
∫ 0

ξ
(eξ−ζ − eξ)f(ζ) dζ + (1− eξ)

∫ ξ

−∞
f(ζ) dζ. (2.16)

Applying formula (2.16) with f(ξ) =
Cϕθie

ξ

c2
exp
(
−3ϕθi

2c2
eξ

)
we obtain

Y (τ,−1) ≥ CS3/2
u

∫ −1

−∞

ϕθie
ζ

c2
exp
(
−3ϕθi

2c2
eζ

)
dζ ≥ CS3/2

u

∫ C/c2

0
e−ηdη ≥ CS3/2

u (2.17)
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for a constant C > 0 under control, as we have assumed that c < 1.
Come back to the (t, x) variables. As a consequence of (2.17) we have Y (t,−1/c) ≥ CS

3/2
u , and

the function W (t, x) – recall that it is given by (2.6) – satisfies

Wt −Wxx + cWx ≥ 0; W (t, +∞) ≥ C〈S3/2
u 〉, W (t,−1/c) ≥ CS3/2

u . (2.18)

Therefore – once again, passing to t → +∞ and using the periodicity of W in time we conclude that
if Su is large enough, there is δ > 0 such that W (t, x) ≥ θi + δ for x ≥ −1/c. We conclude as in
Part 1: let T δ be a travelling wave solution of

cδT
δ
x = T δ

xx + (Π− T δ)f(T δ), T δ(−∞) = −δ, T δ(+∞) = Π

with θi < Π < CS
3/2
u . Then cδ is bounded below uniformly in δ for δ small. Moreover, if c < cδ,

then as T δ
x > 0, we have

cT δ
x < T δ

xx + (W − T δ)f(T δ), x > −1/c, (2.19)

and of course,
Tt + cTx = Txx + (W − T )f(T ) (2.20)

holds. Now, shift T δ to the right so much that T δ(x) < T (0, x) for all x and start moving it back
to the left. There will be x0 so that the shifted T δ(x) and T (0, x) touch for the first time. Then we
would still have T δ ≤ T (0, x) everywhere, which would mean that (2.19) holds even for x ≤ −1/c
simply because f(T δ) = 0 there. Therefore, for this particular shift we have both that T δ and T
touch at exactly one point and that T δ satisfies (2.19). Then we get the contradiction as in Part 1
of this proof.

If θv 6= 0 we only have to replace ϕ(T ) by ϕ(T−θv), for a θv slightly above the actual vaporization
temperature and use the same argument. �

2.2 The upper bounds

This paragraph is devoted to L∞ bounds for all the unknown functions, as well as an upper bound
for the front speed. The lower bound for c obtained in the previous section will in particular be of
use to us. The result of this section is best stated in terms of the enthalpy function W defined by
(2.7).

Proposition 2.2 Assume that θv ≤ q0θi with a constant q0 < 1. There exists a constant W > 0,
depending only on the data, the lower bound c0 of Proposition 2.1, and q0, such that ‖W‖C1(R2) ≤ W .

An immediate corollary is

Corollary 2.3 There exists c1 > 0, depending only on the data and c0, so that c ≤ c1.

Proof. Assuming Proposition 2.2 to be true, the temperature T (t, x) satisfies

Tt − Txx + cTx ≤ (W − T )f(T ); T (t,−∞) = 0, T (t, +∞) ≤ W.

Arguing as in Proposition 2.1, part 1 we may prove that, if δ > 0 is below θi and (c1, T (x)) solves

−T
′′ + c1T

′ = (W + δ − T )f(T ), T (t,−∞) = δ, T (t, +∞) = W + δ,

then c ≤ c1. �
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Proof of Proposition 2.2. We do not know yet any upper bound for c; to make up for that let
us come back to the parabolic scaling τ = c2t, ξ = cx. The equation for W is then

Wτ −Wξξ + Wξ =
3ϕ(T )S3/2

2c2
. (2.21)

We wish to find an eventual super-solution to W . To do so, let us define ξ̄ such that

∀τ ∈ R,∀ξ ≥ ξ̄, T (τ, ξ) ≥ Tb(Yu + 〈S3/2
u 〉) + θi

2
,

W (τ, ξ) ≤ 2Tb(Yu, Su).
(2.22)

If xi(t) is defined by (2.10), let ξi(τ) be its counterpart in the (τ, ξ) system. Without loss of generality
we may assume that the function ξi takes its minimum at ξ = 0. Two cases are to be discussed.
The region ξ ≤ 0. We simply have T (τ, ξ) ≤ θie

ξ, hence

ϕ(T )S3/2 ≤ C‖S‖3/2
∞ θie

ξ. (2.23)

The region ξ ≥ 0. Let us find an upper bound for S3/2ϕ(T ). We have – see Part 2 of Proposition 2.2
– a constant q1 ∈ (0, 1] such that

∀τ ∈ R, ∀ξ > 0, T (τ, ξ) ≥ q1θi.

We take q0 < q1. Then there is ϕ̄ > 0 such that

∀τ ∈ R, ∀ξ > 0, ϕ(T (τ, ξ)) ≥ ϕ̄.

An eventual super-solution for S in {ξ ≥ 0} is

S(τ, ξ) = ‖S‖∞e−ϕξ/c2 . (2.24)

This will bound S(τ, ξ) for ξ ≥ 0. Gathering (2.23) and (2.24) we realize that there is C > 0
depending only on data such that

∀τ > 0,
1
c2
‖S3/2(τ)ϕ(T (τ))‖L1

ξ(R) ≤ C. (2.25)

An eventual super-solution for W is the function W (ξ), which satisfies, on {ξ ≤ ξ̄}:

−W
′′ + W

′ =
C

c2
‖S‖3/2

∞ θie
ξ1R− +

‖ϕ‖∞‖S‖3/2
∞ e−ϕξ/c2

c2
, (2.26)

with W (−∞) = Yu and W (ξ̄) = 2Tb(Yu, Su). A simple ODE integration shows that W (ξ) is bounded
independently of c. The C1 bounds follow from parabolic regularity. �

2.3 Uniform exponential decay

Assume that the solution (c, T, Y, S) of (2.1)-(2.3) additionally satisfies the normalization condition:

T (0, 0) = θi. (2.27)

The main result of this subsection is the following.
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Proposition 2.4 There exist ρ0 > 0 and C > 0, depending only on the data, such that we have, for
all t ∈ R:

∀x ∈ R−, |(T (t, x), Y (t, x)− Yu, S(t, x)− Su(x− ct))| ≤ Ceρ0x

∀x ∈ R+, |(T (t, x)− Yu − 〈S3/2
u 〉, Y (t, x), S(t, x))| ≤ Ce−ρ0x.

(2.28)

By parabolic regularity, it is sufficient to prove the following

Lemma 2.5 There exist ρ0 > 0 and C > 0, depending only on the data, such that we have, for all
t ∈ R:

‖e−ρ0x(T (t, .), Y (t, .)− Yu, S(t, .)− Su(.− ct))‖L2(R−) ≤ C

‖eρ0x(T (t, .)− Yu − 〈S3/2
u 〉, Y (t, .), S(t, .))‖L2(R+) ≤ C.

(2.29)

An important intermediate step is

Lemma 2.6 Let xi(t) be the function defined by (2.10). There is x̄0 > 0 such that, for all t ∈ R,
we have |xi(t)| ≤ x̄0.

Proof of Lemma 2.6. Let −x0 ≤ 0 be the minimal value of xi; the proof of Proposition 2.1 – see
Part 2 – yields the existence of C > 0 such that T (t,−x0) ≥ Cθi. Also, remember the existence –
as in the proof of Proposition 2.1 – of W > θi - this real number only depends on data – such that
W (t, x) ≥ W . Consequently we have

Tt − Txx + cTx ≥ (W − T )f(T ); T (t, +∞) ≥ W. (2.30)

For any W > θi, let c(W ) be the unique speed of the travelling wave connecting 0 to W by the
equation

−u′′ + cu′ = (W − u)f(u).

Two cases are to be investigated.

• We have c ≤ c(W ). Then there exists - see [4] - a unique solution T (x) to

−T ′′ + cT ′ = (W − T )f(T ) (x > x0)
T (x0) = Cθi, T (+∞) = W

(2.31)

which is an eventual sub-solution to (2.29). Moreover, because of the boundedness of c from
above, there is an absolute constant ρ0 > 0 such that

∀x > x0, |T (x)−W | ≤ Ce−ρ0(x−x0). (2.32)

• We have c ≥ c(W ). Then - Aronson-Weinberger [2], [3] - we have

T (t, 0) ≥ W.

Then Y decays, in both cases, exponentially to 0 as x → +∞, at a uniform rate. This implies an
inequality for T of the form (2.32).
All this is enough to prove the lemma – the minimal value −x0 can not be too negative since
T (0, 0) ≥ θi, and the maximal value of xi(t) is bounded directly by (2.32). �
Proof of Lemma 2.5. Once x0 is known to be bounded, the first part of (2.29) – the bounds
on the left – is easy: indeed, we have 0 ≤ T (t, x) ≤ θie

c(x−x0); this is enough due to the uniform
boundedness of c from below. Then, using the boundedness of S by ‖Su‖∞ we have the existence of
a constant C > 0 such that

|Yt − Yxx + cYx| ≤ Cec(x−x0);
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an eventual, exponentially decreasing super-solution is easily found and left to the reader. The
equation for S is treated in the same fashion.

Consider any δ > 0. From Lemma 2.6, there is x1 > 0, uniformly bounded, such that T ≥ θi + δ
as soon as x ≥ x1. This forces an exponential decay for S due to the boundedness of c from below;
this in turn forces an exponential decay for Y from the maximum principle. It remains to prove the
L2 bound for W ; to do so we argue as follows. First, by commodity, re-scale the time: τ = ct; the
new function W is hence 1-periodic in t. Decompose W (τ, x) in a Fourier series:

W (τ, x) =
∑
n∈Z

wn(x)e2iπnτ .

An equation for w0(x) is

−w′′0 + cw′0 =
3
2

∫ 1

0
ϕ(T )S(τ, x)3/2 dτ,

which implies

w0(x) = Tb(Yu, Su)− 3
2

∫ +∞

x
ec(x−y)

∫ y

−∞

∫ 1

0
ϕ(T )S(τ, z)3/2dτdzdy. (2.33)

The limits for w0 are Yu and Tb(Yu, Su), because 3ϕ(T )S(τ, z)3/2/2 is exactly −(∂t + ∂x)S3/2; the
desired L2 bound for w0, is obtained, at the possible expense of decreasing ρ0 a bit, by recalling the
exponential decay of S at +∞ and the fact that ϕ(T ) vanishes for large negative x.

For n 6= 0 an equation for wn is

−w′′n + cw′n + 2iπcnwn = −(2iπcn + c∂x)
∫ 1

0
e−2iπnτS3/2(τ, x) dτ (x ∈ R); wn(±∞) = 0.

This equation has two characteristic roots r±, whose real part is above (resp. below) C(1 +
√

n)
(resp. −C(1 +

√
n)) where C is a constant under uniform control. This implies, by an elementary

computation, the existence of a small, uniform ρ > 0, such that

‖eρ0|x|wn‖L2(R) ≤
C

n
. (2.34)

This in turn implies an L2([0, 1], L2(R)) bound for eρ0xW (t, x). �

3 Nonzero ignition temperature: construction of the wave

The uniform L2 bounds for W and T will allow us to perform directly a topological degree argument
for the system (2.1)-(2.3) on the whole real line, without the approximation step on a finite interval
taken in [5]. The system will first be reduced to a fixed point problem; then we shall introduce a
homotopy bringing it onto the problem of finding a travelling wave for the 1D thermo-diffusive scalar
equation – for which everything is known.

3.1 Strategy

To explain how we wish to proceed, let us start by recalling some basic facts. Assume that we are
given a Banach space X and a sectorial operator A such that ‖e−A‖ < 1. For α ∈ (0, 1), consider a
function f(t) ∈ Cα(R, X) which is 1-periodic. The Cauchy problem for

u̇ + Au = f(t) (3.1)
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is well-posed, in the sense that, for every initial datum u0 ∈ X, it admits a unique strong solution
u(t) such that u(0) = u0. We are interested in finding some 1-periodic solutions for (3.1); to do so
it is sufficient to look for the initial datum; it is uniquely given by

u0 = (I − e−A)−1

∫ 1

0
e−(1−s)Af(s) ds,

and the (unique) 1-periodic solution of (3.1) is given by

u(t) = e−tA(I − e−A)−1

∫ 1

0
e−(1−s)Af(s) ds +

∫ t

0
e−(t−s)Af(s) ds. (3.2)

Let us denote by Ff the right side of (3.2). If the right side of (3.1) is replaced by a nonlinear
function f(t, u) which is, say, Hölder in its first variable and Lipschitz in its second variable; and
which is moreover 1-periodic in time, the problem of finding periodic solutions to

u̇ + Au = f(t, u)

reduces to
u = Ff(., u). (3.3)

It is this very simple fact that we wish to use in order to reduce (2.1)-(2.3) to a fixed point problem,
the major point that we will have to care about being that u 7→ Ff(., u) should be compact if we
wish to have a chance to apply a degree argument.

3.2 Fixed point setting

Let us try to apply the above strategy, namely to define a subspace X of C
α,α/2
per (R2)×C

α,α/2
per (R2)×

Cper(R2) × R and a compact nonlinear mapping F of X such that (2.1)-(2.3) reduces to finding a
fixed point of F . Here the subscript per means that we are dealing with functions of the variables
(t, x) that are 1-periodic in t.

In what follows, we take the boiling and ignition temperatures θi and θv to be positive, in
agreement with the assumption θi > 0 of Theorem 1.1. The other data are also assumed to be in
agreement with the assumptions of this theorem. The limit θv → 0 will be considered at the end of
this section.

The first step is to renormalize the time so that the period in (2.3) becomes 1. We take Y, W, S, c
as our principal unknowns instead of T, Y, S, c; the reason for this choice will become clear as the
discussion goes on. The set of equations that we have to satisfy then becomes

cYt − Yxx + cYx = −Y f(W − Y )− c(∂t + ∂x)(S3/2)
cWt −Wxx + cWx = −c(∂t + ∂x)(S3/2)

St + Sx = −1
c
ϕ(W − Y )S

(t, x) ∈ R2 (3.4)

together with the conditions at ±∞,
Y (t,−∞) = Yu, Y (t, +∞) = 0
W (t,−∞) = Yu, W (t, +∞) = Tb(Yu, Su)

lim
x→−∞

(S(t, x)− Su(x)) = 0, S(t,+∞) = 0,
(3.5)

the periodicity condition
(Y, W, S)(t + 1, x) = (Y, W, S)(t, x) (3.6)
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and the normalization condition
(W − Y )(0, 0) = θi. (3.7)

Let us then define the space Xr as

Xr = {u ∈ Cα,α/2
per : er|x|u ∈ Cα,α/2

per }. (3.8)

We first choose once and for all α ∈ (0, 1) which will measure the Hölder character of Y and W .
Next, we recall the real number ρ0 defined in Lemma 2.5, the lower bound c0 for the velocity, its
upper bound: c0, and we fix r > 0 such that

r <
1
5

min
(

ρ0, c0,
−c0 +

√
c2
0 + 4f(Tb(Yu, Su))

2

)
. (3.9)

In fact, the function S will not be a principal unknown: we will compute it directly from W
and Y . Assume therefore that Y and W are known; then the equation for S in (3.4) has a unique
1-periodic solution in t that is given by

S(t, x) = Su(x− t)exp
(
−1

c

∫ 0

−∞
ϕ4(t + s, x + s) ds

)
(3.10)

where we have set ϕ4(s, y) = ϕ(W−Y )(s, y)). We denote the right side of (3.10) by F4(c, Y, W )(t, x).
Let γ(x) be a smooth nonnegative function that is equal to 0 on (−∞,−1] and to 1 on R+. In

order to obtain unknowns that decay exponentially at ±∞, let u0(x) and w0(x) be defined as

u0(x) = Yu(1− γ(x)); w0(x) = Yu + 〈S3/2
u 〉γ(x). (3.11)

Then look for Y and W in the form

Y = u0 + u, W = w0 + w. (3.12)

Examination of (3.10) and of the definition of ρ0 in Lemma 3.1 yields the following estimate for F4,
that we cast in the

Lemma 3.1 Consider two functions Y and W of the form (3.12) with u, w in a bounded subset of
Xr, and c ∈ [c0/2, 2c0]. Then F4(c, Y, W )(t, x) has the form

F4(c, Y, W )(t, x) = Su(x− t)(1− γ(x)) + F̃4(c, Y, W )(t, x)

with F̃4(c, Y, W ) ∈ Xr; moreover there is a constant C(c, Y, W ) > 0 such that

|F̃4(c, Y, W )(t, x)| ≤ Ce−ρ0|x|.

Next we turn to the equation for Y . The first equation in (3.4) is rewritten as – for short we redefine
T as W −Y , and we keep the notations W and Y when we do not want to underline a specific decay
property:

cut − uxx + cux + γ(x)f(Tb(Yu, Su))u
= −(f(T )− γ(x)f(Tb(Yu, Su))Y − γ(x)f(Tb(Yu, Su))u0

−c(∂t + ∂x)F4(c, Y, W )3/2 + u′′0 − cu′0.

Let Ac denote the differential operator

Ac = −c−1 d2

dx2
+

d

dx
+ c−1γ(x)f(Tb(Yu, Su)).

If UC(R) is the space of all bounded, continuous functions of R, we define, for all ρ > 0:

Yρ = {u ∈ UC(R) : e−ρ|x|u ∈ UC(R)}

We extract from (3.9) and [9], Chap. 5, the following
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Lemma 3.2 There is δ0 > 0, depending on c0 and ρ0 such that, for every c ∈ [c0/2, 2c0], and for
all δ ∈ [0, δ0], the operator Ac is sectorial in Yr+δ0; its spectrum is moreover within the right side of
the complex plane, bounded away from the imaginary axis. This statement is uniform with respect
to δ ∈ [0, δ0].

The proof is standard and omitted. Thus e−Ac has norm < 1 in Xr+δ, for every δ ∈ [0, δ0]; hence
we may define F2(c, u, w) as follows:

• the underlying space is the space Yr;

• the quantity F2(c, u, w) is defined by (3.2), with f being the RHS of 3.13.

Rephrasing Lemma 2.5, we have the

Lemma 3.3 For the quantity δ0 of Lemma 3.2, the mapping (c, u, w) 7→ F2(c, u, w) is C1 and
compact from [c0/2, 2c0]×Xr ×Xr into Xr+δ0.

This implies the following

Proposition 3.4 The mapping F2 is C1 and compact and compact from [c0/2, 2c0]×Xr ×Xr into
Xr.

Proof. Straightforward – but lengthy – by Lemma 3.3 and parabolic regularity. We omit it. �
We would now like to do the same operation for the W -equation, but we do not have here a term

that ensures some coercivity at +∞. What is, however, true is the following: set, for all ρ > 0:

Ỹρ = {u ∈ UC(R) : e−ρxu ∈ UC(R)}.

Then, for all c ∈ [
c0

2
, 2c0], the operator

Bc = −c−1 d2

dx2
+

d

dx

satisfies: ‖e−Bc‖L(Ỹr) < 1, uniformly with respect to the parameter c. The verification is even simpler
than Lemma 3.2, and therefore omitted. Consequently, a mapping can be constructed as before:
first, the equation for w is

cwt − wxx + cwx = −c(∂t + ∂x)(F4(c, Y, W ))3/2 − w′′0 + cw′0. (3.13)

Then, by writing formula (3.2) with f as the RHS of (3.13), and A = Bc; we obtain a mapping that
we call F3(c, Y, W ). Now, Lemma 2.5 together with parabolic regularity imply the

Proposition 3.5 The mapping F3 is C1 and compact and compact from [
c0

2
, 2c0] × Xr × Xr into

Xr.

Finally, we define the mapping

F1(c, Y, W ) = c− (W (0, 0)− Y (0, 0)− θi). (3.14)

Clearly, F1 is compact.
We are now ready to state the fixed point problem. Let C > 0 be such that, if (c, T, Y, S) solves

(3.4)-(3.7), then the corresponding functions u and w defined by (3.12) are – due to all the estimates
of Section 2 – in the open ball of Xr with center 0 and radius C, which we denote by Br(0, C). Now,
define the open subset of R×Xr ×Xr and the mapping F from Ω to R×Xr ×Xr by

Ω =
(c0

2
, 2c0

)
×Br(0, C)×Br(0, C); F = (F1,F2,F3). (3.15)

Clearly, F is compact from Ω to Xr ×Xr × R. Moreover, a fixed point of F cannot be on ∂Ω.
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3.3 The homotopy

To do the homotopy, we simply perturb the values at −∞. Without loss of generality, we assume
that θi < 1/2. We then replace Yu as the left limit of Y by τYu + 1 − τ , and Su by τSu – that
is, we replace Tb(Yu, Su) by Tb(τYu + 1 − τ, τSu). We note that, for τ ∈ [0, 1], the estimates of
Section 2 apply to these new conditions at −∞; we call Fτ the corresponding mappings defined
in the preceding section. Clearly, (τ, c, u, w) 7→ Fτ (c, u, w) is C1 and compact and compact. Also,
any fixed point of Fτ is inside Ω according to the a priori estimates. We may therefore define
deg(I −Fτ ,Ω, 0); it is constant with respect to τ . This triggers the last step of the
Proof of Theorem 1.1. It suffices to prove that deg(I − Fτ ,Ω, 0) 6= 0. However, for τ = 0, we
have the usual thermo-diffusive system with the Lewis number equal to one – there are no droplets.
Hence, a fixed point of I −Fτ is such that the corresponding function W is exactly equal to 1, and
the corresponding function Y is a solution of

Yt − Yxx + cYx = −Y f(1− Y ) := g(Y ). (3.16)

The only time-periodic solution of (3.16) such that 1 − Y is equal to θi at (0, 0) and goes to 0 at
+∞ is the 1D wave that we call Y0 with the speed called c0. Let us quickly prove that I − ∂c,u,wF0

at the wave is an isomorphism of R×Xr ×Xr; notice that, because of what preceeds, ∂c,u,wFτ is a
compact operator of R×Xr ×Xr. Hence it suffices to prove that I − ∂c,u,wF0 has a zero null space.
By the definition of Fτ , it suffices to solve the following equation, with unknowns (c̃, ũ, w̃):

ũ(0, 0) = 0
(∂t − ∂xx + c0∂x − g′(Y0))ũ = 0, u(t + 1, .) = u(t, .)

w̃ = 0
(3.17)

From [9], Chap. 5 – the operator

L0 = − d2

dx2
+ c0

d

dx
− g′(Y0)

with domain in Xr, is non-degenerate, in the sense that the geometric and algebraic multiplicity
of the eigenvalue 0 is 1, with associated eigenfunction Y ′

0 . Consequently, the second line of (3.17)
implies that u(t, x) is proportional to Y ′

0 , and the first equation in turn implies that u ≡ 0.
To summarize, F0 has a unique zero in Ω, and ∂c,u,wF0 is an isomorphism of R×Xr ×Xr, the

consequence of which being [11]: deg(I −Fτ ,Ω, 0) is nonzero. This ensures the existence of a wave
solution to (2.1)-(2.3) as soon as the evaporation temperature θv is positive.

It remains to send θv to 0. However, all the bounds that are proved in Section 2 are uniform with
respect to θv; as soon as θi is fixed – in fact, θv > 0 was only required to obtain some compactness
for W . The passage to the limit θv > 0 is therefore standard; see for instance [6] for the details. �

4 The KPP limit

As in [6], the strategy that we shall use here for obtaining the wave of lower velocity is to send the
ignition temperature to 0. Our main problem is that the bounds devised so far are not uniform with
respect to the ignition temperature. On the other hand, what we are now aiming at is the existence
of waves when both ignition and vaporization temperatures are zero. This leaves us some freedom
for the approximating sequences, and we will use one that will generate a painless estimate for Y –
something that we had to work for in Section 2. This in turn will allow us a – less easy – estimate
for the enthalpy. Also, we will in a first approximation keep the mass fraction of the unburnt gases
nonzero: this will give us a free lower estimate, for in this case, Part 1 of the proof of Proposition
2.1 applies. All this is summed up in the following
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Proposition 4.1 Let (fθ)θ>0 and (ϕθ)θ>0 be two sequences of Lipschitz functions, defined for small
θ > 0 having θ as ignition – resp. vaporization – temperatures. Assume moreover the ratio ϕθ/fθ

to be uniformly bounded from above, and bounded away from 0. Consider Yu > 0 and a positive,
smooth, 1-periodic function Su(x). Then there exists a family of solutions (cθ, Tθ, Yθ, Sθ) to the
problem (2.1)-(2.3). Moreover, the following properties hold

• the sequence (cθ) is bounded away from 0,

• if Wθ is the enthalpy, then the sequence ‖Wθ‖∞ is bounded,

• the exponential estimates of Section 2.3 hold uniformly with respect to θ.

Proof. It is clear that, given the considerations of Sections 2 and 3, a solution (cθ, Tθ, Yθ, Sθ) to
the problem (2.1)-(2.3) exists as soon as the estimates stated in the proposition hold, and the proof
reduces to proving these estimates. In what follows, we consider (c, T, Y, S) a solution to (2.1)-(2.3);
we have – and continue to do so in the course of the proof – deleted the subscript θ in order to
alleviate the notations.
1. Upper bound for Y . Break Y (t, x) into Y1(t, x) + Y2(t, x) where{

(∂t − ∂xx + c∂x + f(T ))Y1 = 0 (t > 0, x ∈ R)
Y1(0, x) = Y (0, x)

and {
(∂t − ∂xx + c∂x + f(T ))Y2 = ϕ(T )S (t > 0, x ∈ R)

Y2(0, x) = 0

We have – by an elementary computation for the advection-diffusion equation:

lim sup
t→+∞

Y1(t, x) ≤ Yu;

moreover, if the function (s, x) 7→ Y2(s, x) has a maximum point (t0, x0), we have at that point

Y2(t0, x0) ≤
ϕ(T (t0, x0)
f(T (t0, x0)

S(t0, x0) ≤ C‖Su‖∞,

as the ratio φ/f is uniformly bounded by assumption. If there is no maximum, we always may
consider a maximizing sequence (tn, xn), consider the suitably translated sequence Y (t + tn, x + xn)
and send n to +∞, to get the same estimate. In any case, this bounds Y from above.
2. Lower bound for c. Similar to Part 1 of the proof of Proposition 2.1.

In the next two steps we revert – for commodity, and without change of notation – to the original
reference frame; thus the functions (T, Y, S) satisfy (1.1)-(1.3). Of course, the benefit of the estimates
of the previous two steps is kept.
3. L∞ bound for Tt and Txx. We start from the Duhamel formula for W (t, x):

W (t, x) = et∂xxW (0, x) +
∫ t

0

∫
R

e
− (x−y)2

4(t−s)√
4π(t− s)

(−∂sS
3/2) ds.

The free term et∂xxW (0, x) has the eventual bound
Tb(Yu, Su)

2
and is of no concern. The remaining

term, that we denote by W1(t, x), is broken into

W1(t, x) =
∫ t−1

0
+
∫ t

t−1
:= W11 + W12,
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which we study separately.
[i]. Because ϕ(T ) and S are both bounded (see (1.2)), we immediately infer from the parabolic
regularity that, for every p ∈ (1,+∞), there is Cp > 0 such that, for every bounded interval I of
length 1/2, and for every (t, x) ∈ (2,+∞)× R we have

‖∂tW12‖Lp((t,x)+I2) + ‖∂xxW12‖Lp((t,x)+I2) ≤ Cp. (4.1)

Indeed W12 solves

(∂s − ∂xx)W12 = −∂sS
3/2 =

3
2
ϕ(T )S3/2 for (s, x) ∈ (t− 1, t)× R; W12(t− 1, x) = 0. (4.2)

[ii]. The term W11 has the expression

W11(t, x) =
∫

R

(
e−

(x−y)2

4

√
4π

S3/2(t− 1, y)− e−
(x−y)2

4t

√
4πt

S3/2(0, y)
)

dy

+
∫ t−1

0

∫
R

1
t− s

(
1− (x− y)2

2(t− s)

)
e
− (x−y)2

4(t−s)√
4π(t− s)

S3/2(s, y) dsdy

:= W111(t, x) + W112(t, x)

The term ∂tW111 is uniformly bounded, just because St is uniformly bounded. As for W112 there is
a polynomial P (X) – easily explicitly computed, but whose expression is no use to us – such that

|∂tW112(t, x)| ≤
∫ t−1

0

1
(t− s)2

P

(
(x− y)2

t− s

)
e
− (x−y)2

4(t−s) S3/2(s, y) dsdy.

This bounds ∂tW112.
Now, remembering (4.1) and using the equation for W and the boundedness of its right side, we

conclude that the outcome of the two sub-paragraphs [i] and [ii] is

‖∂tW‖Lp((t,x)+I2) + ‖∂xxW‖Lp((t,x)+I2) ≤ Cp, (4.3)

for all p ∈ (1,+∞). This is not quite enough; we would in fact wish to bound ∂tW and ∂xxW in some
Hölder space. However we are now in a relatively good shape, and we may argue as follows: first,
the boundedness of the coefficients of the equation for Y , as well as the boundedness of Y , imply
a bound for Y of the type (4.3). This in turn imply a similar bound for T , because W = T − Y .
Consequently, because ϕ(T ) and f(T ) are bounded as well as their derivatives, there is α ∈ (0, 1)
such that

‖f(T )‖Cα,α/2 + ‖ϕ(T )‖Cα,α/2 ≤ C.

If we now set u(t, x) = Tt(t, x) we have, from the previous considerations:

ut − uxx − f ′(T )Y u = Ytf(T );

the coefficients and RHS of the above equation are bounded in Cα,α/2. Moreover, because of the
Lp

loc bound for u, there is t0 ∈ (0, 1) such that ‖u(t0, .)‖Lp(I) is bounded uniformly on all intervals I
of length 1. Parabolic regularity implies a Hölder bound for ut, which is enough to infer a Hölder
bound for Wt. Hence the outcome of this step is

‖Tt‖∞ + ‖Txx‖∞ ≤ C. (4.4)
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4. L∞ bound for W . If C is the bound of (4.4), and c0 a lower bound for c, consider K > 0 large
enough so that

K ≥ 1 + 2
C + 3

√
CK

c0
; (4.5)

let x0 the smallest point x for which there is t ∈ R+ such that T (t, x) = K; without loss of generality
we may take it to be equal to (t, x) = (0, 0). Hence we have T (k,−ck) = K – recall that at the
moment we are working in the original variables. Now, by interpolation, using (4.5) and (4.4) we
have T (t,−ct) ≥ 1 for all t ∈ R. Letting t → +∞ yields

T (t, x) ≥ min(1, Tb(Yu, Su),

for x > −ct, which in turn implies that ϕ(T ) is bounded away from 0 by a constant ϕ independent
of θ. Consequently we have, for t > 0 and x > −ct:

S(t, x) ≤ ‖Su‖∞ exp
{
−ϕ

(
t− x

c

)}
, (4.6)

and u(t, x) := W (t, x− ct) satisfies, for x > 0:

|ut − uxx + cux| ≤ C‖Su‖∞e−ϕt.

Due to the upper bound for Y , it is bounded for x = 0 and x = +∞. Letting t → +∞ yields a
uniform bound for u and W .

Once the L∞ bound for W holds, the upper bound for c and the exponential bounds follow as
in Section 2.2. �

Proposition 4.1 readily implies Theorem 1.2. Indeed, one only has to consider a sequence of
approximating solutions (cθ, Tθ, Yθ, Sθ). The uniform L2 estimate plus the lower bound on cθ ensure
that the limiting triple (T, Y, S) converges to the right limit at ±∞: the details are as in [5].

5 Existence of waves with higher velocities

A first trivial observation to support this fact – which also has the merit of clearly pointing out
where the Yu > 0 assumption is needed – is the following: any solution (T, Y, S)(t, x) of the Cauchy
problem for (1.1)-(1.3) has W (t, x) ≥ Yu/2 as soon as we wait long enough; consequently, if f(T ) = T
we have

W − T ≥
(

Yu

2
− T

)
T

for t > 0 large. The RHS of the above equation is – once again – a KPP term, which generates
travelling waves connecting 0 to Yu/2 travelling at any speed larger than

√
Yu/2. We therefore may

have arbitrarily high burning rates – in the sense of [8], hence arbitrary large propagation velocities
might be expected.

Let us now try to give some substance to this observation. To do so, we will be guided by the
following toy problem

ut − uxx = (Yu − u)u := f0(u), u(t,−∞) = 0, u(t, +∞) = Yu. (5.1)

For every K > 0 and c > 2
√

K, let us define the two quantities r−(c,K) < r+(c,K) by

r±(c,K) =
c±

√
c2 − 4K

2
. (5.2)
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For every c > 2
√

Y u, a travelling wave solution of (5.1) φc(x), that moves with the speed c, exists
and decays at −∞ according to the minimal rate [13], i.e. for every r < c there exists kr > 0 such
that

φc(x) = kre
r−(c,Yu)x + O(erx). (5.3)

Moreover, still for every r ∈ (0, c), define the weighted space

Br = {u(x) ∈ BUC(R) : (1 + e−rx)u ∈ BUC(R)};

then the operator L, with a suitable domain in Br, defined as

L = − d2

dx2
+ c

d

dx
− f ′0(φc)

is an isomorphism from its domain into Br; see once again [13].
For the construction of waves with higher velocities, we are going to use a degree argument

similar in spirit to the one of Section 3, up to the fact that the velocity is now prescribed. Note
that, once the velocity is prescribed, L∞ bounds for T , W and S can be obtained by arguing as in,
for instance, the proof of Proposition 4.1. We will use freely these bounds, without writing them in
the form of a theorem.

5.1 Direct lower bound on the velocity

Theorem 1.2 does not by any means imply Theorem 1.3. Indeed, it yields a pulsating wave solution
whose velocity is bounded in terms of the data; however it does not say that all pulsating wave
solutions to (1.1)-(1.3) satisfy this estimate. Of course, it also says nothing about the boundedness
or unboundedness of the velocity spectrum.

The first task in proving Theorem 1.3 is to prove a direct lower bound on the wave speeds.
We start with a qualitative property of the temperature analogous to – but weaker than – the lap
number decay principle, that will be useful to us in the sequel.

Proposition 5.1 If (c, T, Y, S) is a solution to (2.1)-(2.3) then, for all t ∈ R, the function x 7→
T (t, x) is nondecreasing on the set where it is below Tb(Yu, Su).

Proof. Assume the contrary. Then there is a value l ∈ (0, Tb(Yu, Su)) that is, at some time t0,
taken twice by x 7→ T (t0, x). By Sard’s Theorem, we may assume this value to be noncritical for the
function T . The level set {T (t, x) = l} consists, therefore, of a finite set of ordered, non-intersecting
smooth curves {t, yi(t)} in space-time. Take any i such that T (t, x) < l if x ∈ (yi(t), yi+1(t)).
This defines an open subset Ω in space-time in which, by periodicity of T , a minimum is attained.
However T is a super-solution to an advection-diffusion equation, which contradicts the strong
maximum principle. �
Proof of Theorem 1.3, Step 1: a lower bound on velocities. It shares many common
points with the proof of Proposition 2.1, up to the fact that we may not get an upper bound for the
temperature in the unburnt region – for the simple reason that there is no unburnt region, as there
is no ignition temperature. We argue by contradiction, that is, assume the existence of a sequence
cn → 0 – that we immediately relabel simply c – giving raise to pulsating wave solutions. We use
yet for another time the parabolic scaling

τ = c2t, ξ = cx. (5.4)
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Consider A > 0 large; the size of A – independent of c – will be made precise later. From Proposi-
tion 5.1 there exists a – possibly discontinuous, but at least lower semi-continuous – function ξA(τ)
such that

T (τ, ξ) ≥ Ac2 if and only if ξ ≥ ξA(τ). (5.5)

We may assume that the minimum of ξA is 0. For ξ ≥ 0 we have

(∂τ − ∂ξξ + ∂ξ)T ≥ 0. (5.6)

Arguing as in the proof of Proposition 2.1 we infer the existence of of δ > 0, independent of A and
c, such that

∀(τ, ξ) ∈ R× R+, T (τ, ξ) ≥ δAc2. (5.7)

Now, remember that (5.6) also holds for ξ ≤ 0; as a consequence we have

∀(τ, ξ) ∈ R× R−, T (τ, ξ) ≥ δAc2eξ. (5.8)

In particular, we have

T (τ,−2) ≥ δAc2

e2
. (5.9)

Turn now to S(τ, ξ); recall the equation

(∂τ + ∂ξ)S = −ϕ(T )S
c2

,

and the fact that C1T ≤ ϕ(T ) ≤ C2T – together they imply

∀(t, ξ) ∈ R× [−2,+∞), S(τ, ξ) ≤ ‖Su‖∞exp
(
−CδA

e2
(ξ + 2)

)
. (5.10)

Finally, turn to the function W (τ, ξ). The time period of the wave in the rescaled coordinates is c;
however, we may also consider the wave as being τ0 = Nc-periodic, with N = [1/c]. Note that when
c is small – which is the case here, τ0 is a number in the interval [1/2, 1]. This consideration will be
useful to us when we wish to apply parabolic regularity. Let w0(ξ) be the zeroth Fourier mode of
W – that is, its average over a time period; we have, for −2 ≤ ξ ≤ 0:

w0(ξ) = Yu + 〈S3/2
u 〉 −

∫ +∞

ξ
eξ−ζ〈S3/2〉(ζ) dζ

≥ 〈S3/2
u 〉 − ‖Su‖3/2

∞
(1 + CδA)

by (5.10)

≥ 〈S3/2
u 〉
2

as soon as A is large enough.

(5.11)

Consider now A to be chosen so that the last inequality of (5.11) holds; we have, for −2 ≤ ξ ≤ 0,
since ϕ(T ) is uniformly bounded

(∂τ − ∂ξξ + ∂ξ)W =
3

2c2
S3/2ϕ(T ) = O(1).

By parabolic regularity – and also by letting τ → +∞, so that we only keep the effect of the right
side, for all p > 1, there is Cp > 0 independent of c such that

‖Wτ‖Lp([0,1]×[−2,0]) + ‖Wξξ‖Lp([0,1]×[−2,0]) ≤ Cp.
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Take p large enough so that the above estimate implies a Cα,α/2 estimate for some α ∈ (0, 1). This,
combined with (5.11), and the fact that W is c-periodic in τ – and c is a small number – implies

∀τ ∈ R, W (τ,−1) ≥ 〈S3/2
u 〉
3

. (5.12)

Next, we recall that T (τ, ξ) ≤ Ac2 for all τ and ξ ≤ 0. Consider now a some small number θ and
a smooth function g(T ) having θ as an ignition temperature, and such that g(T ) ≤ T . We therefore
have Ac2 ≤ θ if c is too small; hence, for our pulsating wave we have

(W − T )T ≥

(
〈S3/2

u 〉
3

− T

)
g(T ) on R2. (5.13)

Indeed, (5.13) holds for ξ > −1 because of (5.12), while for ξ ≤ −1 the right side of (5.13) vanishes
because T is below the ignition temperature for g(T ). The velocity of the pulsating wave is therefore
larger than the velocity c0

θ of the travelling wave of

ut − uxx =

(
〈S3/2

u 〉
3

− u

)
g(u), u(t,−∞) = 0, u(t, +∞) =

〈S3/2
u 〉
3

.

When θ > 0 is small enough, we have c > c0
θ ∼ 2

√
〈S3/2

u 〉
3

f ′(0) - the KPP velocity. This contradicts

the smallness of c. �

5.2 Uniform decay bounds and homotopy

The general idea is the following: perform a homotopy from Problem (1.1)-(1.3) to Problem (5.1).
The deformation is done through the droplet distribution at −∞; namely we go from S(t, x) = Su(x)
at −∞ to S(t, x) = 0 at −∞. This means that we simply forget, in the end, the effect of the droplets,
and this is understandable: combustion will occur in this situation whether or not droplets are present
in the picture.

What we will need to complete the degree argument is not only the classical L2 bound on T at
+∞, but a uniform control of T in the Xr norm, for some r ∈ (r−(c, Yu), c). This will allow us to
reduce the issue to the problem of finding a fixed point of an operator which is a sum of a contracting
and a compact one.

Proposition 5.2 There exist K > 0 and δ0 > 0 satisfying r−(c, Yu)+δ0 < r+(c, Yu), depending only
on the data, such that, if (T,W, S) is a pulsating wave solution to (1.1)-(1.3) with velocity c ≥ K,
and such that

T (t, x)− er−(c,Yu)x = O(e−(r−(c,Yu)+δ0)x) as x → −∞, (5.14)

then there exist C > 0 also depending only on the data, such that

|T (t, x)− er−(c,Yu)x| ≤ Ce(r−(c,Yu)+δ0)x for (t, x) ∈ R2. (5.15)

Proof. The proof of this proposition is really a stability argument; instead of comparing directly
T (t, x) to er−(c,Yu)x we will compare it to the only (KPP) wave φ0(x) of (5.1), satisfying

φ0(x) ∼ er−(c,Yu)x as x → −∞. (5.16)
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1. We claim that, if T (t, x) ∼ φ0(x) for x → −∞, then we have T (t, x) ≥ φ0(x). Indeed, we have
W (t, x) ≥ Yu, implying

(∂t − ∂xx + c∂x)T ≥ (Yu − T )T ; T (t,+∞) ≥ Yu. (5.17)

Let u(t, x) be the only solution of (5.1) with the initial datum T (0, x). Because of (5.14) we have –
see [14] –

lim
t→+∞

u(t, x) = φ0(x).

This, together with (5.17), proves the claim.
2. Consider δ > 0 small, to be chosen later. Assume the function T (t, x) has been translated in
time and space such that

T (0, 0) = min
(t,x)∈R×R+

T (t, x) = δ. (5.18)

This implies, through Step 1, that the corresponding φ0(x) ≤ δ for x ≤ 0. It also follows that
ϕ(T ) = f(T ) = T for ξ ≤ 0. Now, for all ξ ∈ R−, denote by w(t, ξ) the function W (t, ξ) and
decompose W (t, x) – for t ∈ R, x ≤ ξ – as W [T ] + W 0, where both functions W [T ] and W 0 are
1
c
-periodic in t, and where

(∂t − ∂xx + c∂x)W [T ] =
3
2
S3/2T, W [T ](t, ξ) = 0

(∂t − ∂xx + c∂x)W 0 = 0, W 0(t, ξ) = w(t, ξ).
(5.19)

We recall the existence of C > 0 such that

0 ≤ W 0(t, x)− Yu ≤ Cec(x−ξ), (5.20)

simply because the right side of (5.20) is a super-solution to the equation (5.19) for W 0, and because
of the L∞ bounds for W . Now, set

rδ = r(c, Yu) + δ, v(t, x, ξ) = e−rδ(x−ξ)(T (t, x)− φ0(x)); (5.21)

the real number δ is not chosen yet – simply remember that it will be small. The function v(t, x, ξ)
solves, for (t, x) ∈ R× (−∞, ξ):

vt − vxx + (c− 2rδ)vx + (crδ − r2
δ − Yu)v

= −(φ0 + T )v + (W 0 − Yu)e−rδ(x−ξ)T + e−rδ(x−ξ)W [T ]T

≤ e−rδ(x−ξ)

(
Cδe(c−rδ)(x−ξ) + W [T ]T

) (5.22)

In the last inequality of (5.22), we have used the positivity of v to drop the first term on the second
line, while in the second term we used the decay of T ∼ φ0(x), and (5.20). Set

Vδ(t, ξ) = ‖v(t, ., ξ)‖L∞((−∞,ξ)); (5.23)

recall that an eventual super-solution for W [T ] is the solution W (t, x) solving

−W
′′ + cW

′ =
3
2
‖Su‖3/2

∞ (φ0 + erδ(x−ξ)Vδ(t, ξ)).

We invoke the following three facts:

21



• (i) we have r < c,
• (ii) formula (2.16) holds and gives an expression of W ,
• (iii) we have φ0(x) ≤ Cδer−(c,Yu)(x−ξ) – see step 1 of this proof. The constant C is independent of
δ > 0.

Points (i) to (iii) above imply, after a computation, the following bound for W [T ]T on R×(−∞, ξ):

0 ≤ e−rδ(x−ξ)W [T ]T ≤ C(e(r−(c,Yu)−δ)(x−ξ) + erδ(x−ξ)V (t, ξ)2)δ2 (5.24)

Now, we start shrinking δ. First, ask the amount crδ − r2
δ − Yu to be positive; from (5.22)-(5.24),

the normalization condition (5.18) and the maximum principle, we have

Vδ(t, ξ) ≤ δ + e−(crδ−r2
δ−Yu)tV0 + Cδ2(1 +

∫ t

0
e(crδ−r2

δ−Yu)(t−s)V 2
δ (s, ξ) ds).

Then, ask δ to be small enough so that the equation CδX2 − X + Cδ has two positive roots; one

that is O(δ), the other one that is O(
1
δ
). Fix such a δ, and call it δ0.

Letting t → +∞ and using the
1
c

periodicity of Vδ(t, ξ) we get, for all δ ≤ δ0, and for a constant
C once again independent of δ:

‖Vδ(., ξ)‖∞ ≤ C(δ + δ2 +
δ2

crδ − r2
δ − Yu

‖Vδ(., ξ)‖2
∞)

≤ Cδ(1 + ‖Vδ(., ξ)‖2
∞).

This implies: either Vδ(t, ξ) = O(δ), or Vδ(t, ξ) = O(
1
δ
). The first solution prevails for large negative

ξ and small δ; so by continuity: Vδ0(t, 0) = O(δ0). This proves our proposition.

The fact that T ≥ φ0 readily implies the exponential convergence of S and W to their limits at
−∞.

Lemma 5.3 There is ρ0 > 0 and C > 0, depending only on data, such that

∀(t, x) ∈ R× R−, 0 ≤ Su(x)− S(t, x) ≤ Ceρ0x, 0 ≤ W (t, x)− Yu ≤ Ceρ0x.

The proof is at this stage routine and is omitted. The last ingredient that we need for the homotopy
is a quantitative, uniform decay to the right for the functions T −Yu− < S

3/2
u >, W −Yu− < S

3/2
u >.

This is provided by the

Proposition 5.4 There is ρ0 > 0 such that, if T (t, x) satisfies the assumptions of Proposition 5.2,
then we have, for some C > 0 depending only on data:

∀(t, x) ∈ R× R+, |(T (t, x),W (t, x))− Tb(Yu, Su)(1, 1)) > | ≤ Ce−ρ0x. (5.25)

Proof. Come back to a pulsating wave that satisfies the normalization condition (5.18). Arguing
as in Proposition 2.1 we have T (t, x) ≥ Cδ0 for x ≥ 0; on the other hand we have

St + cSx + Sϕ(T ) = 0;

together these facts imply a uniform exponential decay for S. Then Y (t, x) satisfies

Yt + cYx − Yxx + f(T )Y =
3
2
S3/2ϕ(T );
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using the lower bound for T on R× R+, and the exponential bound for S on the same set, implies
the exponential bound for Y . The function W is then treated as in Proposition 2.4.
Proof of Theorem 1.3 (end). Let us pick c satisfying the assumptions of Proposition 5.2. Let γ
be a smooth, nonnegative function, equal to 1 on R− and 0 on [1,+∞). Let δ0 satisfy the conclusions
of Proposition 5.2, and set once and for all

r = r(c, Yu) + δ0. (5.26)

The fixed point setting that we are going to devise here is simpler than in Section 3, because c is
not to be looked for. Let us define the space Xr,δ0 as

Xr,δ0 = {u ∈ Cα,α/2
per : (e−rx(u− φ0), eδ0x(u− Yu − 〈S3/2

u 〉)) ∈ Cα,α/2
per }. (5.27)

Here the space C
α,α/2
per means the classical Hölder functions which are additionally

1
c

in t. Now, for

T ∈ Xr, let respectively F1[T ] be defined as (3.10) - i.e. S(t, x) is defined in terms of T , and let the

only
1
c

periodic solution of

Wt −Wxx + cWx =
3
2
(F1[T ])3/2ϕ(T ), W (t,−∞) = Yu

be defined as
W (t, x) = γ(x)Yu + (1− γ(x))Tb(Yu, Su) + F2[T ]. (5.28)

The equation that we are solving is then

(∂t − ∂xx + c∂x)T = (Yu + (1− γ)〈S3/2
u 〉+ (F2[T ]− T )f(T ) (R2)

T (t, x) = φ0(x) + O(erx) (x → −∞)
T (t, +∞) = Tb(Yu, Su)

(5.29)

As soon as we have found a
1
c

periodic solution to (5.29), we will be done.

Once the estimates are at hand, the rest of the proof of the theorem only resorts to putting
(5.29) under the right functional form, so we are not going to dwell on it too much, all the more as
it was detailed in Section 3. The unknown T (t, x) is best looked for under the form

T (t, x) = (1− γ(x)Tb(Yu, Su) +
(

γ(x)(φ0(x) + erx) + (1− γ(x))e−ρx

)
u(t, x) (5.30)

where the exponent r is defined in (5.26) and the exponent ρ is, say, less than
ρ0

2
; where ρ0 is defined

in Lemma 5.3. This complicated-looking expression simply says that we wish T to be asymptotic to
φ0(x) as x → −∞, and to converge to Tb(Yu, Su) at some small exponential rate. The equation for
u(t, x) therefore reads

ut + Lu = f0(x, u, ux) + φ1(x) +
(F2[T ]− T )f(T )

γ(x)(φ0(x) + erx) + (1− γ(x))e−ρx
. (5.31)

where the quantities L, f0, and φ1 have the following features.
1. The operator L is defined as

L = − d2

dx2
+ a(x)

d

dx
+ b(x)

a(x) = γ(x)(c− 2r)− (1− γ(x))(c− 2ρ)
b(x) = γ(x)(Yu + cr − r2) + (1− γ(x))(Tb(Yu, Su)− cρ− ρ2)

(5.32)
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Notice that b(x) is controlled from below by a positive constant. By the maximum principle we have
therefore the inequality

‖e−L/c‖L(UC(R)) < 1. (5.33)

2. The function f0 is smooth in all its variables; moreover we have

∀x /∈ [0, 1], ∀(u, p) ∈ R2, f(x, u, p) = 0. (5.34)

3. There is δ0 depending only on data such that we have

∀x ∈ R, |φ1(x)| ≤ Ce−δ0|x|. (5.35)

4. Recall that T is - for short - defined by equation (5.30). From Proposition 5.2, Lemma 5.3 and
Proposition 5.4, there exists δ1 < min(r,

ρ0

2
) such that, if T − (Yu − 〈S3/2

u 〉)(1− γ) belongs to Xr,δ0 ,

then we have, for some C depending on the Xr norm of T − (Yu − 〈S3/2
u 〉)(1− γ):

∀x ∈ R,

∣∣∣∣ (F2[T ]− T )f(T )
γ(x)(φ0(x) + erx) + (1− γ(x))e−ρx

∣∣∣∣ ≤ Ce−δ0|x|. (5.36)

Consequence: call K[u] the right side of (5.31). Then the operator F acting on C
α,α/2
per , and defined

by F [u] = e−L/cK[u] is compact in C
α,α/2
per .

Now, it suffices to perform the homotopy consisting in replacing once again Su by τSu, while

keeping Yu fixed. For τ = 0, this reduces to the study of the operator − d2

dx2
+ c

d

dx
− f ′(φ0), which

is an isomorphism between its domain and the set of all functions u decaying like erx on the left
side; see [13]. This implies the existence result.

6 Extensions

Clearly, we have not in this paper discussed the thermo-diffusive propagation of spray flames in its
full generality, although we believe that we have captured some of its main features in the study
that we have presented. Some extensions of the theory developed so far can be thought about; some
of them are simple generalizations; others seem less obvious to us. Let us list three of them.

• Holes in the distributions of droplets at −∞. We only have treated droplets distributions at
−∞ that never vanished. This is truly a convenience assumption, that is only needed in the
lower bound for the velocity in the ignition temperature case. A more accurate proof would
have revealed that what matters is 〈Su〉. This generalization is omitted.

• Polydisperse sprays. A more general description of the spray would describe the droplet dis-
tribution by a probability density f(t, x, s) accounting – roughly speaking – for the number of
droplets that, between the times t and t + dt, and between the positions x and x + dx, have
sizes comprised between s and s + ds. The governing equations are then

Tt − Txx = Y f(T )

Yt − Yxx = −Y f(T ) + ϕ(T )
∫ +∞

0
s3/2f(t, x, s) ds (6.1)

ft − ∂s(ϕ(T )sf) = 0.
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Such a general spray is said to be polydisperse, as opposed to the monodisperse case that we
have treated so far: we simply have plugged into (6.1) the measure δs=S(t,x).

Although (6.1) looks much more formidable than (1.1), the investigation of pulsating waves is
essentially the same as for (1.3). In fact, the relevant quantity to be considered is the maximal
size of the droplets at −∞. See [7].

• Several space dimensions What prevents us from going to several space dimensions is the lap
number decay - which is,in Section 4, replaced by another typically 1D result. Most certainly,
one could by-pass the use of this result.

A less obvious point to study is what happens when there is no gaseous fuel at −∞, i.e. Yu = 0. The
main question to be answered is: is there an unbounded range of possible velocities? Preliminary
computations of the travelling wave problem seem to indicate that this is impossible, and that the
system would be qualitatively close to the one with ignition temperature. This, however, needs a
more serious study than these considerations. Also, a complete study of the burning rate, in the
spirit of [8] or [12], would be very welcome. This might not be an easy task, for we would have to
drop the pulsating wave assumption - an assumption that we have heavily used in several crucial
instances. In particular, we still do not know how to derive an upper bound for the enthalpy -
although sharp upper bound results for the purely gaseous thermo-diffusive system, such as [10] -
might help. We hope to give – even partial – answers to these last two questions in the future.
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[10] M.A. Herrero, A.A. Lacey, J.J.L. Velàzquez, Global existence for reaction-diffusion
systems modelling ignition, Arch. Rational Mech. Anal. 142 (1998), pp. 219–251.
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