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Abstract. Flexibility and rigidity properties of steady (time-independent) solutions of the Euler,
Boussinesq and Magnetohydrostatic equations are investigated. Specifically, certain Liouville-type
theorems are established which show that suitable steady solutions with no stagnation points oc-
cupying a two-dimensional periodic channel, or axisymmetric solutions in (hollowed out) cylinder,
must have certain structural symmetries. It is additionally shown that such solutions can be
deformed to occupy domains which are themselves small perturbations of the base domain. As
application of the general scheme, Arnol’d stable solutions are shown to be structurally stable.

1. Introduction

In this paper, we address two fundamental questions pertaining to steady configurations of fluid
motion (modeled here as solutions to the two-dimensional Euler and Boussinesq equations or the
three-dimensional Euler equations or Magnetohydrostatic (MHS) equations). Specifically,

• Rigidity: Given a domain D0 with symmetry, to what extent must steady fluid states u0

conform to the symmetries of the domain?
• Flexibility: Given domains D0, D which are “close” in some sense, and a solution u0 of a

steady fluid equation in D0, can one find a steady solution u in D nearby u0?

To study the rigidity, we show that steady fluid configurations with no stagnation points (non-
vanishing velocity) confined to (topologically) annular regions have the following special property:
any quantity which is steadily transported (such as vorticity in two-dimensions or temperature
in the Boussinesq fluid) can be constructed as a ‘nice’ function of the streamfunction. This fact
is then exploited by recognizing that, as a consequence, the streamfunction of such a flow must
solve a certain nonlinear elliptic equation. As such, Liouville theorems are used to constrain the
possible behavior of all sufficiently regular solutions. For the two-dimensional Euler equations on
the periodic channel, this is the result of Hamel and Nadirashvili [18, 19] that all steady flows
without stagnation points are shears. A similar statement can be made for a Boussinesq fluid with
a certain types of stratification profiles. For stationary three-dimensional axisymmetric Euler (e.g.
pipe flow), we show that non-degenerate solutions must be purely radial for a large class of pressure
profiles. That there should be a strong form of rigidity for stationary solutions of 3d Euler was
already envisioned by Harold Grad [15] who conjectured that all smooth solutions (with a certain
topological structure) must conform to a symmetry.

To study the flexibility, we modify an idea introduced by Wirosoetisno and Vanneste [29]. To
illustrate the general scheme we note that steady states u0 which are tangent to the boundary can
be constructed from a scalar stream function ψ0 : D0 → R which solves

Lψ0 = N0(ψ0), in D0,

ψ0 = (const.) on ∂D0,
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where L is some linear elliptic operator and N0 is some nonlinear function. We seek a solution in
a nearby domain D by imposing that the stream function ψ have the form

ψ = ψ0 ◦ γ−1, (1.1)

where γ : D0 → D is a diffeomorphism to be determined. We furthermore require that ψ satisfies

Lψ = N (ψ), in D, (1.2)

for a function N = N0 + χ with χ conforming to the structure of the steady equations to be
determined. Note that by construction, we automatically have ψ = (const.) on ∂D since ψ0 =
(const.) on ∂D0 and γ : ∂D0 → ∂D. Thus, if such a diffeomorphism can be found, ψ defines a
stream function for a steady solution in D which is tangent to the boundary.

Having fixed the form of ψ by (1.1), we regard (1.2) as an equation for the diffeomorphism γ.
To solve it, we transform it into an equation in D0 by composing with γ,

Lγψ0 = N (ψ0), where Lγf := L
(
f ◦ γ−1

)
◦ γ. (1.3)

Under certain conditions on the original domain D0 and the base steady state ψ0, the equation (1.3)
becomes a non-degenerate, nonlinear elliptic equation for the components of the map γ which can be
solved provided the deformations are sufficiently small. This scheme to produce a γ has an infinite-
dimensional degree of freedom which can be removed by fixing the Jacobian of the diffeomorphism
ρ = det∇γ. This steady state will solve (1.2) potentially with a modified nonlinearity N which is
completely determined in the construction of the map γ with a given ρ.

Theorem 3.1 in §3 is our main result in this direction. We illustrate its consequences in the
following three cases

• 2d Euler for domains close to the periodic channel (see Figure 1) and Arnol’d stable steady
states on compact Riemannian manifolds.
• 2d Boussinesq for domains close to the periodic channel (see Figure 1).
• 3d axisymmetric Euler for domains close to the cylinder (see Figure 2).

We now describe these settings in greater detail and state our Theorems for each case before
proceeding to the proofs.

Two-dimensional Euler Equations

Given a bounded domain D0 ⊂ R2 with smooth boundary, a steady solution of 2d Euler satisfies

u0 · ∇u0 = −∇p0, in D0, (1.4)

∇ · u0 = 0, in D0, (1.5)

u0 · n̂ = 0, on ∂D0. (1.6)

As a consequence of incompressibility, the solutions u0 to the above can be constructed from a
stream function ψ0 via the formula u0 = ∇⊥ψ0 with ∇⊥ = (−∂2, ∂1). Since u0 = ∇⊥ψ0, if the
velocity is tangent to the boundary then ψ0 must be constant along ∂D0. We consider here steady
solutions with additional structure, namely that the vorticity ω0 is a Lipschitz function of the stream
function ψ0 through ω0 = F0(ψ0). As it turns out (see Lemma 2.1 below), all sufficiently regular
flows in annular domains and without stagnation points have vorticity satisfying this property for
some F0. Together with ω0 = ∇⊥ · u0 this means ψ0 satisfies

∆ψ0 = F0(ψ0), in D0, (1.7)

ψ0 = (const.), on ∂D0. (1.8)

On the other hand, clearly any solution of the above for a Lipschitz F0 is the stream function of a
steady solution to 2d Euler which is tangent to the boundary.
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When the domain D0 is a channel

D0 = {(y1, y2) | y1 ∈ T, y2 ∈ [0, 1]}, (1.9)

∂Dtop
0 = {y2 = 1}, ∂Dbot

0 = {y2 = 0},

solutions of the Euler equations exhibit a certain remarkable rigidity, Theorem 1.1 of [18]1:

Theorem 1.1 (Rigidity of non-stagnant Euler flows). Let D0 be a periodic channel given by
(1.9) and suppose that u0 : D0 → R2 be a C2(D0) solution of (1.4)–(1.6) with the property that
infD0 u0 > 0. Then u0 is a shear flow, namely u0(y1, y2) = (v(y2), 0) for some scalar function v(y2).

Theorem 1.1 is an example of a Liouville theorem for solutions of the incompressible Euler
equations. It shows that any smooth steady solution of the Euler equations in the channel which
never vanishes must be a shear flow, isolating such configurations from non-shear steady states.
It should be emphasized that there are many examples of non-trivial flows with stagnation points
which are non-shear (e.g. cellular flows). In fact, Lin and Zeng [23] shows that there exist Cat’s–
eye vortices arbitrarily close to Couette flow u0(y) = (y, 0) in the Hs, s < 3/2 topology. Similar
results to Theorem 1.1 hold when the domain is the annulus or the disk (under some additional
conditions on the solution) [19]. We remark that the very interesting recent work of Coti Zelati,
Elgindi, and Widmayer [7] shows that the assumption of non-degeneracy is not always necessary
for such a Liouville theorem by establishing a similar rigidity of 2d Euler solutions near Poiseuille
flow u0(y) = (y2 − c, 0) for c ≥ 0 which stagnates at y = ±

√
c.

In light of the rigidity result of [18], we show in Theorem 1.2 that we can perturb away from
any non-vanishing solution of the two-dimensional Euler equations in the channel u0 to domains

D = {(x1, x2) | x1 ∈ T, b0(x1) ≤ x2 ≤ 1 + b1(x1)}, (1.10)

∂Dtop = {x2 = 1 + b1(x1)}, ∂Dbot = {x2 = b0(x1)},

for suitably small b0, b1 (see Figure 1) and obtain a steady solution u in D:

u · ∇u = −∇p, in D,

∇ · u = 0, in D,

u · n̂ = 0, on ∂D.

Figure 1. Deformation of periodic channel D0 by γ.

1We remark that Theorem 1.1, in effect, combines the results of [18] and [19]. In the former, they establish
the Theorem on an infinite strip for velocities with non-trivial inflow/outflow and in the latter they show solutions
in annular domains must be radial (i.e. solutions in periodic channels must be shears). See also the interesting
complementary work [13] which establishes that solutions with single-signed vorticity (possibly possessing stagnation
points) on R2 must be radial.
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Theorem 1.2 (Flexibility of non-stagnant Euler flows). Let D0 be defined by (1.9) and D be
defined by (1.10). Suppose ψ0 : D0 → R with U0 := infD0 |∇ψ0| > 0 and ψ0 ∈ Ck,α(D0) for some
α > 0, k ≥ 3 such that u0 = ∇⊥ψ0 satisfies (1.5)–(1.6). Then there is an F0 ∈ Ck−2,α(R) such that
ψ0 satisfies (1.7)–(1.8) and constants ε1, ε2 depending only on U0, D0, F0 and ‖ψ0‖Ck,α such that if
b0, b1 : R→ R and ρ : D0 → R with

∫
D0
ρ = Vol(D) satisfy

‖b0‖Ck,α(R) + ‖b1‖Ck,α(R) ≤ ε1,

‖1− ρ‖Ck,α(D0) ≤ ε2,

there is a diffeomorphism γ : D0 → D with Jacobian det(∇γ) = ρ, and a function F : R→ R close
in Ck−2,α to F0 in so that ψ = ψ0 ◦ γ−1 ∈ Ck,α(D) and ψ satisfies ∆ψ = F (ψ). Thus, u = ∇⊥ψ is
an Euler solution in D nearby u0.

This theorem is a generalization of Theorem 1 of Wirosoetisno and Vanneste [29] to include
non-volume preserving maps γ and follows from a much more general theorem which we prove,
Theorem 3.1. The freedom of choosing the Jacobian of the map gives an additional mechanism to
reach nearby other steady states. When b0 and b1 are zero, the perturbed domain is again a channel
and the solution must be a shear flow, which is a consequence of the Theorem of [18] discussed
above. Nevertheless, due to the fact that the Jacobian is an arbitrary function near unity, our
procedure picks out different solutions, allowing us to “slide” along the space of shear flows in the
channel. Note also that radial solutions on the annulus or the disk can also be deformed. In the
case of a simply connected domain such as the disk, the base state must have a stagnation point
and Theorem 1.2 applies provided that ψ0 satisfies the non-degeneracy Hypothesis (H2) below.
We finally we make some remarks about the case where Hypothesis (H2) is violated. In this case,
if one has that the linearized operator ∆ − F ′0(ψ0) has a trivial kernel, then a standard implicit
function theorem argument produces ‘nearby’ stationary states for ‘nearby’ vorticity profiles F .
This condition is implied by Arnol’d stability (see discussion below) and it hold holds also, for
example, for Couette flow whose vorticity is constant so that F ′0 = 0. On the other hand, this
argument does not give much information on the structure of the solution, whereas Theorem 1.2
and the other below allow one to understand and control the geometry of the streamlines to a
certain extent.

A different class of flows which display a remarkably general form of rigidity and flexibility on
any domains with a symmetry are so-called Arnol’d stable steady states. Recall that a stationary
state on a domain Ω ⊂ R2 is called Arnol’d stable if the vorticity of an Euler solution ω = F (ψ)
satisfies either of the following two conditions

−λ1 < F ′(ψ) < 0, or 0 < F ′(ψ) <∞ (1.11)

where λ1 := λ1(Ω) > 0 is the smallest eigenvalue of −∆ in Ω. See [2] or Theorem 4.3 of [3]. The
above two ranges are referred to type I and type II Arnol’d stability conditions. These conditions
ensure that the steady state is either a minimum or a maximum of the energy (the action) for a
fixed vorticity distribution and guarantee that such states are orbitally stable in the topology of
L2(Ω) of the vorticity.

To emphasize the generality of what follows, let (M, g) be a two-dimensional Riemannian man-
ifold with smooth boundary ∂M and let ξ be a Killing field for g. Suppose that ξ is tangent to
∂M . Consider a solution ψ of

∆gψ = F (ψ), in M, (1.12)

ψ = (const.), on ∂M, (1.13)

where ∆g is the Laplace-Beltrami operator on M . The velocity constructed from ψ by

ui = −
√

det ggijεjkg
kl ∂ψ

∂xl
=: ∇⊥g ψ
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is automatically a solution of the Euler equation on M with vorticity ω =
εij√
det g

∂
∂xi

(gjku
k) = F (ψ).

In the language of differential forms u = (∗gdψ)] where ∗g and ] denote the Hodge star and musical
isomorphism associated to the metric g and d denotes the differential. Since ξ is Killing for g,
the commutator of the Lie derivative Lξ with the Laplace-Beltrami operator vanishes [Lξ,∆g] = 0
(applied to tensors of any rank). Moreover, since ξ is tangent to ∂Ω, on which ψ takes constant
values, we have that Lξψ = 0 on ∂Ω. Thus, differentiating (1.12)–(1.13) we obtain the equation(

∆g − F ′(ψ)
)
Lξψ = 0, in M,

Lξψ = 0, on ∂M.

Clearly if the operator ∆g − F ′(ψ) has a trivial kernel in H1
0 , then Lξψ = 0. A sufficient condition

to ensure this is that F ′(ψ) > −λ1 where λ1 is the first eigenvalue of −∆g on M . Both type I and
type II Arnol’d stability conditions ensure this. Thus, we obtain

Proposition 1.1 (Rigidity of Arnol’d stable states). Let (M, g) be a compact two-dimensional
Riemannian manifold with smooth boundary ∂M and let ξ be a Killing field for g. Suppose that ξ
is tangent to ∂M . Let u : M → R2 be a u = ∇⊥g ψ ∈ C2(M) Arnol’d stable state. Then Lξψ = 0.

In some simple cases, Proposition 1.1 implies

• on the periodic channel with ξ = ey1 and ζ = ey2 , all Arnol’d stable stationary solutions
are shears u = v(y2)ey1 .
• on the disk (or annulus), with ξ = eθ and ζ = er, all Arnol’d stable stationary solutions

are radial u = v(r)eθ.
• on a spherical cap2 with ξ = eλ and ζ = eφ, all Arnol’d stable stationary solutions are

zonal (functions of latitude) u = v(φ)eλ.
• on manifolds without boundary possessing two transverse Killing fields (e.g. the two-torus

or the sphere), there can be no Arnol’d stable steady states (see [30]).

We remark that in fact the statement for the periodic channel or annulus hold whether or not the
state is Arnol’d stable, see [18],[19], provided that the flow has no stagnation points.

Thus, Proposition 1.1 reveals a strong form of rigidity of Arnol’d stable steady states. However,
we also show that are also flexible in the sense that nearby stable steady states exist on wrinkled
domains (slight changes of the background metric) with wiggled boundaries.

Specifically, consider a steady solution on M0 ⊂ R2 satisfying the following hypotheses:

(H1) The vorticity ω0 = F0(ψ0) satisfies F ′0(ψ0) > −λ1(M0).

(H2) There is a constant cψ0 > 0 such that for all c ∈ im(ψ0) we have∮
{ψ0=c}

d`

|∇ψ0|
≤ 1

cψ0

. (1.14)

Hypothesis (H1) is ensured for type I and II Arnol’d states by (1.11). Hypothesis (H2) ensures
that the period of rotation of fluid parcels along streamlines (left-hand-side of (1.14)) is bounded
and is automatically satisfied for any base flow without stagnation points on annular domains and
it holds on simply connected domains if there is non-vanishing vorticity F0 6= 0 at the critical point.
We call flows satisfying (H2) non-degenerate. With these, our result is:

Theorem 1.3 (Structural stability of Arnol’d stable states). Let α ∈ (0, 1) and k ≥ 3. Let
(M0, g0) be a compact two-dimensional Riemannian submanifold of R2 with Ck,α boundary. Suppose
ψ0 ∈ Ck,α(M0) is a non-degenerate, Arnol’d stable steady state on (M0, g0) with vorticity profile
F0 ∈ Ck−2,α(R). Then there are constants ε1, ε2, ε3 depending only on M0, F0, g0 and ‖ψ0‖Ck,α such

2On the cap of a sphere of radius R, we use spherical coordinates x = (R, λ, φ), where λ ∈ [−π, π] is longitude
and φ ∈ [−π/2, π/2] is latitude, with the poles at φ = ±π/2.
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that if (M, g) is a compact Riemannian manifold and ρ : M0 → R with
∫
D0
ρ dvolg0 = Volg(D) and

g : M0 → R2 satisfy

‖∂M − ∂M0‖Ck,α ≤ ε1,

‖ρ− 1‖Ck,α(M0) ≤ ε2,

‖g − g0‖Ck,α(M0) ≤ ε3,

there is a diffeomorphism γ : M0 →M with Jacobian det(∇γ) = ρ, and a function F : R→ R close
in Ck−2,α to F0 so that ψ = ψ0 ◦ γ−1 ∈ Ck,α(M) and ψ satisfies (1.12)–(1.13) on (M, g). Thus,
u = ∇⊥g ψ is a non-degenerate, Arnol’d stable steady Euler solution on (M, g) nearby u0 whose
vorticity ω = F (ψ).

We remark that hypothesis necessary to run Theorem 1.3, Hypothesis (H1), is weaker than
Arnol’d stability since it allows the deformation of states of constant vorticity F ′(ψ0) = 0. Theorem
1.3 shows that such steady states are non-isolated from other stable stationary states, even fixing
the domain and metric, since the Jacobian ρ can be freely chosen. A very interesting open issue is
whether any time-independent solution of the two-dimensional Euler equation can be isolated from
other steady solutions. Note that that the deformation scheme can be repeated to deformation
between two “far apart” domains provided along the path of steady states Hypothesis (H1) and
(H2) remain true. Finally, as discussed above, if one is not interested in controlling aspects of the
streamline geometry of the new steady states, then an implicit function argument can be used to
dispense with the non-degeneracy hypothesis (H2) and allow the construction of solutions with
nearby vorticity profiles F . See, for example, the work of Choffrut and Sverák [8].

Two-dimensional Boussinesq equations

Given a domain D0 ⊂ R2 with smooth boundary, steady states of the Boussinesq system satisfy

u0 · ∇u0 = −∇p0 + θ0e2, in D0, (1.15)

u0 · ∇θ0 = 0, in D0,

∇ · u0 = 0, in D0,

u0 · n̂ = 0, on ∂D0. (1.16)

Introducing the vorticity ω0 = ∇⊥ · u0, equation (1.15) can be written as

ω0u
⊥
0 = ∇P0 + θ0e2, (1.17)

−P0 := p0 +
1

2
|u0|2.

Letting u0 = ∇⊥ψ0, ω0 = ∆ψ0 and u⊥0 = −∇ψ0 equation (1.17) reads

−∆ψ0∇ψ0 = ∇P0 + θ0e2.

The Grad-Shafranov-like equation (analogous to equations (1.7)- (1.8) of 2d Euler) is obtained by
assuming that θ0, P0 can be constructed from the stream function, in the sense that

θ0(y1, y2) = Θ0(ψ0(y1, y2)), (1.18)

P0(y1, y2) = −y2Θ0(ψ0(y1, y2))−G0(ψ0(y1, y2)), (1.19)

for smooth functions G0,Θ0. This again turns out to be completely general provided that u0 never
vanishes, see Lemma 2.1. In this case, provided that G0,Θ0 are sufficiently smooth the stream
function must satisfy

∆ψ0 − y2Θ′0(ψ0)−G′0(ψ0) = 0, in D0, (1.20)

ψ0 = (const.), on ∂D0. (1.21)
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Given a solution ψ0 to (1.20)–(1.21), the function u0 = ∇⊥ψ0 solves (1.15)- (1.16) with temperature
θ0 determined by (1.18) and pressure P0 determined by (1.19).

As for 2d Euler, if D0 is a periodic channel the Boussinesq equations have a certain rigidity.
Specifically, all smooth steady states with nowhere vanishing velocity must be shear flows and
the temperature and pressures must satisfy the equations of state (1.18),(1.19) for some Lipschitz
functions Θ0 and G0:

Theorem 1.4 (Rigidity of non-stagnant Boussinesq flows). Let D0 be a periodic channel given
by (1.9) and suppose that u0 : D0 → R2 and θ0 : D0 → R be a C2(D0) solution of (1.15)–(1.16)
with infD0 u0 > 0. Then there exists Lipschitz functions Θ0, G0 : R → R such that (1.18),(1.19)
hold and if furthermore

Θ′0(ψ0) ≤ 0,

then u0 is a shear flow, namely u0(x, y) = (v(y), 0) for some scalar function v(y).

We next establish the flexibility of Boussinesq solutions by proving the existence of steady
solutions on the channel to solutions on nearby domains. Fix D0 to be a channel defined by (1.9)
and fix functions ψ0,Θ0, G0 satisfying (1.20)–(1.21) on D0. Given a function Θ, we then deform ψ0

to obtain a steady solution ψ to (1.20) defined on D given by (1.10) (for suitably small b0, b1) with
temperature profile Θ and some vorticity profile G. As a result, u = ∇⊥ψ and θ = Θ(ψ) satisfy
the steady Boussinesq equations on D:

u · ∇u = −∇p+ θe2, in D,

u · ∇θ = 0, in D,

∇ · u = 0, in D,

u · n̂ = 0, on ∂D.

Specifically, we prove

Theorem 1.5 (Flexibility of non-stagnant Boussinesq flows). Let D0 be defined by (1.9) and
D be defined by (1.10). Suppose ψ0 : [0, 1] → R is a shear with ψ0 ∈ Ck,α(D0) for some α >
0, k ≥ 3 satisfying (1.20)–(1.21) for a given G0,Θ0 ∈ Ck−1,α(R) having no stagnation points U0 :=
infD0 |∇ψ0| > 0. Then there are constants ε1, ε2, ε3 depending only on U0, D0,Θ0, G0 and ‖ψ0‖Ck,α
such that if b0, b1 : R→ R, Θ : R→ R and ρ : D0 → R with

∫
D0
ρ = Vol(D) satisfy

‖b0‖Ck,α(R) + ‖b1‖Ck,α(R) ≤ ε1,

‖1− ρ‖Ck,α(D0) ≤ ε2,

‖Θ′0 −Θ′‖Ck−2,α(R) ≤ ε3,

there is a diffeomorphism γ : D0 → D with Jacobian det(∇γ) = ρ, and a function G : R→ R close
to G0 so that ψ = ψ0 ◦ γ−1 ∈ Ck,α(D) and ψ satisfies

∆ψ − x2Θ′(ψ)−G′(ψ) = 0 in D.

Thus, u = ∇⊥ψ and θ = Θ(ψ) defines a Boussinesq solution in D nearby u0 = ∇⊥ψ0, θ0 = Θ0(ψ0).

Note that, in light of Theorem 1.4, if the base state ψ0 has no stagnation points and Θ′0 ≤ 0,
all smooth steady states are shears and so the assumption that ψ0 is a shear is automatic.

Three-dimensional axisymmetric Euler

Let T0 ⊂ R3 be a domain with smooth boundary. The three-dimensional steady Euler equations
(or, equivalently, the three-dimensional steady Magnetohydrostatic equations) read

ω0 × u0 = ∇P0, in T0, (1.22)

∇ · u0 = 0, in T0,

u0 · n̂ = 0, on ∂T0, (1.23)
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where ω0 = ∇× u0 denotes the vorticity and P0 denotes the pressure.
The issue of existence of solutions to (1.22)-(1.23) is of fundamental importance to the problem

of magnetic confinement fusion. In particular, one strategy to achieve fusion is to drive a plasma
contained in an axisymmetric toroidal domain (tokamak) towards an equilibrium configuration
which is (ideally) stable and enjoys certain properties that make it suitable for confining particles
which, to first approximation, travel along its magnetic field lines well inside the domain. Once
such a suitable steady state is identified, the control of the plasma to remain near this state is a
very important and challenging engineering problem. However, as Grad remarked in [15], “Almost
all stability analyses are predicated on the existence of an equilibrium state that is then subject to
perturbation. But a more primitive reason than instability for lack of confinement is the absence
of an appropriate equilibrium state.” Grad goes on to write that there are exactly four known
symmetries for which smooth toroidal plasma equilibria with nested magnetic surfaces can exist.
These are: two-dimensional, axial, helical and reflection symmetries. He asserts in [16] that “no
additional exceptions have arisen since 1967, when it was conjectured that toroidal existence...of
smooth solutions with simple nested surfaces admits only these . . . exceptions. . . . The proper
formulation of the nonexistence statement is that, other than stated symmetric exceptions, there
are no families of solutions depending smoothly on a parameter.” We formalize this statement as
a rigidity property of solutions of three-dimensional Euler (Magnetohydrostatics):

Conjecture 1 (H. Grad, [15, 16]). Any non-isolated and non-vanishing (away from the “mag-
netic axis”) smooth unforced MHS equilibrium on a (topologically toroidal or cylindrical) domain
T ⊂ R3 that has a pressure possessing nested level sets which foliate T has either plane-reflection,
axial or helical symmetry.

By an isolated stationary state, we mean that, in some suitably topology, there are no nearby
steady states aside from those which correspond to a trivial rescaling or translation of the original.
It is possible that no such object exists. The qualifier is included to make precise Grad’s assertion
that the conjecture apply to solutions which appear in continuous“families”.

Complementary to Grad’s conjecture, here we prove that solutions with symmetry can also be
severely restricted to conform to a stronger form of symmetry. Specifically, we consider periodic-in-z
solutions in the (hollowed out) axisymmetric cylinder (see right half of Figure 2)

T0 = D0 × T, D0 = {(r, z) ∈ [1/2, 1]× T}, (1.24)

which are axisymmetric in the sense that u0 = u0(r, z). We remark that solutions with this
symmetry on this domain are not suitable for the confinement of a plasma in a tokamak and
instead describe steady flow in a pipe. To find solutions with this symmetry, we make the ansatz

u0 =
1

r
eθ ×∇ψ0 +

1

r
C0(ψ0)eθ (1.25)

for a function C0 : R → R and ψ0 = ψ0(r, z) is to be determined. In fact, by the results in
[5], any sufficiently smooth solution to (1.22)-(1.23) possessing symmetry in the θ direction and
curl(u0 × eθ) = 0 and possessing a nowhere vanishing pressure gradient is necessarily of the form
(1.25). If we seek a solution with pressure of the form P0 = Π0(ψ0) for some profile function
Π0 : R→ R, then (1.25) satisfies (1.22)-(1.23) provided ψ0 satisfies

∂2

∂r2
ψ0 +

∂2

∂z2
ψ0 −

1

r

∂

∂r
ψ0 = −r2Π′0(ψ0) + C0C

′
0(ψ0), in D0, (1.26)

ψ0 = (const.), on ∂D0. (1.27)

The equation (1.26) is known in plasma physics as the Grad–Shafranov equation [14, 25].3

Here we prove that all solutions whose pressure has a certain property must be radial.

3In fact, (1.26) has been derived long before by Hicks in 1898 [20]. Consequently, in the fluid dynamics com-
munity, the same equation is known as the Hicks equation and also as the Bragg–Hawthorne equation [4] and the
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Figure 2. Axisymmetric deformation of the cylinder (corrugated pipe).

Theorem 1.6 (Rigidity of axisymmetric pipe flows). Let D0 be given by (1.24). Suppose Π0, C0 :
R → R are Lipchitz functions and that ψ0 : D0 → R is C2(D0) solution of the Grad–Shafranov
equation (1.26)–(1.27) with infD0 |∂rψ0| > 0. If furthermore Π0 satisfies

Π′0(ψ0) ≥ 0, (1.28)

then ψ0 is radial, i.e. ψ0(r, z) = ψ0(r).

Physically, Theorem 1.6 says that in order to support some non-trivial structure in pipe flow,
the pressure cannot satisfy (1.28). It is conceivable that this has some bearing for identifying good
flow configurations from the point of view of drag reduction.

Liouville theorems constraining axisymmetric solutions of three-dimensional fluid equations
have appeared previously in the work of Shvydkoy for Euler on R3 (§5 of [26]) and by Koch-
Nadirashvili-Seregin-Sverák [21] for ancient solutions of Navier-Stokes on R3. Establishing similar
rigidity results for the full three-dimensional problem outside of symmetry – which is necessary to
address Grad’s conjecture – seems to be out of reach of existing techniques.

We prove also the complementary flexibility result for periodic-in-z solutions. Specifically, we
construct solutions of

∂2

∂r2
ψ +

∂2

∂z2
ψ − 1

r

∂

∂r
ψ = −r2Π′(ψ) + CC ′(ψ), in D (1.29)

ψ = (const.), on ∂D.

where the domain occupied by the fluid is given by

T = D × T, D = {(r, z) ∈ [b0(z), b1(z)]× T}. (1.30)

See the left half of Figure 2 for a depiction of a possible domain.

Theorem 1.7 (Flexibility of axisymmetric pipe flows). Let D0 be given by (1.24) and D defined
by (1.30). Fix k ≥ 3, α ∈ (0, 1). Suppose ψ0 ∈ Ck,α(D0) is a solution to the axisymmetric Grad-
Shafranov equation (1.26)-(1.27) for some Π0, C0 ∈ Ck−1,α(R), having no stagnation points in the
sense that U0 := inf |∇ψ0| > 0 in D0. Suppose that additionally Π0, C0 and ψ0 satisfy

Π′0(ψ0) > 1
r2

(C0C
′
0)′(ψ0).

Squire–Long equation [24, 27] due to independent re-derivations. One can derive versions of (1.26) for other sym-
metries as well; see [5] for a generalization of (1.26) in this direction.
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Then there are constants ε1, ε2, ε3 depending only on U0 and ‖ψ0‖Ck,α(D0), ‖Π0‖Ck−1,α , and ‖C0‖Ck−1,α

such that if b0, b1 : R→ R, Π : R→ R and ρ : D0 → R with
∫
D0
ρ = Vol(D) satisfy

‖b0‖Ck,α(R) + ‖b1‖Ck,α(R) ≤ ε1,

‖1− ρ‖Ck,α(D0) ≤ ε2,

‖Π′0 −Π′‖Ck−2,α(R) ≤ ε3,

there is a diffeomorphism γ : D0 → D and a function C ∈ Ck−1,α(R) so that ψ = ψ0 ◦ γ−1 satisfies
(1.29) in D with pressure Π and swirl C. In particular,

u =
1

r
eθ ×∇ψ +

1

r
C(ψ)eθ

satisfies the Euler equation (1.22)–(1.23) with pressure P = Π(ψ) in the domain T = D × T.

We remark, for the deforming scheme, that it is not necessary to cut out the inner part of the
cylinder. Theorem 1.7 applies provided that (H2) on non-degeneracy is satisfied by ψ0.

2. Rigidity: Liouville Theorems

To establish the claimed Liouville theorems, we first show that functions which satisfy steady
transport by a velocity u0 = ∇⊥ψ0 with no stagnation points can be constructed from the stream-
function ψ0 via a ‘nice’ equation of state. This is the content of Lemma 2.1 below.

Lemma 2.1. Fix k ≥ 3 and let D0 be diffeomorphic to the annulus and ψ0 : D0 → R satisfy

• ψ0 ∈ Ck(D0),
• ψ0|∂Dbot

0
= c0 and ψ0|∂Dtop

0
= c1 for constants c0 6= c1.

• |∇ψ0| 6= 0 in D0.

Suppose that θ ∈ Ck−2(D0) satisfies

∇⊥ψ0 · ∇θ = 0, in D0.

Then, there exists a (k − 2)–times continuously differentiable function Θ : R→ R such that

θ(x, y) = Θ(ψ0(x, y)), in D0.

Proof of Lemma 2.1. Our Lemma 2.1 essentially appears as Lemma 2.4 of [19] in the case
when D0 is the channel. We summarize the argument here for the sake of completeness. Given
p ∈ D0 and let ξp = ξp(t) denote the integral curve of ∇⊥ψ starting at p at “time” t = 0, namely

d

dt
ξp(t) = ∇⊥ψ0(ξp(t)), ξp(0) = p, t ∈ R.

By Lemma 2.2 of [19], ξp(t) is uniquely defined for all t ∈ R and is periodic in t and moreover the
curve ξp(R) passes through each x ∈ [0, 2π). Identifying the periodic channel with the annulus,
this means that the curve ξp(R) surrounds the inner disc. Given q ∈ D0 we also let σq denote the
integral curve of ∇ψ,

d

dt
σq(t) = ∇ψ0(σq(t)), σq(0) = q, t ∈ R.

We now fix any point q = (q1, 0) at the bottom of the channel {y = 0}. As a consequence of the
fact that the vector field ∇ψ0 points normal to the boundary, it is shown in [19] that there is a
tq < ∞ so that σq(t) lies at the top of the channel, σq(tq) = (q2, 1). Writing g(t) = ψ(σq(t)), we

have g′(t) = |∇ψ0(σq(t))|2 > 0 so it follows that g is invertible with Ck−2 inverse. We define Θ by

Θ(τ) = θ(σq(g
−1(τ))).
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Then Θ is Ck−2 and Θ(ψ0(σq(s))) = θ(σq(s)) for any s. Finally, fix now any point p ∈ D0. For

large enough t, there is an s so that ξp(t) = σq(s). Since ∇⊥ψ0 · ∇θ = 0, we have θ(p) = θ(ξp(t)) =
θ(σq(s)). This completes the proof since then we have

θ(p) = θ(σq(s)) = Θ(ψ0(σq(s))) = Θ(ψ0(p)).

�

We will need the following result which ensures that the stream function takes different values
at the top and bottom, and ranges between these values in the interior:

Lemma 2.2 (Lemma 2.6 of [18], Lemma 2.1 of [19]). Let D0 be diffeomorphic to the annulus
and let ψ0 ∈ C3(D0) with |∇ψ0| 6= 0 on D0 satisfy

ψ0|∂Dbot
0

= c0, ψ0|∂Dtop
0

= c1,

for some c0, c1 ∈ R. Then c0 6= c1 and

min{c0, c1} < ψ0 < max{c0, c1}, on D0 \ ∂D0.

The proof of this result can be found in the cited references. There, 2.2 is established when D0

is periodic channel (1.9), but an inspection of the proof shows that the result holds more generally.
Finally, we prove the corresponding Liouville theorem which modestly generalizes Theorem

1.6 of [18] to accommodate the additional terms arising in the settings of the Boussinesq and
axisymmetric Euler equations.

Theorem 2.1 (Liouville Theorem). Let D0 = T×[1/2, 1] and let f = f(y), g = g(y, ψ), h = h(ψ)
be Lipschitz functions. Let ψ ∈ C2(D0) be a solution to

∆ψ + f(y)∂yψ + g(y, ψ) + h(ψ) = 0, in D0,

where ψ is periodic in x ∈ T with boundary conditions

ψ(x, 1/2) = 0, ψ(x, 1) = c > 0.

Suppose that one of the following conditions holds

• gy, fy ≥ 0, and 0 < ψ < c in D0,
• gy, fy ≥ 0, and ψy ≥ 0 on D0.

Then ψ is independent of x, namely ψ := ψ(y).

Proof of Theorem 2.1. The proof is nearly identical to the one in [18] with minor extension
to accommodate f and g. For the sake of completeness we include a proof here. Fix ξ ∈ R2 with
ξ = (ξ1, ξ2) with ξ2 > 0. For τ ∈ (0, 1/ξ2), set

D0
τ = T× (1/2, 1− τξ2),

and

wτ (x) = ψ(x+ τξ)− ψ(x), x ∈ D0
τ
. (2.1)

Then the main ingredient for the proof of Theorem 2.1 is the following lemma

Lemma 2.3. For wτ defined by (2.1) we have

wτ > 0 in D0
τ
, for all τ ∈ (1/2, 1/ξ2).

We first prove Theorem 2.1 assuming the result of this lemma. Note that ψ ≥ 0 on D0, since
ψy ≥ 0 on D0 by assumption and the boundary values are ψ|y=1/2 = 0 and ψ|y=1 = c > 0. Taking
ξ2 → 0 in the inequality wτ > 0 shows that

ψ(x+ τξ1, y) ≥ ψ(x, y). (2.2)
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This holds for any ξ1 ∈ R and we claim that this implies that we actually have equality in (2.2).
Indeed, suppose that there are x, τ, ξ1, y so that ψ(x+ τξ1, y) > ψ(x, y). Applying (2.2) we have

ψ(x, y) = ψ(x− τξ1 + τξ1, y) ≥ ψ(x+ τξ1, y) > ψ(x, y),

a contradiction. This completes the proof. �

Proof of Lemma 2.3. Set

τ∗ = inf{τ ∈ (1/2, 1/ξ2) such that wτ
′
> 0 in D0τ ′ whenever τ ′ ∈ (τ, 1/ξ2)}.

By the maximum principle for narrow domains [11] we have τ∗ < 1/ξ2. We are going to prove

that τ∗ = 1/2. Suppose that instead τ∗ > 1/2. Then wτ
∗ ≥ 0 in D0

τ∗
and there are sequences

τk ∈ (1/2, τ∗] and (xk, yk) ∈ D0 so that

(xk, yk) ∈ D0
τk , and wτk(xk, yk) ≤ 0.

Define
ψk(x, y) = ψ(x+ xk, y), for (x, y) ∈ D0.

The functions ψk are uniformly bounded in C2,α(D0
τ∗), and so we can extract a convergent subse-

quence with ψk → Ψ ∈ C2(D0
τ∗). Taking k →∞ we see that 0 ≤ Ψ ≤ c. We now show that these

inequalities are strict. Taking k →∞ in the equation for ψ and differentiating in y we see that

∆Ψy + f(y)∂yΨy +
(
fy(y) + gΨ(y,Ψ) + hΨ(Ψ)

)
Ψy = −gy(y,Ψ) ≤ 0,

by assumption. Since we also have Ψy ≥ 0 on the boundary, it follows from the maximum principle
for non-negative functions that Ψy > 0 in the interior as well, and so

0 < Ψ < c. (2.3)

Next, the points yk are bounded and so we can extract a convergent subsequence yk → ỹ. We have

Ψ(τ∗ξ2, ỹ + τ∗ξ2) = Ψ(0, ỹ), (2.4)

because wτ∗ ≥ 0 in D0
τ∗ and wτk(xk, yk) ≤ 0. If (0, ỹ) ∈ ∂D0

τ∗ then either ỹ = 0 or ỹ = 1 − τ∗ξ2.
But by (2.4) and (2.3) neither of these are possible. The only possibility left is (0, ỹ) ∈ D0

τ∗ . Set

W (x) = Ψ(x+ τ∗ξ)−Ψ(x),

then writing Ψτ∗(x) = Ψ(x + τ∗ξ) we see that in Dτ∗
0 , since f, g are Lipschitz in ψ there is an L∞

function c = c(x, y) so that

∆W + f(y)∂yW + c(x, y)W =
(
f(y)− f(y + τ∗ξ2)

)
∂yΨτ∗ + g(y,Ψτ∗)− g(y + ξ2τ∗,Ψτ∗) ≤ 0

because ξ2 ≥ 0 and that ∂yΨ ≥ 0 (which is only needed f is nonzero) and that f, g are increasing
in y. Also we have W ≥ 0 in D0, W ≥ 0 on ∂D0. By the maximum principle for non-negative
functions this implies that W ≡ 0 and in particular W = 0 on ∂D0. As we have shown that this is
impossible, we conclude τ∗ = 1

2 . �

2.1. Proof of Theorem 1.1. We assume ψ0 ∈ C3(D0). Note that, since the vorticity satisfies

u0 · ∇ω0 = 0

and |u0| 6= 0 and ω0 ∈ C1(D0), Lemma 2.1 implies that there exists a C1(R) function F0 such that
ω0 = F0(ψ0). Consequently, the stream function ψ0 satisfies the elliptic equation

∆ψ0 = F0(ψ0) in D0,

ψ|∂Dtop
0

= c1, ψ|∂Dtop
0

= c2,

for some constants c1 and c2 with c1 6= c2 by Lemma 2.2. Without loss of generality, we may take
c1 = 0 and c2 > 0 by shifting ψ0 7→ ψ0 − c1, sending ψ0 7→ −ψ0 if c2 < 0, and replacing F0(ψ0)
with ±F0(±ψ0 + c1). Moreover, by Lemma 2.2 we have

0 < ψ0 < c2 in D0.
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Applying Theorem 2.1 with b = 0, f = 0 and g = −F0 gives the result.

2.2. Proof of Theorem 1.4. We argue as in the proof of Theorem 1.1, but we apply Theorem
2.1 with f = 0, g(y, ψ) = yΘ′0(ψ) and h(ψ) = −G0(ψ).

2.3. Proof of Theorem 1.6. Assuming (1.28), the proof follows as in Theorem 1.1, but now
f = −1

r , g(y, ψ) = r2Π′0(ψ) and h(ψ) = C0C
′
0(ψ).

3. Flexibility: Deforming Domains

We prove here a more general theorem, which covers the specific settings of Theorems 1.2, 1.5
and 1.7. We now outline the general setup. Consider two bounded domains D0, D ⊂ R2 given by
the zero level sets of functions B0, B : R2 → R:

∂D0 = {B0 = 0}, ∂D = {B = 0}. (3.1)

It is convenient to denote points in D0 by y = (y1, y2) and points in D by x = (x1, x2). We
will consider the problem of solving a certain elliptic equation on D by deforming a solution of a
‘nearby’ elliptic equation on D0.

Elliptic equation on D0: Consider a second-order elliptic operator on D0 of the form

L0 =
2∑

i,j=1

aij0 (y)
∂

∂yi
∂

∂yj
+

2∑
i=1

bi0(y)
∂

∂yi
, (3.2)

where aij0 , b
i
0 are smooth functions defined on R2 and where the matrix aij0 satisfies

aij0 zizj ≥M |z|
2, ∀z ∈ R2 (3.3)

for some M > 0. We assume that we have a solution ψ0 to the following nonlinear equation

L0ψ0 = F0(ψ0) +G0(y, ψ0), in D0, (3.4)

ψ0 = (const.), on ∂D0,

with functions F0 : R→ R and G0 : D0 × R→ R.

Elliptic equation on D: Given coefficients aij , bi defined on R2, we set

L =

2∑
i,j=1

aij(x)
∂

∂xi
∂

∂xj
+

2∑
i=1

bi(x)
∂

∂xi
,

which is assumed to be elliptic as in (3.3). Consider the following equation for ψ

Lψ = F (ψ) +G(x, ψ), in D, (3.5)

ψ = (const.), on ∂D,

with functions F : R→ R and G : D × R→ R.

Problem: Let D and D0 by two nearby domains (in the sense that B and B0 are close) Let F0,
G0 and a solution ψ0 to (3.4) on D0 be given. Let G be a given function close to G0. Find a
diffeomorphism γ : D0 → D and a function F close to F0 so that the function

ψ = ψ0 ◦ γ−1 (3.6)

is a solution to (3.5).

The important observation of [29] is that if we write γ = id + ∇η + ∇⊥φ for functions η, φ,
then plugging (3.6) into (3.5) leads to an Dirichlet problem for ∂sφ := ∇⊥ψ0 · ∇φ. The function η
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is free in the problem but if one wants to fix the value of the Jacobian determinant ρ := det∇γ, η
can be determined by solving a Neumann problem. We formalize this in the following Proposition.

Proposition 3.1 (Elliptic system for diffeomorphism). Fix two domains D0, D ⊆ R2 as in
(3.1) and a solution to (3.4) ψ0 : D0 → R. Let F0, G0 and G be given. Let ρ : D0 → R be a given
continuous function such that

∫
D0
ρ = Vol(D). Suppose that η, φ : D0 → R satisfy

∆η = ρ− 1 + Nη,

(L0 − Λ)∂sφ = (F − F0)(ψ0) + Lφ + Nφ, (3.7)

for some F = F (ψ0), where L0 is as in (3.2), Λ := F ′0(ψ0)+(∂ψG0)(y, ψ0), where ∂sφ = ∇⊥ψ0 ·∇φ,
and where

Lφ = Lφ(δa, δb, δF, ∂δG, ∂a0, ∂b0, ∂
3η, ∂ρ, ∂2∂sφ, ∂ψ0φ; ∂3ψ0)

is defined by (B.7) consists of terms which are linear in φ and η (and their derivatives), multiplied
by small factors, where

Nη = Nη(∂
2η, ∂2φ)

Nφ = Nφ(∂2a0, ∂
2b0, ∂

2φ, ∂2η, ∂ρ, ∂2∂sφ; ∂3ψ0)

are nonlinearities with Nη is defined by (B.1) and Nφ by (B.8), and where δa = a−a0 and similarly

for δb, δF, δG. If γ = id +∇⊥φ +∇η is a diffeomorphism γ : D0 → D with det∇γ = ρ, then the
function ψ = ψ0 ◦ γ−1 is a solution of (3.5) in D.

This Proposition is proved in §B (see Lemma B.2). With this in hand, we address the above
problem by constructing solutions with one (infinite dimensional) degree of freedom fixed by choos-
ing the Jacobian of the map. This requires three hypotheses on ψ0 and the quantities in (3.5).

We need one hypothesis on the invertibility of the operator appearing in Proposition (3.1) so
the ∂sψ can be recovered from eqn. (3.7) at the linear level. We view L0 : H1

0∩H2 → L2 and require:

Hypothesis 1 (H1): Let Λ = F ′0(ψ0) + (∂ψG0)(y, ψ0). The problem

(L0 − Λ)u = 0 in D0,

u = 0 on ∂D0,

admits only the trivial solution in H1
0 (D0).

It is easy to see that Hypothesis (H1) is guaranteed if Λ avoids the discrete spectrum of −L0,
an open condition. In light of this, a stronger but easier to verify hypothesis that implies (H1) is

Hypothesis 1′ (H1′): The operator (L0 − Λ) is positive definite, i.e. for all f ∈ H1
0 (D0) there is a

constant C > 0 such that 〈(L0 − Λ) f, f〉L2(D0) ≥ C‖f‖2H1(D0).

This holds in the case of the 2d Euler equation if the base state is Arnol’d stable or if it is a
shear flow without stagnation points (see Lemma 4.1).

The next two hypotheses are needed in order to recover φ from ∂sφ once the latter is ob-
tained by solving eqn. (3.7) using (H1). Since ∂s = ∇⊥ψ0 · ∇, in order to recover φ, we must
be able to integrate along streamlines of ψ0 which requires a certain non-degeneracy of the base
state. On a multiply connected domain diffeomorphic to the annulus, the base state must have no
stagnation points (points at which ∇ψ0 = 0). On a simply connected domain diffeomorphic to a
disc, there must be exactly one stagnation point. This is quantified by the following hypothesis on
the “travel-time” µ of a parcel moving at speed |∇ψ| to make a complete revolution on a streamline:
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Hypothesis 2 (H2): Let I = im(ψ0). There exists a constant C > 0 so that

µ(c) =

∮
{ψ0=c}

d`

|∇ψ0|
≤ C for all c ∈ I

where ` is the arc-length parameter. Note if ψ0 ∈ Ck,α(D0) then µ ∈ Ck−1,α(I).

Finally, we need an additional hypothesis that allows us to recover φ once we solve eqn. (3.7)
for ∂sφ. Specifically, at the linear level, φ needs to be chosen to satisfy (L0 − Λ)∂sφ = F +N, for
a given function N and for F to be determined. An obvious necessary condition for solvability is
that (L0 − Λ)−1

hbc(F + N) should have integral zero along streamlines. We must therefore be able
to choose F to satisfy this condition while maintaining that F = F (ψ0) is a function only of the
stream function in order for the resulting ψ to solve the correct equation.

Hypothesis 3 (H3): Fix k ≥ 2, α ∈ (0, 1) and let I = im(ψ0). Let Kψ0 : Ck−2,α(I)→ Ck,α(I) be

(Kψ0u)(c) :=
1

µ(c)

∮
{ψ0=c}

(L0 − Λ)−1
hbc[u ◦ ψ0]

d`

|∇ψ0|
, c ∈ I.

For any g ∈ Ck,α(I) such that g(ψ0(∂D0)) = 0, there exists a u ∈ Ck−2,α(I) such that Kψ0u = g.
Moreover, ‖u‖Ck−2,α(I) . ‖g‖Ck,α(I).

It turns out that (H3) is a consequence of (H1′) and (H2). To prepare for the proof, we define
the streamline projector Pψ0 which maps functions on D0 to functions which are constant on level
sets of the streamfunction ψ0,

(Pψ0f)(c) :=
1

µ(c)

∮
{ψ0=c}

f ds, for all c ∈ I

where ds = d`/|∇ψ0|. This operation is well defined on functions which can be integrated on
curves (e.g. functions that are in H1(D0)) by Hypothesis (H2). With this notation we have
Kψ0u := Pψ0(L0 − Λ)−1

hbc[u]. Note that if f, g are such that Pψ0f = 0 and Pψ0g = g then∫
D0

fg =

∫
I

(∮
{ψ0=c}

fgds

)
dc =

∫
I
g

(∮
{ψ0=c}

fds

)
dc = 0. (3.8)

Here we use the fact that ψ0 satisfies (H2) and therefore has streamlines which foliate D0 so we
can use action-angle coordinates to compute the integral (3.8). For further discussion see §E herein
or the textbook [1]. It follows that Pψ0 is orthogonal in L2(D0), i.e. for any h ∈ C(D0) we have

‖h‖2L2 =

∫
D0

(
|Pψ0h|2 + 2(Pψ0h)(Qψ0h) + |Qψ0h|2

)
= ‖Pψ0h‖2L2 + ‖Qψ0h‖2L2

where Qψ0 = 1− Pψ0 . In light of these properties, Pψ0 is a projection on L2.
The motivation for Lemma 3.1 in a Hilbert space H is that if P is a projection (P 2 = P and

P ∗ = P ) and A is bounded positive operator then the compression PAP is positive in PH since

〈PAPx, x〉H = 〈APx, Px〉H ≥ C〈Px, Px〉H .
The fact that A is bounded is used only to make sure that PH is included in the domain of A.

Lemma 3.1. Fix k ≥ 2 and suppose Hypotheses (H1′) and (H2) hold. Then (H3) holds.

The proof is deferred to §A. We remark that, invertibility of L0 − Λ alone (Hypothesis (H1))
cannot be expected to imply Hypothesis (H3) itself as is easily demonstrated in finite dimensions.
Positive definiteness is a crucial point in our argument. We finally note that if we further know that
(L0 − Λ)g(ψ0) is itself a function of ψ0, which is the case when the base solution and the operator
L0 enjoy some mutual symmetry, we can find the solution of Hypothesis (H3) explicitly
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Lemma 3.2. Suppose for any f ∈ Ck,α(I), the function (L0 − Λ)f(ψ0) depends only on the
value of the stream function, (L0 − Λ)f(ψ0) = h(ψ0) for some h ∈ Ck−2,α(I) . Then (H3) holds
with u = (L0 − Λ)g.

Our main theorem on deforming solutions of elliptic equations is a quantitative version of the
implicit function theorem. As stated above, this generalizes the setup and results of Wirosoetisno
and Vanneste [29]. It is also similar in spirit to the result of Choffrut and Sverák [8] which, on
annular domains, establishes a one-to-one correspondence between vorticity distribution functions
and steady states of two-dimensional Euler nearby a solution satisfying a version of (H1) (see
also [9]). In our theorem, F := F (ψ) (which plays the role of the vorticity distribution function
for 2d Euler) is not chosen ahead of time but rather accommodates the deformation of the other
parameters (boundary, coefficients, Jacobian) so as the resulting streamfunction remain a solution.
We prove

Theorem 3.1 (Deforming solutions of elliptic equations). Let α ∈ (0, 1) and k ≥ 2. Fix two
domains D0, D ⊆ R2 with Ck,α boundaries given by (3.1) and a solution ψ0 : D0 → R to (3.4)
on D0 with ψ0 ∈ Ck,α(D0) and F0 ∈ Ck−1,α(R). Suppose in addition that (H1), (H2) and (H3)
are satisfied. Let ρ : D0 → R such that ρ ∈ Ck−1,α(D0) and

∫
D0
ρ = Vol(D). Suppose that for

sufficiently small ε > 0, |Vol(D)−Vol(D0)| . ε as well as

‖B −B0‖Ck,α ≤ ε, ‖ρ− 1‖Ck−1,α ≤ ε
‖a− a0‖Ck,α ≤ ε, ‖b− b0‖Ck,α ≤ ε,

‖G−G0‖Ck−2,α ≤ ε.

Then, for ε sufficiently small, there exists a diffeomorphism γ : D0 → D such that det∇γ = ρ and
a function F : R → R satisfying ‖F − F0‖Ck−2,α . ε such that the function ψ = ψ0 ◦ γ−1 satisfies
the equation (3.5) in D. The diffeomorphism γ is of the form γ = id +∇η +∇⊥φ and η, φ satisfy
the estimates

‖∂sη‖Ck,α + ‖∂sφ‖Ck,α + ‖η‖Ck,α + ‖φ‖Ck,α
≤ Ck,α

(
‖ρ− 1‖Ck−1,α + ‖a− a0‖Ck,α + ‖b− b0‖Ck,α + ‖G−G0‖Ck−2,α + ‖B −B0‖Ck,α

)
(3.9)

for constants Ck,α depending on k, α,D0, the ellipticity constant M and ‖a0‖Ck,α , ‖b0‖Ck,α.

Theorem 3.1 is used in [6] to construct approximate solutions to the Magnetohydrostatic equa-
tions on wobbled tori which are nearly quasisymmetric. As in [28], one may think about these
deformations arising dynamically from a slow adiabatic deformation of the boundary, though we
do not establish this point here. We remark also that (H1) may not be strictly needed for the
Theorem 3.1 provided kernel of L0 − Λ is very well understood. This is demonstrated in a slightly
different context by the recent work [7] for Kolmogorov flow u0 = (sin(y), 0) which is a shear with
stagnation points so that Lemma 4.1 does not apply and the corresponding operator ∆ − F ′0(ψ0)
has a non-trivial kernel (consisting of linear combinations of {sin(y), cos(y), sin(x), cos(x)}). To
deal with this degeneracy, extra degrees of freedom are introduced in the contraction scheme.

We note that we can iterate the above theorem to impose a nonlinear constraint on ρ. Specif-
ically, given a function X = X(y, φ, η,∇φ,∇η,∇∂sφ,∇∂sη) with X|φ,η=0 sufficiently close to one,
we can solve for the diffeomorphism γ so that ρ = X, at the expense of slightly modifying the
domain. Fixing notation, we consider

X : D0 × R× R× R2 × R2 × R2 × R2, X = X(y, q1, q2, p1, p2, p3, p4) (3.10)

and write

X0(y) = X|(q,p)=(0,0) DX0(y) = (∇qX,∇pX)|(q,p)=(0,0) (3.11)

with q = (q1, q2), p = (p1, p2, p3, p4).
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Theorem 3.2 (Deforming with an imposed nonlinear constraint). Let α ∈ (0, 1) and k ≥ 2.
Fix two domains D0, D ⊆ R2 with Ck,α boundaries given by (3.1) and a solution ψ0 : D0 → R to
(3.4) on D0 with ψ0 ∈ Ck,α(D0) and F0 ∈ Ck−2,α(R). Let X be as in (3.10) and satisfy X ∈ Ck,α.

Suppose that for sufficiently small ε, εX > 0, |Vol(D)−Vol(D0)| ≤ ε and that

‖B −B0‖Ck,α ≤ ε, ‖a− a0‖Ck,α ≤ ε,
‖b− b0‖Ck,α ≤ ε, ‖G−G0‖Ck−2,α ≤ ε,

and with notation as in (3.11),

‖X0 − 1‖Ck,α + ‖DX0‖Ck−1,α ≤ εX . (3.12)

Then there exists a σ > 0 and a diffeomorphism γ : D0 → Dσ where Dσ = σD is a dilation-by-σ
of the domain D satisfying

det∇γ =: ρ = X(y, η, φ, ∂sφ, ∂sη,∇∂sη,∇∂sφ), (3.13)

with the dilation factor σ > 0 given by σ2 := VolD

/∫
D0
ρ. Moreover, there is a function F : R→ R

satisfying ‖F − F0‖Ck−2,α . ε such that ψ = ψ0 ◦ γ−1 is a solution to the (3.5) in Dσ.

We do not apply Theorem 3.2 in the present paper. We record it here since it exploits a freedom
in the construction and may be useful to build solutions with additional desirable properties (such
as quasisymmetry in the context of plasma confinement fusion, see [6]).

4. Applications to Fluid Systems

4.1. Proof of Theorem 1.2. In the case of two-dimensional Euler equations on the channel,

we apply Theorem 3.1 with aij0 = aij ≡ δij , bi0 = bi ≡ 0, c0 = c = 0, G = G0 = 0 and F0 = F0, the
vorticity of the base state. As a result of Theorem 1.1, our base state u0 = (v0(y), 0) is a shear where
v0(y) = −ψ′0(y) never vanishes. As a consequence, it satisfies (1.7) with F0(ψ) = ψ′′0(ψ−1

0 (ψ)). We
now show that all the hypotheses are met.

We first claim that in this setting Hypothesis (H1′) is a consequence of the nondegeneracy of
the base shear flow. This follows immediately from the following Lemma (see e.g. [17])

Lemma 4.1. Let Ω the periodic channel and let u0 = (v0(y2), 0) be a shear flow steady Euler
solution and suppose infΩ |v0| > 0. For all u such that u|∂Ω = 0, the following holds∫

Ω
u
(

∆− F ′0(ψ0)
)
u dy1dy2 = −

∫
Ω
|v0(y2)|2

∣∣∣∣∇( u

|v0(y2)|

)∣∣∣∣2 dy1dy2.

Proof. Note that F ′0(ψ0(y2)) = (v′′0/v0)(y2). The result follows from direct computation. �

Hypothesis (H2) follows by our assumption that there are no stagnation points.

4.2. Proof of Theorem 1.3. In the case of two-dimensional Euler equations on (M0, g0)
we apply Theorem 3.1 L0 = ∆g0 and L = ∆g. The coefficients can be computed directly in
terms of the metrics and it is clear that the hypotheses on the closeness of a0 and a (resp b0 and b)
hold when g0 is close to g. Note also that under our hypotheses, Lξψ = 0 according to Theorem 1.1.

Hypothesis (H1′) follows by the assumption of Arnol’d stability.

Hypothesis (H2) follows by our assumption on the base states that they are non-degenerate.

Persistence of stability follows because Arnol’d stability conditions are open and our perturba-
tion is small.
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Remark (Hypothesis (H3) on Domains with Symmetry). We remark that if the domain admits
a symmetry direction tangent to the boundary (so that all Arnol’d stable solutions enjoy the same
symmetry according to Proposition 1.1), we may apply Lemma (3.2) to write explicitly the solution
in Hypothesis (H3). Specifically, we apply the Lemma with L0 = ∆g and Λ = F ′, and appeal to
the following result

Lemma 4.2. Let ∆g be the Laplace–Beltrami operator on (M, g). Suppose ξ is a non-vanishing

Killing field for g which is tangent to ∂M . Assume for ψ ∈ Ck,α(M) satisfies (H2) and that
Lξψ = 0. Then for any function f ∈ Ck,α(R), we have ∆gf(ψ) = G(ψ) for some function

G ∈ Ck−2,α(R).

Proof. First, by assumption the integral curves of ξ foliate M . Since Lξψ = 0, we know that
ψ is constant on integral curves of ξ. Moreover, since (H2) guarantees that |∇gψ| > 0 except
at one point (if the domain is simply connected, and nowhere otherwise), ψ takes different values
on different integral curves of ξ. Since ξ is a Killing field, Lξ∆gf(ψ) = ∆g(f

′(ψ)Lξψ) = 0 and
therefore Lξ∆gf(ψ) is constant on integral curves of ξ and thus a function of ψ. �

Therefore, Lemma 3.2 and 4.2 show that Hypothesis (H3) holds with an explicit u in the
symmetric setting.

4.3. Proof of Theorem 1.5. In the case of two-dimensional Boussinesq equations on the

channel, we have aij0 = aij ≡ δij , bi0 = bi ≡ 0, c0 = c = 0, G0 = yΘ′0(ψ0), G = yΘ′(ψ), and
F0 = G′0. Then L0 = ∆ and Λ = G′0(ψ0) + y2Θ′0(ψ0).

Hypothesis (H1′) is verified for the following reason. Since ψ0 is a shear ψ0 = ψ0(y2). Given
this, we know that ∆ψ0 = ψ′′0(y2) so that G0(c) + y2Θ0(c) = ψ′′0(ψ−1

0 (c)). Thus

Λ = G′0(ψ0) + y2Θ′0(ψ0) =
v′′0(y2)

v0(y2)

where v0 = ψ′0. Thus Lemma 4.1 is applicable and the hypothesis follows.

Hypothesis (H2) follows by our assumption that there are no stagnation points.

The result of the deformation defines a stream function ψ for the Boussinesq equations with
velocity u = ∇⊥ψ and temperature profile θ = Θ(ψ) (note Θ is recovered from Θ′ up to a constant,
which can be absorbed into the pressure).

4.4. Proof of Theorem 1.7. Hypothesis (H1) is verified when

im
(

(C0C
′
0)′(ψ0)− r2P ′0(ψ0)

)
/∈ Spec

(
−∆ +

1

r
∂r

)
.

Since −∆ + 1
r∂r is a positive operator Hypothesis (H1′) is verified when

(C0C
′
0)′(ψ0)− r2P ′0(ψ0) < 0.

Hypothesis (H2) follows by our assumption that there are no stagnation points.

Appendix A. Proof of Lemma 3.1

We aim to solve Kψ0 [u] = g for a g := g(ψ0) with g(∂D0) = 0. To avoid technical difficulties of
defining the trace of a function which is just in L2, we solve this equation assuming g ∈ H1 for an
u ∈ H−1. Define the spaces

S(k) = {f ∈ Hk(D0) | Qψ0f = 0},

S
(k)
0 = {f ∈ Hk(D0) | Qψ0f = 0, f |∂D0 = 0}.
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Note that for k ≥ 1 the operator Pψ0 : (Hk ∩ H1
0 )(D0) → S

(k)
0 is a continuous operator (which

follows from (E.2)) and that therefore S
(k)
0 is a closed subspace of Hk ∩H1

0 . We also remark that
for all f ∈ Sk, we know that ∇⊥ψ0 · ∇f = 0 and therefore by (a minor extension of) Lemma 2.1,
there exists a function F ∈ Hk(I) such that f = F ◦ ψ0.

Recall now that for u ∈ S(k) and with this notation we have Kψ0u := Pψ0(L0−Λ)−1
hbc[u]. For k ≥

1, this operator Kψ0 : S(k−2) → S
(k)
0 is continuous since (L0 −Λ)−1

hbc : Hk−2(D0)→ (Hk ∩H1
0 )(D0)

is continuous by Hypothesis (H1′) together with the fact that Pψ0 is continuous. We remark that

for f ∈ S(−1), we have (L0 − Λ)−1
hbc[f ] ∈ H1. Define now

SK := {Kψ0f | f ∈ S(−1)} ⊆ S(1)
0 .

We aim to show that SK = S
(1)
0 , that is, Kψ0 : S(−1) → S

(1)
0 is onto. Since Kψ0 : S(k−2) → S

(k)
0

is continuous, SK is a closed subspace of S
(1)
0 in the H1(D0) topology4. Thus, S

(1)
0 = SK ⊕ S⊥K

where

S⊥K := {f ∈ S(1)
0 | 〈f, g〉S(1) = 0 for all g ∈ SK}, (A.1)

where the S(1) topology is equivalent to the H1 topology and will be defined shortly. Note that for
any h ∈ S⊥K ⊂ S(1), the function Kψ0h ∈ SK , it follows from (A.1) that 〈h,Kψ0h〉S(1) = 0. Thus,

to conclude that S⊥K = {0}, we show that Kψ0 has a trivial kernel in S
(1)
0 . This is accomplished

by designing a topology on S(1) which is equivalent to the H1 topology and showing that for all
h ∈ S(1), there is a constant c > 0 depending only on ψ0 such that

〈h,Kψ0h〉S(1) ≥ c‖h‖2L2(D0), ∀h ∈ S(1)
0 .

We now design the topology. First, we equip S(0) with the L2(D0) topology:

〈f, g〉S(0) =

∫
D0

fg.

Note that, using orthogonality of the projection (3.8), by Hypothesis (H1′) we have

〈h,Kψ0h〉S(0) := 〈h,Pψ0(L0 − Λ)−1
hbch〉S(0) = 〈h, (L0 − Λ)−1

hbch〉L2 ≥ c0‖h‖2Ḣ−1 ≥ 0 (A.2)

for some c0 > 0 where ‖h‖Ḣ−1 = ‖∇g‖L2 where ∆g = h and g = 0 at the boundary.

Now let ∂ψ0 = ∇ψ0

|∇ψ0|2 ·∇. Recalling for any h ∈ Sk there exists H ∈ Hk(I) such that h = H ◦ψ0,

we note that ∂ψ0h = H ′(ψ0). Now let

〈f, g〉S(1) = 〈∂ψ0f, ∂ψ0g〉S(0) +M〈f, g〉S(0) .

for some large constant M to be specified shortly. This topology is obviously equivalent to that of

H1 on S1. To see this, denoting x̂ = x/|x|, we can write ∇ = ∇̂⊥ψ0∇̂⊥ψ0 · ∇ + ∇̂ψ0∇̂ψ0 · ∇ and
notice that on any f ∈ S1, ∇f = ∇ψ0∂ψ0f . Now note that, since h = 0 and Pψ0(L0 − Λ)−1

hbch = 0
on the boundary, we have

〈h,Pψ0(L0 − Λ)−1
hbch〉S(1) = 〈∂ψ0h, ∂ψ0Pψ0(L0 − Λ)−1

hbch〉S(0) +M〈h,Pψ0(L0 − Λ)−1
hbch〉S(0)

= −〈∂2
ψ0
h,Pψ0(L0 − Λ)−1

hbch〉S(0) +M〈h, (L0 − Λ)−1
hbch〉S(0)

= 〈∂ψ0h, ∂ψ0(L0 − Λ)−1
hbch〉S(0) +M〈h, (L0 − Λ)−1

hbch〉S(0) .

4By the continuity of Kψ0 , it suffices to prove that if Kψ0 [fn]→ g in H1 with fn ∈ H−1, then fn converges in
H−1. By (A.2) we have

c0‖fn − fm‖2H−1 ≤ 〈fn − fm,Kψ0 [fn − fm]〉L2 ≤ C‖fn − fm‖H−1‖Kψ0 [fn − fm]‖H1 ,

which can be justified by an approximation. From this, we conclude that the sequence {fn}n≥0 is Cauchy in H−1.
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In the above we repeatedly used that Pψ0 is an orthogonal projection on L2 so that 〈f,Pψ0g〉S(0) =
〈Pψ0f, g〉S(0) . Thus, when paired with functions only of ψ0 such as h or ∂2

ψ0
h, the projector is the

identity. Introducing f = (L0 − Λ)−1
hbch, we have

〈∂ψ0h, ∂ψ0(L0 − Λ)−1
hbch〉S(0) = 〈∂ψ0(L0 − Λ)f, ∂ψ0f〉S(0) = −〈(L0 − Λ)f, ∂2

ψ0
f〉S(0)

since (L0 − Λ)f = h which is zero at the boundary. Now, by (c.f. §7.2, pg 390 of [10]) we have

〈(L0 − Λ)f, ∂2
ψ0
f〉S(0) ≥ β‖f‖2H2 − γ‖f‖2L2 ,

for some constants β, γ > 0. Moreover, by our hypotheses, we have for some constant c > 0 that

c‖f‖2H1 ≤ 〈(L0 − Λ)f, f〉S(0) .

Combining the above bounds we obtain

〈h,Pψ0(L0 − Λ)−1
hbch〉S(1) ≥ β‖f‖2H2 − γ‖f‖2L2 + cM‖f‖2H1 .

It follows that by choosing M sufficiently large that for some c1 > 0 depending only on ψ0 we have

〈h,Pψ0(L0 − Λ)−1
hbch〉S(1) ≥ c1‖f‖2H2

and we deduce 〈h,Pψ0(L0 − Λ)−1
hbch〉S(1) is coercive.

Thus we have established that for all g ∈ S(1)
0 , there exists a unique u ∈ S(−1) such that

Kψ0 [u] = g.

Now we want to show that for k ≥ 1, if g ∈ S(k)
0 , then u ∈ S(k−2). Let g ∈ S(2)

0 . We know there is a

solution u ∈ S(−1)
0 . We wish to show that actually u ∈ S(0)

0 . To see this, we formally differentiate:

∂ψ0Kψ0 [u] = ∂ψ0g.

The following formal apriori calculation can be made rigorous by an approximation argument. We
compute the commutator of derivative with Kψ0 :

[∂ψ0 ,Kψ0 ]f = ∂ψ0Kψ0 [f ]−Kψ0 [∂ψ0f ]

= ∂ψ0Pψ0(L0 − Λ)−1
hbcf − Pψ0(L0 − Λ)−1

hbc∂ψ0f

= Pψ0∂ψ0(L0 − Λ)−1
hbcf − Pψ0(L0 − Λ)−1

hbc∂ψ0f + [Pψ0 , ∂ψ0 ](L0 − Λ)−1
hbcf

= Pψ0 [∂ψ0 , (L0 − Λ)−1
hbc]f + [Pψ0 , ∂ψ0 ](L0 − Λ)−1

hbcf.

Now note that by Lemma E.2 we have

[Pψ0 , ∂ψ0 ]g = −Pψ0

[( µ′
µ2

+
∆ψ0 − 2κ|∇ψ0|
|∇ψ0|2

)
g
]
.

Thus, commutator of derivative with streamline projector is of zero order:

‖[Pψ0 , ∂ψ0 ]g‖L2 ≤ C‖g‖L2 .

Also the commutator of derivative and the inverse operator is zero smoothing of degree -2. Specif-
ically, note that with f = (L0 − Λ)−1

hbcg we have

[∂ψ0 , (L0 − Λ)−1
hbc]g = ∂ψ0f − (L0 − Λ)−1

hbc∂ψ0(L0 − Λ)f

= (L0 − Λ)−1
hbc[∂ψ0 , L0 − Λ]f.

The commutator [∂ψ0 , L0 − Λ] is a differential operator of order 2. Thus we obtain

‖[∂ψ0 , (L0 − Λ)−1
hbc]g‖L2 ≤ C‖(L0 − Λ)−1

hbcg‖L2 ,

and we obtain the estimate

‖[∂ψ0 ,Kψ0 ]f‖L2 ≤ C‖(L0 − Λ)−1
hbcf‖L2 .
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Moreover, [∂ψ0 ,Kψ0 ]f is zero on the boundary. Then if u ∈ S(−1) and g ∈ S(2)
0

Kψ0 [∂ψ0u] = [∂ψ0 ,Kψ0 ][u] + ∂ψ0g ∈ S
(1)
0 .

It follows that ∂ψ0u ∈ S(−1) and thus u ∈ S(0). Higher regularity follows by similar arguments.

Appendix B. Proof of Proposition 3.1

Let D0, D be two nearby domains and let γ : D0 → D be a diffeomorphism. Denote points in
D by (x1, x2) and points in D0 by (y1, y2). Decompose the diffeomorphism

γ = id + (α, β) = id +∇⊥φ+∇η.

where ∇⊥ = (−∂2, ∂1). Let ρ = det∇γ and 0 < |ρ| <∞. Write ψ = ψ0 ◦ γ−1. More explicitly

x1 = y1 + α(y1, y2), x2 = y2 + β(y1, y2).

and

α(y1, y2) = −∂y2φ+ ∂y1η, β(y1, y2) = ∂y1φ+ ∂y2η.

We have so ∇yψ0 = ∇γ · (∇xψ) ◦ γ, and

(∇xψ) ◦ γ = (∇γ)−1 · ∇yψ0, ∇γ = I +

(
∂y1α ∂y1β
∂y2α ∂y2β

)
.

Jacobian of Transformation: Note that, with ρ = det∇γ we find

ρ = 1 + ∂y1α+ ∂y2β + (∂y1α∂y2β − ∂y2α∂y1β) = 1 + ∆η −Nη(∂
2η, ∂2φ)

where

Nη := ∂y1α∂y2β − ∂y2α∂y1β = −∇α · ∇⊥β. (B.1)

Inverse Gradient: A useful expression for the inverse gradient of the transformation is

(∇γ)−1 =
1

ρ

(
I +

(
∂y2β −∂y1β
−∂y2α ∂y1α

))
=

1

ρ

(
I +

(
∂y2∂y1φ+ ∂2

y2η −∂2
y1φ− ∂y1∂y2η

∂2
y2φ− ∂y1∂y2η −∂y2∂y1φ+ ∂2

y1η

))
=

1

ρ

(
I +

(
∂y2∂y1φ −∂2

y1φ
∂2
y2φ −∂y2∂y1φ

)
+

(
∂2
y2η −∂y1∂y2η

−∂y1∂y2η ∂2
y1η

))
=

1

ρ

(
I −

(
∂y1∇⊥y φ
∂y2∇⊥y φ

)
+

(
−∂y2∇⊥y η
∂y1∇⊥y η

))
.

Derivatives of ψ := ψ0 ◦ γ−1: In the above, ∂y1∇⊥y φ and similar terms are understood as row
vectors forming the matrices. Thus

(∇xψ) ◦ γ =
1

ρ

(
∇yψ0 +∇y∂sφ+ (∇⊥y φ · ∇y)∇yψ0

)
− 1

ρ

(
∇⊥y ∂sη + (∇yη · ∇y)∇yψ0

)
,

where we introduced the notation for streamline derivatives ∂s = ∇⊥ψ0 · ∇y. In the future, we will
bin terms involving η in

L0(∂2η, ρ; ∂2ψ0) := −1

ρ

(
∇⊥y ∂sη + (∇yη · ∇y)∇yψ0

)
. (B.2)

Note we track only the highest number derivatives in the notation on the left. We now obtain a
formula for the Hessian in terms of ψ0 and the diffeomorphism. First note that

(∇x ⊗∇xψ) ◦ γ = (∇yγ)−1∇y
(

(∇xψ) ◦ γ
)
.
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The right-hand-side of the above is calculated as

∇y
(

(∇xψ) ◦ γ
)

= ρ∇yρ−1 ⊗ (∇xψ) ◦ γ

+
1

ρ

(
∇y ⊗∇yψ0 + (∇y ⊗∇y)∂sφ+ (∇y ⊗∇⊥y φ)(∇y ⊗∇yψ0)

+ (∇⊥y φ · ∇)∇y ⊗∇yψ0 − (∇y ⊗∇⊥y )∂sη

− (∇y ⊗∇yη)(∇y ⊗∇yψ0)− (∇yη · ∇)∇y ⊗∇yψ0

)
.

Thus we obtain

(∇x ⊗∇xψ) ◦ γ =
1

ρ2
∇y ⊗∇yψ0 +

1

ρ2

(
(∇y ⊗∇y)∂sφ− (∇yφ · ∇⊥)∇y ⊗∇yψ0

)
+ L1(∂3η, ∂ρ; ∂3ψ0) + N1(∂2φ, ∂2∂sφ, ∂

3η, ∂ρ; ∂3ψ0),

where we have grouped the terms linear in η and ∇ρ

L1(∂3η, ∂ρ; ∂3ψ0) := − 1

ρ2

(
∇yρ⊗ (∇xψ0) ◦ γ + (∇y ⊗∇⊥y )∂sη + (∇yη · ∇)∇y ⊗∇yψ0

)
,(B.3)

as well as all terms which are quadratic in combinations of (φ, η,∇ρ):

N1(∂2φ,∂2∂sφ, ∂
3η, ∂ρ; ∂3ψ0)

:= − 1

ρ2
∇yρ⊗

(
∇y∂sφ+ (∇⊥y φ · ∇y)∇yψ0 −∇⊥y ∂sη − (∇yη · ∇y)∇yψ0

)
+

1

ρ2

(
−
(
∂y1∇⊥y φ
∂y2∇⊥y φ

)
+

(
−∂y2∇⊥y η
∂y1∇⊥y η

))[
−∇yρ⊗ (∇xψ0) ◦ γ+

−∇yρ⊗
(
∇y∂sφ+ (∇⊥y φ · ∇y)∇yψ0 −∇⊥y ∂sη − (∇yη · ∇y)∇yψ0

)
+

(
(∇y ⊗∇y)∂sφ+ (∇y ⊗∇⊥y φ)(∇y ⊗∇yψ0) + (∇⊥y φ · ∇)∇y ⊗∇yψ0

− (∇y ⊗∇⊥y )∂sη − (∇y ⊗∇yη)(∇y ⊗∇yψ0)− (∇yη · ∇)∇y ⊗∇yψ0

)]
. (B.4)

We note the important point the nonlinearity involves third derivatives of φ only through ∂2∂sφ.
We now introduce stream function coordinates. Note the following formula for ∇y in terms of

derivative along and transverse to streamlines, i.e. ∂s = ∇⊥ψ0 · ∇ and ∂ψ0 = ∇ψ0 · ∇,

∇y =
1

|∇ψ0|2
[
∇ψ0∂ψ0 +∇⊥ψ0∂s

]
, ∇⊥y =

1

|∇ψ0|2
[
∇⊥ψ0∂ψ0 −∇ψ0∂s

]
.

With this, we have

∇yφ · ∇⊥ =
1

|∇ψ0|2
(

(∂sφ)∂ψ0 − (∂ψ0φ)∂s

)
.

We arrive at
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Lemma B.1. The following formulae hold

(∇xψ) ◦ γ =
1

ρ
∇yψ0 +

1

ρ

(
∇y∂sφ+

1

|∇ψ0|2
[
(∂sφ)∂ψ0 − (∂ψ0φ)∂s

]
∇yψ0

)
+ L0(∂3η, ρ; ∂3ψ0),

(∇x ⊗∇xψ) ◦ γ =
1

ρ2
∇y ⊗∇yψ0 −

1

ρ2|∇ψ0|2
[
(∂sφ)∂ψ0 − (∂ψ0φ)∂s

]
∇y ⊗∇yψ0

+
1

ρ2
(∇y ⊗∇y)∂sφ+ L1(∂3η, ∂ρ; ∂3ψ0) + N1(∂2φ, ∂2∂sφ, ∂

3η, ∂ρ; ∂3ψ0),

where L0, L1 and N1 are defined by (B.2), (B.3) and (B.4). Let aγ = a ◦ γ, bγ = b ◦ γ and

L := a : ∇x ⊗∇x + b · ∇x, Lγ = aγ : ∇y ⊗∇y + bγ · ∇y.

Then we have

(Lψ) ◦ γ =
1

ρ2
Lγψ0 +

1

ρ2
Lγ∂sφ−

1

ρ2|∇ψ0|2
[
(∂sφ)∂ψ0 − (∂ψ0φ)∂s

]
Lγψ0

+
1

ρ2|∇ψ0|2

([
(∂sφ)∂ψ0aγ − (∂ψ0φ)∂saγ

]
: ∇y ⊗∇yψ0 +

[
(∂sφ)∂ψ0bγ − (∂ψ0φ)∂sbγ

]
· ∇yψ0

)

+ a : L1(∂3η, ∂ρ; ∂3ψ0) + a : N1(∂2φ, ∂2∂sφ, ∂
3η, ∂ρ; ∂3ψ0) + b · L0(∂3η, ∂ρ; ∂3ψ0).

We now simplify these formulae in the setting where ψ0 and ψ satisfy (3.4), (3.5). Recall
L0 := a0 : ∇y ⊗∇y + b0 · ∇y, so that

Lγ − L0 = (aγ − a0) : ∇y ⊗∇y + (bγ − b0) · ∇y
= (a− a0)γ : ∇y ⊗∇y + (b− b0)γ · ∇y + ((a0)γ − a0) : ∇y ⊗∇y + ((b0)γ − b0) · ∇y.

We now denote the nonlinearities arising in expanding by

Ra0(∂φ, ∂η, ∂2a0) := (a0)γ −a0− (γ− y) ·∇a0, Rb0(∂φ, ∂η, ∂2b0) := (b0)γ − b0− (γ− y) ·∇b0.

Note that the dependences are a consequence of Taylor’s formula. Then

Lγ − L0 = (a− a0)γ : ∇y ⊗∇y + (b− b0)γ · ∇y
+ (γ − y) · ∇a0 : ∇y ⊗∇y + (γ − y) · ∇b0 · ∇y

+ Ra0(∂φ, ∂η, ∂2a0) : ∇y ⊗∇y + Rb0(∂φ, ∂η, ∂2b0) · ∇y
= (a− a0)γ : ∇y ⊗∇y + (b− b0)γ · ∇y

+∇⊥φ · ∇a0 : ∇y ⊗∇y +∇⊥φ · ∇b0 · ∇y
+∇η · ∇a0 : ∇y ⊗∇y +∇η · ∇b0 · ∇y

+ Ra0(∂φ, ∂η, ∂2a0) : ∇y ⊗∇y + Rb0(∂φ, ∂η, ∂2b0) · ∇y.

Thus we have

(Lγ − L0)ψ0 = − 1

|∇ψ0|2
((∂sφ)∂ψ0a0 − (∂ψ0φ)∂sa0) : ∇y ⊗∇yψ0

− 1

|∇ψ0|2
((∂sφ)∂ψ0b0 − (∂ψ0φ)∂sb0) · ∇yψ0

+ L2(δa, δb, ∂a0, ∂b0, ∂η, γ; ∂2ψ0) + N2(∂2a0, ∂
2b0, ∂φ, ∂η, γ; ∂2ψ0),
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where

L2(δa, δb, ∂a0, ∂b0, ∂η, γ; ∂2ψ0) := (a− a0)γ : ∇y ⊗∇yψ0 + (b− b0)γ · ∇yψ0

+∇η · ∇a0 : ∇y ⊗∇yψ0 +∇η · ∇b0 · ∇yψ0,

N2(∂2a0, ∂
2b0, ∂φ, ∂η, γ; ∂2ψ0) := Ra0(∂φ, ∂η, ∂2a0) : ∇y ⊗∇yψ0 + Rb0(∂φ, ∂η, ∂2b0) · ∇yψ0.

Additionally we find

(Lγ − L0)∂sφ = L3(δa, δb, ∂a0, ∂b0, ∂η, γ, ∂
2∂sφ) + N3(∂2a0, ∂

2b0, ∂φ, ∂η, γ, ∂
2∂sφ).

where

L3(δa, δb, ∂a0, ∂b0, ∂η, γ, ∂
2∂sφ) := (a− a0)γ : ∇y ⊗∇y∂sφ+ (b− b0)γ · ∇y∂sφ

N3(∂2a0, ∂
2b0, ∂φ, ∂η, γ, ∂

2∂sφ) := ∇⊥φ · ∇a0 : ∇y ⊗∇y∂sφ+∇⊥φ · ∇b0 · ∇y∂sφ
+∇η · ∇a0 : ∇y ⊗∇y∂sφ+∇η · ∇b0 · ∇y∂sφ
+ Ra0(∂φ, ∂η, ∂2a0) : ∇y ⊗∇y∂sφ+ Rb0(∂φ, ∂η, ∂2b0) · ∇y∂sφ.

Thus we have

ρ2(Lψ) ◦ γ = L0ψ0 + L0∂sφ−
1

|∇ψ0|2
((∂sφ)∂ψ0a0 − (∂ψ0φ)∂sa0) : ∇y ⊗∇yψ0

− 1

|∇ψ0|2
((∂sφ)∂ψ0b0 − (∂ψ0φ)∂sb0) · ∇yψ0 −

1

|∇ψ0|2
[
(∂sφ)∂ψ0 − (∂ψ0φ)∂s

]
L0ψ0

+
1

|∇ψ0|2
[
(∂sφ)∂ψ0a− (∂ψ0φ)∂sa

]
: ∇y ⊗∇yψ0 +

1

|∇ψ0|2
[
(∂sφ)∂ψ0b− (∂ψ0φ)∂sb

]
· ∇yψ0

+ L5(δa, δb, ∂a0, ∂b0, ∂
3η, γ, ∂2∂sφ; ∂3ψ0) + N5(∂2a0, ∂

2b0, ∂
2φ, ∂2η, ∂ρ, ∂2∂sφ; ∂3ψ0)

where the linear and nonlinear terms are

L5 =

4∑
i=0

Li, N5 =

4∑
i=1

Ni. (B.5)

Rearranging this, we have

ρ2(Lψ) ◦ γ = L0ψ0 + (L0 − λ1)∂sφ+ λ2∂ψ0φ

+ L5(δa, δb, ∂a0, ∂b0, ∂
3η, ∂ρ, ∂2∂sφ; ∂3ψ0) + N5(∂2a0, ∂

2b0, ∂
2φ, ∂2η, ∂ρ, ∂2∂sφ; ∂3ψ0)

where λ1 :=
∂ψ0L0ψ0

|∇ψ0|2 and λ2 := ∂sL0ψ0

|∇ψ0|2 . To get the desired equation for ∂sφ we must use the

equations that ψ0 and ψ satisfy. Recall

Lψ = F (ψ) +G(x, ψ), L0ψ = F0(ψ0) +G0(y, ψ0),

Then we have

(Lψ) ◦ γ − F (ψ0) +G(γ, ψ0) = 0,

Thus upon substitution we obtain

(L0 + Λ)∂sφ = L0ψ0 − ρ2(Lψ) ◦ γ + Λ2∂ψ0φ+ L5 + N5

= F0(ψ0)− F (ψ0) +G0(y, ψ0)−G(γ, ψ0)

+ Λ2∂ψ0φ+ L5 + N5.
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Introducing the notation

RG(∂φ, ∂η, ∂2
YG) := G0(y, ψ0)−G(γ, ψ0)− (γ − y) · (∇yG) ◦ γ,

we further express the nonlinear G terms as follows

G0(y, ψ0)−G(γ, ψ0) =
1

|∇ψ0|2
(

(∂sφ)(∂ψ0G)(γ, ψ0)− (∂ψ0φ)(∂sG)(γ, ψ0)
)

−∇η · (∇yG)(γ, ψ0) + (G−G0)(γ, ψ0) + RG. (B.6)

Together, we obtain

(L0 − Λ)∂sφ = Λ2∂ψ0φ+ (F − F0)(ψ0) + Lφ(δa, δb, ∂a0, ∂b0, ∂
3η, ∂ρ, ∂2∂sφ; ∂3ψ0)

+ N(∂2a0, ∂
2b0, ∂

2φ, ∂2η, ∂ρ, ∂2∂sφ; ∂3ψ0)

where we have defined

Lφ = L5, (B.7)

Nφ = N5 + (B.6) (B.8)

where L5 and N5 are defined in (B.5) and where

Λ1 :=
1

|∇ψ0|2
(
∂ψ0L0ψ0 − ∂ψ0G(y, ψ0)

)
, Λ2 :=

1

|∇ψ0|2
(
∂sL0ψ0 − ∂sG(y, ψ0)

)
.

Note that we separate out (F −F0)(ψ0) since we will use F to fix ∂sφ as mean-zero on streamlines
during the construction. We note now that

∂ψ0L0ψ0 = |∇ψ0|2F ′0(ψ0) + ∂ψ0G+ |∇ψ0|2G′0(y, ψ0), ∂sL0ψ0 = ∂sG0,

where G′0 denotes differentiation with respect to its ψ0 argument. Thus, introducing

Λ := F ′0(ψ0) +G′0(y, ψ0), (B.9)

we obtain

Lemma B.2. If ψ0 solves (3.4) and ψ = ψ0 ◦ γ solves (3.5) then ∂sφ satisfies

∆η = ρ− 1 + Nη(∂
2η, ∂2φ),

(L0 − Λ)∂sφ = (F − F0)(ψ0) + Lφ(δa, δb, δF, ∂δG, ∂a0, ∂b0, ∂
3η, ∂ρ, ∂2∂sφ, ∂ψ0φ; ∂3ψ0)

+ Nφ(∂2a0, ∂
2b0, ∂

2φ, ∂2η, ∂ρ, ∂2∂sφ; ∂3ψ0),

where Λ is given by (B.9), Lφ (defined by (B.7)) are all the collected terms which are linear in φ
and η (and their derivatives), but all multiplied by small factors, Nη is defined by (B.1) and Nφ

collects the nonlinear terms above (defined by (B.8)) .

Appendix C. Proof of Theorem 3.1

C.1. Perturbative Assumptions. We will make the following assumptions that ensure that
various quantities we will encounter can be treated perturbatively.

• The density ρ satisfies

‖ρ− 1‖Ck,α(D0) ≤ ε1. (C.1)

• The boundary ∂D is given by {B = 0} and ∂D0 is given by {B0 = 0} where B,B0 are
smooth functions defined in a neighborhood of ∂D0 and

‖B −B0‖Ck,α ≤ ε2. (C.2)

• The operators L0, L are close in the sense that the coefficients satisfy

‖a− a0‖Ck,α(D0) + ‖b− b0‖Ck,α(D0) ≤ ε3. (C.3)
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• The nonlinearities/forcings are close in the sense that

‖G−G0‖Ck−2,α(D0) ≤ ε4. (C.4)

The size of the parameters ε1, ε2, ε3, ε4 will be set in Lemma C.5 and depends on D0, the base
solution ψ0, and the operator L0.

C.2. Boundary conditions. Suppose D0 is given as the interior of a Jordan curve B0 in R2,

∂D0 = {p ∈ R2 | B0(p) = 0}.

For convenience we will assume, without loss of generality, that B0 is given so that |∇B0| = 1 and
∇ψ0 · ∇B0 > 0. Suppose that D is given as the interior of a Jordan curve B,

∂D = {p ∈ R2 | B(p) = 0}.

If γ : D0 → D is of the form γ = id + (α, β), then using that B0|∂D0 = 0, the requirement that
γ : ∂D0 → ∂D can be written as

0 = B ◦ γ|∂D0 = B0 ◦ γ|∂D0 + (δB) ◦ γ|∂D0

= α∂1B0|∂D0 + β∂2B0|∂D0 +B1(α, β)|∂D0 (C.5)

where the remainder B1 is

B1(α, β, x, y) = B0 ◦ γ −B0 − α∂1B0 − β∂2B0 + (δB) ◦ γ (C.6)

which will be small, O(α2, β2, δB), provided α, β, δB are small and that B0 ∈ C2, say. It is convent
to write α, β in terms of a gradient and skew gradient of φ, η,

(α, β) = ∇⊥ψ +∇η.

In this case,

α∂1B0 + β∂2B0 = ∇⊥B0 · ∇φ+∇B0 · ∇η.

Since |∇B0| = 1, to follows that ∇B0 is the outward-facing unit normal vector field, n̂ to D0

and ∇⊥B0 is the unit tangential vector field forming a right-handed basis with ∇B0. Since ψ0 is

constant on ∂B0 we in fact have ∇⊥B0 = ∇⊥ψ0

|∇ψ0| . Using this, we re-write (C.5) as the condition

1

|∇ψ0|
∂sφ+ ∂nη = −B1(φ, η), on ∂D0.

We will choose η so that ∂nη is constant on the boundary and so that ∂sφ has zero average along
streamlines, i.e.

∮
ψ0
∂sφ ds = 0 where ds = d`/|∇ψ0| and ` is the arc-length parameter. We will

construct η, φ so that they satisfy

∂nη = −
∮
∂D0

B1(φ, η) d`

length(∂D0)
on ∂D0, (C.7)

∂sφ = |∇ψ0|

(
−B1(φ, η) +

∮
∂D0

B1(φ, η) d`

length(∂D0)

)
on ∂D0. (C.8)

This choice is made so that the integral of the right-hand side of (C.8) along streamlines is zero.
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C.3. Governing equations for η and ∂sφ. By Proposition 3.1, if det∇γ = ρ, we have

∆η = ρ− 1 + Nη, in D0, (C.9)

∂nη = −
∮
∂D0

B1(φ, η) d`

length(∂D0)
on ∂D0,

where B1 is defined as in (C.6), and where Nη is a homogeneous quadratic polynomial depending
on ∂2η, ∂2φ defined in (B.1). The equation for ∂sφ takes the form(

L0 − Λ
)
∂sφ = (F − F0) + Lφ + Nφ, in D0, (C.10)

∂sφ = |∇ψ0|

(
−B1(φ, η) +

∮
∂D0

B1(φ, η) d`

length(∂D0)

)
on ∂D0, (C.11)

where L0 is the elliptic operator defined in (3.4) and Lφ are terms which are linear in derivatives of
φ and η and ρ multiplied by small factors and Nφ are quadratically nonlinear terms in derivatives
of φ and η and ρ. In this formulation, the function F is unknown and will need to be chosen to
be consistent with the fact that

∮
∂sφd` = 0. This point will be explained in detail in the next

section. We emphasize that L and N do not involve arbitrary third derivatives of η, φ and it is
only ∂2∂sη, ∂

2∂sφ that enter, which will be important in what follows. The following estimates are
immediate consequences of the definitions of the terms on the right-hand sides of (C.9)-(C.10) in
which can be found in (B.1), (B.7) and (B.8). Note that these quantities involve three derivatives
of ψ0 but we are assuming F0 ∈ Ck−1,α so by standard elliptic estimates ‖ψ0‖Ck+1,α is finite.

Lemma C.1. If the bounds in §C.1 hold, then we have

‖Lφ‖Ck−2,α(D0) ≤ Ck,α
(
‖ρ− 1‖Ck−1,α(D0) + ‖η‖Ck,α(D0) + ‖∂sη‖Ck,α(D0) + ε‖∂sφ‖Ck−1,α(D0)

)
,

‖Nφ‖Ck−2,α(D0) ≤ Ck,α
(
‖ρ− 1‖Ck−1,α(D0) + (‖η‖Ck,α(D0) + ‖∂sη‖Ck,α(D0) + ‖∂sφ‖Ck,α(D0))

2
)
,

‖Nη‖Ck−2,α(D0) ≤ Ck,α
(
‖η‖Ck,α(D0) + ‖φ‖Ck,α(D0))

2,

‖B1‖Ck−1,α(∂D0) ≤ Ck,α
(
‖η‖Ck,α(D0) + ‖φ‖Ck,α(D0)

)
,

where ε = max{ε1, ε2, ε3, ε4}.

We also need Lipschitz bounds for the operators Lφ,Nφ,Nη. Given functions φ1, η1, φ1, η2 we
write u1 = (φ1, η1), u2 = (φ2, η2) and let Liφ,N

i
φ,N

i
η for i = 1, 2 denote the operators Lφ,Nφ,Nη

defined in Proposition 3.1 evaluated at (φi, ηi). The following estimates are then straightforward
consequences of the definitions.

Lemma C.2. If the bounds in §C.1 hold, then we have

‖L1
φ − L2

φ‖Ck−2,α(D0) ≤ Ck,α
(
‖η1 − η2‖Ck,α(D0) + ‖∂sη1 − ∂sη2‖Ck,α(D0) + ε‖∂sφ1 − ∂sφ2‖Ck,α(D0)

)
,

‖N1
φ −N2

φ‖Ck−2,α(D0) ≤ Ck,α
(
‖η1 − η2‖Ck,α(D0) + ‖∂sη1 − ∂sη2‖Ck,α(D0) + ‖∂sφ1 − ∂sφ2‖Ck,α(D0))

2,

‖N1
η −N2

η‖Ck−2,α(D0) ≤ Ck,α
(
‖η1 − η2‖Ck,α(D0) + ‖φ1 − φ2‖Ck,α(D0))

2.

C.4. Recovering φ from ∂sφ. In the construction, a solution Φ is obtained by solving (C.10)–
(C.11) for “∂sφ = ∇⊥ψ0 · ∇ψ”. Consistent with Φ = ∂sφ, we will construct a solution Φ with the
property that its integral on each streamline is zero. This is done further in the proof and requires
the use of (H3). To verify that it is indeed the “streamline derivative” and to recover the periodic
function φ, we appeal to the following lemma.
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Lemma C.3. Suppose Φ ∈ Ck,α satisfies∮
{ψ0=c}

Φ = 0 for all c ∈ im(ψ0).

Then Φ = ∂sφ for a unique function φ = φ(ψ0, θ) which is a zero-mean, periodic function on
streamlines of ψ0, i.e. φ(ψ0, 0) = φ(ψ0, 2π) and

∮
ψ0
φ = 0. Moreover, φ enjoys the bound

‖φ‖k,α ≤ C‖∂sφ‖k,α, (C.12)

where the constant C depends on Ck,α norms of ψ0.

Proof. First note that all that enters in the formulation of the problem is ∂sφ and not φ itself
and so we are free to modify φ by adding an arbitrary function of ψ0. To be more precise, let ` be
the arc-length along curves {ψ = c} and introduce the notation

ds =
d`

|∇ψ0|
.

We the fix the freedom in defining φ by enforcing that, on each streamline,∮
{ψ0=c}

φ ds = 0, ∀c ∈ im(ψ0).

Assuming that this holds, we have ‖φ‖k,α ≤ C‖∂sφ‖k,α, a fact that we use repeatedly in what
follows. To be more precise, we introduce an “angular coordinate” along streamlines as

θ(x) =
2π

µ(ψ0(x))

∫
Γx0(ψ0),x

ds, µ(c) =

∮
{ψ0=c}

ds

where µ is the travel time of a particle along a streamline and where, for each x ∈ D0 the line
integral is taken counterclockwise from an arbitrary point x0(ψ0) on the streamline to the point x.
This point x0(ψ0) can be obtain by flowing an arbitrary point p ∈ D0 by the vector field ∇ψ0 which
is orthogonal to streamlines. This segment is denoted by Γx0(ψ0),x. Then θ(x) is a 2π–periodic
parametrization of the streamline with value ψ0(x).

Now, given a Φ which is mean zero on streamlines, note that for an arbitrary θ0 ∈ [0, 2π]

φ(ψ0, θ) = φ(ψ0, θ0) + µ(ψ0)

∫ θ

θ0

Φ dθ′.

Integrating this expression along the streamline in s0 we ψ0 =const.

φ(y) = φ(ψ0(y), θ(y)), φ(ψ0, θ) = µ(ψ0)

∫
T

(∫ θ

θ0

Φ dθ′
)

dθ0.

One can check that ∇⊥ψ0 · ∇θ = µ−1. Thus, for the quantity defined above we have that

Φ = ∂sφ.

The definitions of θ and µ as functions on D0 we obtain the estimate (C.12). �

C.5. The iteration to solve the nonlinear elliptic system. We use the following iteration.
Given ηn, φn ∈ Ck−1,α(D0) with ∂sη

n, ∂sφ
n ∈ Ck−1,α(D0) and

∮
ψ0
φn = 0, set

Nn
η := Nη(η

n, φn),

with Nη defined in (B.1), which satisfies the following bound

‖Nn
η‖Ck−2,α(D0) ≤ Ck,α

(
‖φn‖Ck,α(D0) + ‖ηn‖Ck,α(D0)

)2
.
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By Lemma D.2 the following problem has a unique solution ηn+1 ∈ Ck−1,α,

∆ηn+1 = ρ− 1 + Nn
η , in D0, (C.13)

∂nη
n+1 = κn+1 ≡

∫
D0

(
ρ− 1 + Nn

η

)
on ∂D0. (C.14)

Moreover, the iterate ηn+1 enjoys the following estimate

‖ηn+1‖Ck,α(D0) ≤ Ck,α
(
‖ρ− 1‖Ck−2,α(D0) + ‖Nn

η‖Ck−2,α(D0) + κn+1
)
.

We note that (C.14) does not agree with (C.7) but instead has been chosen to ensure that the
Neumann problem is solvable. In the upcoming Lemma C.7 we show that provided ηn, φn converge,
the limit η will satisfy (C.7) as a consequence of the assumption that Vol(D) =

∫
D0
ρ.

In order to get an estimate for ‖∂sηn+1‖Ck,α(D0) we commute the equation (C.13)-(C.14) with

∂s. Applying ∂s to (C.13), using

[∂s,∆] = −2∇⊥∆ψ0 · ∇ −∇⊗∇⊥ψ0 : ∇⊗∇,

we note that the right-hand side involves highest-order derivatives falling on ∂sη and lower-order
terms. By the estimates for the Neumann problem from Lemma D.2 and using that ∂sη = 0 on the
boundary since ∂s is a tangential derivative, we have

‖∂sηn+1‖Ck,α(D0) ≤ Ck,α‖ηn+1‖Ck,α(D0) + Ck,α
(
‖∂s(ρ− 1)‖Ck,α(D0) + ‖∂sNn

η‖Ck−2,α(D0)

)
.

With ηn+1 defined, we now set

Nn
φ = Nφ(ηn+1, φn),

Bn
1 = B1(ηn+1, φn),

with Nφ defined in (C.10) and B1 defined in (C.6). Using that ‖φn‖Ck−1,α(D0) ≤ ‖∂sφn‖Ck−1,α(D0)

from Lemma C.3, we have that

‖Nn
φ‖Ck−2,α(D0) ≤ Ck,α

(
‖ρ− 1‖Ck,α(D0) + (‖ηn+1‖Ck,α(D0) + ‖∂sηn+1‖Ck,α(D0) + ‖∂sφn‖Ck,α(D0))

2

+ ‖ηn+1‖Ck,α(D0) + ‖∂sηn+1‖Ck,α(D0) + ε‖∂sφn‖Ck−1,α(D0)

)
,

with ε = max{ε1, ε2, ε3, ε4}. We note that it is crucial that the estimate for the nonlinearity Nn
φ only

requires a bound for ‖∂sηn+1‖Ck,α(D0) and not the full norm ‖ηn+1‖Ck+1,α(D0) since we could only

get a bound for this term by differentiating the equation for ηn+1 in all directions and this would
require a bound for ‖φn+1‖Ck+1,α(D0) instead of just ‖∂sφn+1‖Ck,α(D0). The boundary operator
satisfies the estimate

‖Bn
1 ‖Ck,α(D0) ≤ Ck,α

(
‖ηn+1‖Ck,α(D0) + ‖δB‖Ck,α(D0)

)
.

We now envoke hypothesis (H3) and define Fn by the requirement that the right-hand side of
(3.7) has zero average along streamlines with φ, η replaced by φn, ηn. Consider the problem

(L0 − Λ)u = g in D0

u = ub on ∂D0.

Letting G be the Green’s function for the Dirichlet problem for L0 − Λ, we have

u(x) =

∫
D0

G(x, x′)g(x′)dx′ +

∮
∂D0

∂nG(x, x′)ub(x
′)d`.

We define

(L0 − Λ)−1
hbcg :=

∫
D0

G(x, x′)g(x′)dx′,
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so that f = (L0 − Λ)−1
hbcg means (L0 − Λ)f = g and f = 0 on ∂D0. If the equations (C.10)-(C.11)

are to hold then since
∮
ψ0=c ∂sφ = 0 we must ensure that

Kψ0 [Fn − F0] = −
∮
ψ0

(L0 − Λ)−1
hbc[L

n
φ + Nn

φ]ds+

∮
ψ0

∮
∂D0

∂nG(x, x′)∂sφ(x′)d`ds, (C.15)

with Kψ0 defined in the statement of (H3). Notice that the right-hand-side is a function only ψ0,
and the boundary conditions for ∂sφ are chosen exactly so that the contribution on the boundary
of the final term in (C.15) is zero. Thus, with gn(ψ0) defined as the right-hand-side of equation
(C.15), we see that gn(ψ0(∂D0)) = 0. Moreover, g ∈ Ck,α(I) with I = im(ψ0), which follows from
Lemma E.2 Appendix E. These verify that we are in the setting of (H3) and so by assumption
there is an Fn = Fn(ψ0) ∈ Ck−2,α(I) which ensures that (C.15) holds. Moreover,

‖Fn − F0‖Ck−2,α(I) . ‖Kψ0 [Lnφ + Nn
φ]‖Ck,α . ‖(L0 − Λ)−1

hbc

(
Lnφ + Nn

φ

)
‖Ck,α . ‖Lnφ + Nn

φ‖Ck−2,α(D0).

(C.16)
The second inequality above follows from Lemma C.15.

By Lemma D.1 the following problem has a unique solution Φn+1 ∈ Ck,α,

(L0 − Λ)Φn+1 = (Fn − F0)(ψ0) + Lnφ + Nn
φ, in D0, (C.17)

Φn+1 = |∇ψ0|

(
−B1(φn, ηn) +

∮
∂D0

B1(φn, ηn) d`

length(∂D0)

)
on ∂D0. (C.18)

By our choice for Fn and the above discussion, the solution Φn+1 has zero average along streamlines
and so by Lemma C.3 it follows that Φn+1 = ∂sφ

n+1 for a unique function φn+1 with zero average
along streamlines. From (C.17)-(C.18) and (C.16) we have

‖∂sφn+1‖Ck,α(D0) + ‖φn+1‖Ck,α(D0)

≤ Ck,α
(
‖Lnφ‖Ck−2,α(D0) + ‖Nn

φ‖Ck−2,α(D0) + ‖Bn
1 ‖Ck,α(∂D0)

)
.

In summary, using Lemma C.1, we have shown

Lemma C.4. Suppose that (H1)–(H3) and the assumptions (C.1), (C.2), (C.3) and (C.4) hold.
Let φn, ηn ∈ Ck,α(D0) with ∂sφ

n, ∂sη
n ∈ Ck,α(D0) be given functions. With Nn

η ,N
n
φ, B

n
1 defined as

above, and with Fn defined implicitly by (C.15), the problems (C.13)-(C.14) and (C.17)-(C.18) have
a unique solution ηn+1, φn+1 satisfying

∮
ψ0
φn+1 d` = 0, and we have the estimates

‖∂sηn+1‖Ck,α + ‖ηn+1‖Ck,α ≤ Ck,α
(
‖∂s(ρ− 1)‖Ck,α + ‖ρ− 1‖Ck−2,α

+ (‖∂sηn‖Ck,α + ‖ηn‖Ck,α)‖∂sφn‖Ck,α , (C.19)

‖∂sφn+1‖Ck,α + ‖φn+1‖Ck,α ≤ Ck,α
(
‖ρ− 1‖Ck,α + (‖∂sηn+1‖Ck,α + ‖ηn+1‖Ck,α)‖∂sφn‖Ck−1,α

+ (‖∂sηn+1‖Ck,α + ‖ηn+1‖Ck,α)

+ ε‖∂sφn‖Ck,α + ‖Bn
1 ‖Ck,α(∂D0), (C.20)

‖Bn
1 ‖Ck,α(∂D0) ≤ Ck,α

(
‖ηn‖Ck,α + ‖φn‖Ck,α

)
.

C.6. Uniform estimates for the iterates. We now set η0 = φ0 = 0. Given η`, φ`, using
Lemma C.4 let η`+1 satisfy (C.13)-(C.14) and let Φ`+1 = ∂sφ

`+1 satisfy (C.17)-(C.18). In this
section we prove that the sequences (η`, φ`), (∂sη

`, ∂sφ
`) are uniformly bounded in Ck,α(D0).

Lemma C.5. There ε0 = ε0(D0, k, α, θ) > 0 so that if the assumptions (C.1)-(C.3) hold with
ε1 + ε2 + ε3 ≤ ε0/2, if the sequence φ`, η` is defined as above, then

‖∂sη`‖Ck,α(D0) + ‖∂sφ`‖Ck,α(D0) + ‖η`‖Ck,α(D0) + ‖φ`‖Ck,α(D0) ≤ 1.
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Proof. Let Ck,α be as in (C.19)-(C.20) and set

ε0 = min(1, 1/(4(Ck,α + C2
k,α))).

Let ε = ε1 + ε2 + ε3 and set M = 4Ck,αε. We claim that if ε ≤ ε0/2 then the iterates φ`, η` satisfy

‖η`‖Ck,α(D0) + ‖φ`‖Ck,α(D0) + ‖∂sη`‖Ck,α(D0) + ‖∂sφ`‖Ck,α(D0) ≤M ≤ 1.

This certainly holds for ` = 0. If it holds for ` = 0, ...,m− 1 then by (C.19)-(C.20) we have

‖ηm‖Ck,α(D0) + ‖φm‖Ck,α(D0) + ‖∂sηm‖Ck,α(D0) + ‖∂sφm‖Ck,α(D0) ≤ Ck,α(M2 + εM + ε) ≤M,

since Ck,αM
2 ≤ 1

2M, Ck,αεM ≤ 1
4M

2 ≤ 1
4M and Ck,αε ≤ 1

4M if ε ≤ ε0/2. The result follows. �

C.7. Cauchy estimates for the iterates.

Lemma C.6. There is ε′0 = ε′0(D0, k, α, θ) > 0 with the following property. If the assumptions
(C.1)-(C.3) hold with ε1 + ε2 + ε3 ≤ ε′0/2, then with the sequence {φ`, η`} defined as in the previous
lemma, if we set

DN,M = ‖∂sηN − ∂sηM‖Ck−1,α(D0) + ‖∂sφN − ∂sφM‖Ck−1,α(D0)

+ ‖ηN − ηM‖Ck−1,α(D0) + ‖φN − ηM‖Ck−1,α(D0),

then DN,M ≤ 1
2DN−1,M−1. In particular, with d1 = ‖∂sη1‖Ck−1,α(D0)+‖∂sφ1‖Ck−1,α(D0)+‖η1‖Ck−1,α(D0)+

‖φ1‖Ck−1,α(D0), we have that

DN,M ≤ 21−min(N,M)d1.

Proof. This is proved in nearly the same way as the previous lemma, but relies on Lemma
C.2 in place of Lemma C.1. �

C.8. Convergence of the boundary term.

Lemma C.7. Let D0, D be domains in R2 and suppose that for some function ρ,

Area(D) =

∫
D0

ρ dy.

Suppose that ∂D = {B(x) = 0} for some function B defined in a tubular neighborhood of ∂D and
has non-vanishing gradients there. Let γ be a diffeomorphism of the form γ = id+∇⊥φ+∇η where

∂sφ = |∇ψ0|

(
−B1(φ, η) +

∮
∂D0

B1(φ, η) d`

length(∂D0)

)
, on ∂D0,

with B1 defined as in (C.6). and where ∂nη is constant on ∂D0. Then in fact

∂nη = −
∮
∂D0

B1(φ, η) d`

length(∂D0)
, on ∂D0,

and as a consequence, γ : ∂D0 → ∂D.

Proof. Recall that, by the definition of the map γ, we have

B ◦ γ|∂D0 =
1

|∇ψ0|
∂sφ+ ∂nη +B1(φ, η), on ∂D0.

By the above assumptions, this implies that, for some constant c,

B ◦ γ|∂D0 = c.
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This says that γ maps ∂D0 to the level set {B = c}. We wish to conclude that c = 0 based on the

fact that the area of γ(D0) is the same as D = {B = 0}. Note that the area enclosed by the level

set, {B = c}, has the property that

d

dc
Area({B = c}) =

∮
{B=c}

d`

|∇B|
.

By our assumptions that |∇B| is non-vanishing in a neighborhood of the zero set, then the level
sets are Jordan curves in a neighborhood of 0 and the area enclosed must change in accord with
the above formula. Thus, the unique value of c such that

Area({B = c}) = Area({B = 0})

is c = 0 and we are done. �

C.9. Proof of Theorem 3.1. By Lemmas C.5 and C.6 it follows that the iterates (η`, φ`)
form a Cauchy sequence in Ck+2,α(D0) and so they converge to functions (η, φ) ∈ Ck+2,α(D0) with
a corresponding statement for ∂sη

`, ∂sφ
`. We then set γ = id + ∇η + ∇⊥φ. It remains to show

that γ(D0) = D, and by Lemma C.7 and (C.7)-(C.8) it follows that γ|∂D0 = ∂D as required. The
estimate (3.9) follows from the proof of Lemma C.5.

C.10. Proof of Theorem 3.2. We define a sequence of diffeomorphisms {γN} as follows.
Given a domain DN−1 and a diffeomorphism γN−1 : D0 → DN−1 of the form γN−1 = id +
∇ηN−1 +∇⊥φN−1, define ρN by

ρN (y) = X(y, ηN−1, φN−1,∇ηN−1,∇φN−1,∇∂sηN−1,∇∂sφN−1)

and define σN > 0 by σ2
N =

∫
D0

ρN

V olD0
so that with DN = σND0, we have V olDN = σ2

NV olD0 =∫
D0
ρN . By Theorem 3.1 there is a diffeomorphism γN : D0 → DN with det∇γN = ρN and where

γN is of the form γN = id +∇ηN +∇⊥φN so that ψN = ψ0 ◦ γN satisfies (3.5), and we have the
estimates

‖∂sηN‖Ck−1,α + ‖∂sφN‖Ck−1,α + ‖ηN‖Ck−1,α + ‖φN‖Ck−1,α ≤ Ck,α
(
‖ρN − 1‖Ck−1,α + ε

)
. (C.21)

Taylor expanding ρN = X(y, ηN−1, φN−1,∇ηN−1,∇φN−1,∇∂sηN−1,∇∂sφN−1) around (η, φ) =
(0, 0) and using the bound (3.12) we have

‖ρN − 1‖Ck−1,α ≤ CεX
(
‖∂sηN−1‖Ck−1,α + ‖∂sφN−1‖Ck−1,α + ‖ηN−1‖Ck−1,α + ‖φN−1‖Ck−1,α

)
+ C

(
‖∂sηN−1‖Ck−1,α + ‖∂sφN−1‖Ck−1,α + ‖ηN−1‖Ck−1,α + ‖φN−1‖Ck−1,α

)2
, (C.22)

provided ‖∂sηN−1‖Ck−1,α +‖∂sφN−1‖Ck−1,α +‖ηN−1‖Ck−1,α +‖φN−1‖Ck−1,α ≤ 1, say. We now prove
that the sequence γN is uniformly bounded provided εX is taken sufficiently small. Let Ck,α be the
constant in (3.9) and take εX so small that 4Ck,αC

′
k,αεX ≤ 1, and suppose that

‖∂sηN‖Ck−1,α + ‖∂sφN‖Ck−1,α + ‖ηN‖Ck−1,α + ‖φN‖Ck−1,α ≤ 2Ck,αε ≤ 1.

By (C.22), we then have

‖∂sηN+1‖Ck−1,α + ‖∂sφN+1‖Ck−1,α + ‖ηN+1‖Ck−1,α + ‖φN+1‖Ck−1,α

≤ Ck,α
(
C ′k,αεX(2ε)k+1+α + ε

)
≤ 2Ck,αC

′
k,αεεX + Ck,αε ≤ 2Ck,αε,

and it follows that the sequence {γN}∞N=0 is uniformly bounded in Ck+1,α. Using a similar argument

it is straightforward to see that this sequence is also a Cauchy sequence in Ck+1,α and so γN →
γ ∈ Ck+1,α which by construction satisfies (3.13).
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Appendix D. Elliptic Estimates

In this appendix, we collect some well-posedness results from elliptic theory for the Dirichlet
and Neumann problems. The first is concerning the Dirichlet problem can be found in e.g. Theorem
6.6 of [12] when k = 0 and Problem 6.2 of [12] when k ≥ 1:

Lemma D.1. Fix k ≥ 2 and α ∈ (0, 1) and f ∈ Ck−2,α(D0), g ∈ Ck,α(∂D0). Let aij , bi, c be
smooth coefficients and set

L =

2∑
i,j=1

aij∂i∂j +

2∑
i=1

bi∂i.

Suppose that the only solution to

(L+ c)v = 0, v ∈ H1
0 (D0)

is v = 0. Then the Dirichlet problem

(L+ c)u = f, in D0,

u = g, on ∂D0,

has a unique solution u ∈ Ck,α(D0), and there is a constant C0 = C0(D0, ‖b‖k−2,α) with

‖u‖k,α ≤ C0

(
‖f‖k−2,α + |g|k,α

)
.

For the Neumann problem, compatibility is also required.

Lemma D.2. Fix k ≥ 2 and α ∈ (0, 1), and f ∈ Ck−2,α(D0), g ∈ Ck−1,α(∂D0) satisfying∫
D0

f =

∫
∂D0

g.

Then the Neumann problem

∆u = f, in D0,

∂nu = g, on ∂D0,

has a unique solution u ∈ Ck,α(D0) and there is a constant C1 = C1(D0) with

‖u‖k,α ≤ C1

(
‖f‖k−2,α + |g|k−1,α

)
.

Appendix E. Streamline geometry

In this appendix, we prove some formulae which are useful for our deformation scheme which
uses streamline coordinates. First, we state some relations between the curvature and vorticity of
along a given streamline.

Lemma E.1. Let n̂ = ∇ψ/|∇ψ| and τ̂ = ∇⊥ψ/|∇ψ|. The following formulae hold

τ̂ · ∇ ⊗∇ψ · τ̂ = |∇ψ|κ, (E.1)

n̂ · ∇ ⊗∇ψ · n̂ = ∆ψ − |∇ψ|κ, (E.2)

where κ := τ̂ · ∇n̂ · τ̂ is the curvature of the streamline.

Proof. We being by noticing that

∆ψ = tr∇⊗∇ψ = n̂ · ∇ ⊗∇ψ · n̂+ τ̂ · ∇ ⊗∇ψ · τ̂ .
Next, a direct calculation gives

|∇ψ|∇n̂ = ∇⊗∇ψ − (n̂ · ∇ ⊗∇ψ · n̂)n̂⊗ n̂− (n̂ · ∇ ⊗∇ψ · τ̂)n̂⊗ τ̂ ,
so that |∇ψ|τ̂ · ∇n̂ · τ̂ = τ̂ · ∇ ⊗ ∇ψ · τ̂ yielding (E.1) as claimed. Combining with the above we
obtain (E.2). �



34 PETER CONSTANTIN, THEODORE D. DRIVAS, AND DANIEL GINSBERG

Before stating the next required lemma, we briefly review action-angle coordinates. For an in
depth discussion, see Arnol’d [1], pg 297. The streamfunction ψ plays the role of a Hamiltonian
for tracer dynamics since u = ∇⊥ψ. We assume that the level sets {ψ = c} are simply connected

Jordan curves, so that all the integral curves of u (solutions of Ẋ = u◦X) are periodic orbits. This
system allows for a canonical transformation to action-angle variables, (x, y) 7→ (J, θ) which satisfy
the following criteria

(1) ψ(x, y) = Ψ(J(x, y)) for all (x, y) ∈ Ω and some function Ψ
(2)

∫
{ψ=c} dθ = 1,

(3) ∇⊥J · ∇θ = 1.

Introduce the frequency µ−1 = Ψ′(J). The phase flow satisfies

dJ

dt
= 0,

dθ

dt
= µ−1.

The first is simply because the system travels along paths of fixed J . The latter follows from

dθ

dt
=

dθ

dx

dx

dt
+

dθ

dy

dy

dt
= ∇⊥ψ · ∇θ = Ψ′(J)(Jxθy − Jyθx) = µ−1(∇⊥J · ∇θ) = µ−1.

The period for each orbit {ψ = c} is the travel time µ := µ(c) given by

µ(c) =

∮
{ψ=c}

d`

|∇ψ|
,

and the line element for each orbit satisfies

d` =
√
ẋ2 + ẏ2 = |∇ψ|dt = µ−1|∇J |dt = |∇J |dθ.

We now give the rule for differentiating functions integrated over streamlines.

Lemma E.2. For f ∈ C1(Ω) we have

d

dc

∮
{ψ=c}

f
d`

|∇ψ|
=

∮
{ψ=c}

∇ψ · ∇f − f (ω − 2κ|∇ψ|)
|∇ψ|2

d`

|∇ψ|
,

where κ = τ̂ · ∇n̂ · τ̂ is the curvature of the streamline and ω := ∆ψ.

Proof of Lemma E.2. First we show that for g ∈ C1(Ω), we have

d

dc

∮
{ψ=c}

g|∇ψ|d` =

∮
{ψ=c}

1

|∇ψ|

(
∇g · ∇ψ + g∆ψ

)
d`.

To establish this, set F := g∇⊥ψ and dl = (ẋdt, ẏdt). Then F ·dl = g|∇ψ|d`. By Green’s theorem,∮
{ψ=c}

F · dl =

∫∫
{ψ=c}

∇⊥ · Fdxdy =

∫∫
{ψ=c}

[∇g · ∇ψ + g∆ψ]dxdy.

Then, for two values c0 ≤ c1 in the range of ψ, we have∮
{ψ=c1}

F · dl −
∮
{ψ=c0}

F · d` =

∫∫
{c0≤ψ≤cc}

[∇g · ∇ψ + g∆ψ]dxdy

=

∫∫
{c0≤ψ≤cc}

[∇g · ∇ψ + g∆ψ]dθdJ,

where we made a change of variables to action angle coordinates (the Jacobian is unity). Finally,∫∫
hdθdJ =

∫∫
hµ(ψ)dθdψ =

∫∫
hdtdψ =

∫∫
h

|∇ψ|
d`dψ,
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for any integrable h. The result follows from taking the coincidence limit c1 → c0 of the difference
quotients. The lemma then follows by applying the formula with g = f/|∇ψ|2. This gives

d

dc

∮
{ψ=c}

f

|∇ψ|
d` =

∮
{ψ=c}

∇ψ · ∇f + f
(

∆ψ − 2∇̂ψ · ∇ ⊗∇ψ · ∇̂ψ
)

|∇ψ|3
d`.

To work this into the stated form we appeal to Lemma E.1. �
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[13] Gómez-Serrano, J., Park, J., Shi, J., and Yao, Y. (2019). Symmetry in stationary and uniformly-rotating solutions

of active scalar equations. arXiv preprint arXiv:1908.01722.
[14] Grad, H., and Rubin, H.: Hydromagnetic Equilibria and Force-Free Fields. Proceedings of the 2nd UN Conf. on

the Peaceful Uses of Atomic Energy, Vol. 31, Geneva: IAEA p. 190, (1958).
[15] Grad, H.: Toroidal containment of a plasma. The Physics of Fluids, 10(1), 137-154, (1967).
[16] Grad, H.: Theory and applications of the nonexistence of simple toroidal plasma equilibrium. International

Journal of Fusion Energy 3.2, 33-46, (1985)
[17] Guo, Y., and Nguyen, T.T.: Prandtl boundary layer expansions of steady Navier–Stokes flows over a moving

plate. Annals of PDE 3.1 (2017): 10.
[18] Hamel, F., and Nadirashvili, N.: Shear flows of an ideal fluid and elliptic equations in unbounded domains.

Communications on Pure and Applied Mathematics 70.3 (2017): 590-608.
[19] Hamel, F., and Nadirashvili, N.: Circular flows for the Euler equations in two-dimensional annular domains.

arXiv preprint arXiv:1909.01666 (2019).
[20] Hicks, W. M.: Researches in vortex motion. Part III. On spiral or gyrostatic vortex aggregates. Proceedings of

the Royal Society of London, 62 (379–387), 332–338 (1898).
[21] Koch, G., Nadirashvili, N., Seregin, G. A., and Sverák, V. Liouville theorems for the Navier–Stokes equations

and applications. Acta Mathematica, 203(1), 83-105. (2009).
[22] Lee, John M. Smooth manifolds. Introduction to Smooth Manifolds. Springer, New York, NY, 2013. 1-31.
[23] Lin, Z, and Zeng, C.: Inviscid dynamical structures near Couette flow. Archive for rational mechanics and

analysis 200.3 (2011): 1075-1097.



36 PETER CONSTANTIN, THEODORE D. DRIVAS, AND DANIEL GINSBERG

[24] Long, R. R.: Steady motion around a symmetrical obstacle moving along the axis of a rotating liquid. Journal
of Meteorology, 10(3), 197–203 (1953).

[25] Shafranov, V.D.: Plasma equilibrium in a magnetic field, Reviews of Plasma Physics, Vol. 2, New York: Con-
sultants Bureau, p. 103, (1966).

[26] Shvydkoy, R.: Homogeneous solutions to the 3D Euler system. Transactions of the American Mathematical
Society 370, no. 4 (2018): 2517-2535.

[27] Squire, H. B.: Rotating fluids. Surveys in Mechanics. A collection of Surveys of the present position of Research
in some branches of Mechanics, written in Commemoration of the 70th Birthday of Geoffrey Ingram Taylor,
Eds. G. K. Batchelor and R. M. Davies. 139–169, (1956).

[28] Vanneste, J., and Wirosoetisno, D. Two-dimensional Euler flows in slowly deforming domains. Physica D: Non-
linear Phenomena, 237(6), 774-799. (2008).

[29] Wirosoetisno, D., and Vanneste, J.: Persistence of steady flows of a two-dimensional perfect fluid in deformed
domains. Nonlinearity 18.6 (2005): 2657.

[30] Wirosoetisno, D., and Shepherd, T. G.: On the existence of two-dimensional Euler flows satisfying energy-Casimir
stability criteria. Physics of Fluids, 12(3), 727-730, (2000).

Department of Mathematics, Princeton University, Princeton, NJ 08544
Email address: const@math.princeton.edu

Department of Mathematics, Princeton University, Princeton, NJ 08544
Current address: Department of Mathematics, Stony Brook University, Stony Brook, NY, 11794

Email address: tdrivas@math.princeton.edu, tdrivas@math.stonybrook.edu

Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544
Email address: dg42@princeton.edu


	1. Introduction
	2. Rigidity: Liouville Theorems
	2.1. Proof of Theorem 1.1 
	2.2. Proof of Theorem 1.4 
	2.3. Proof of Theorem 1.6 

	3. Flexibility: Deforming Domains
	4. Applications to Fluid Systems 
	4.1. Proof of Theorem 1.2 
	4.2. Proof of Theorem 1.3 
	4.3. Proof of Theorem 1.5 
	4.4. Proof of Theorem 1.7 

	Appendix A. Proof of Lemma 3.1
	Appendix B. Proof of Proposition 3.1
	Appendix C. Proof of Theorem 3.1
	C.1. Perturbative Assumptions
	C.2. Boundary conditions
	C.3.  Governing equations for  and s 
	C.4.  Recovering  from s 
	C.5. The iteration to solve the nonlinear elliptic system
	C.6. Uniform estimates for the iterates
	C.7. Cauchy estimates for the iterates
	C.8. Convergence of the boundary term
	C.9. Proof of Theorem 3.1
	C.10. Proof of Theorem 3.2

	Appendix D. Elliptic Estimates
	Appendix E. Streamline geometry
	Acknowledgments

	References

