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Abstract. We give an example of a well posed, finite energy, 2D incom-
pressible active scalar equation with the same scaling as the surface
quasi-geostrophic equation and prove that it can produce finite time
singularities. In spite of its simplicity, this seems to be the first such
example. Further, we construct explicit solutions of the 2D Boussinesq
equations whose gradients grow exponentially in time for all time. In
addition, we introduce a variant of the 2D Boussinesq equations which
is perhaps a more faithful companion of the 3D axisymmetric Euler
equations than the usual 2D Boussinesq equations.
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1. Introduction

The purpose of this paper is threefold: first, to provide an example of an in-
compressible 2D active scalar, similar to the inviscid surface quasi-geostrophic
(SQG) equation, that possesses a family of solutions which develop finite-time
singularities; second, to construct a class of explicit solutions to the inviscid
2D Boussinesq equations that grow exponentially in time; and third, to pro-
pose for study a modified 2D Boussinesq system, that appears to provide a
closer comparison to the 3D axisymmetric Euler equations than the standard
2D Boussinesq equations. All the calculations are elementary, and the results
serve as didactic examples.

The inviscid SQG equation is{
∂tθ + u · ∇θ = 0, x ∈ R2, t > 0,

u = ∇⊥ψ ≡ (−∂x2
, ∂x1

)ψ, Λψ = θ,
(1.1)
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where θ and ψ are scalar functions of x and t, u denotes the 2D velocity
field and Λ = (−∆)

1
2 denotes the Zygmund operator, which can be defined

through the Fourier transform

Λ̂f(ξ) = |ξ|f̂(ξ).

The inviscid SQG equation is useful in modeling atmospheric phenomena such
as frontogenesis, the formation of strong fronts between masses of hot and
cold air ([4, 6, 7, 11]). In addition, the inviscid SQG equation is a significant
example of a 2D active scalar and some of its distinctive features have made
it an important testbed for turbulence theories ([1]). Mathematically, the
inviscid SQG equation is difficult to analyze, and the issue of whether its
solutions can develop singularities in a finite time remains open. Other active
scalars with the same scaling u ∼ θ include the porous medium (or Muskat)
equation where u = (0, θ) + ∇p. The blow up problem from smooth initial
data is open there as well (see [2] and references therein). Here we give a first
example of a 2D incompressible active scalar equation with a velocity field
having the same level of regularity and scaling as the active scalar, u ∼ θ,{

∂tθ + u · ∇θ = 0, x ∈ R2, t > 0,

u = ∇⊥ψ, −∂x2ψ = θ.
(1.2)

The only difference between (1.1) and (1.2) is the equation relating ψ and θ.
It is not very difficult to see that (1.2) is locally well-posed in a sufficiently
regular functional setting. What is more striking about this model is that
(1.2) admits a family of solutions which develop finite-time singularities even
though they are initially smooth and have finite energy.

Very recently Luo and Hou performed careful numerical simulations of
the 3D axisymmetric incompressible Euler equations which suggested the
appearance of a finite-time singularity [9]. We briefly describe the setup and
their main result. The spatial domain is the cylinder{

(x1, x2, z) : r ≡
√
x21 + x22 ≤ 1, 0 ≤ z ≤ L

}
with periodic boundary conditions in the z-direction and no-penetration con-
dition on the solid boundary r = 1. The angular components of the velocity,
vorticity and stream functions are odd with respect to z across z = 0. The
velocity on the unit circle z = 0, r = 1 vanishes, and thus all points on this
circle are stagnation points. According to [9], the vorticity of a numerical
solution at the stagnation points blows up in finite time. This finite-time
singularity does not appear to be well understood theoretically. Motivated
by the numerical simulations of Luo and Hou, Kiselev and Sverak recently
proved the double exponential growth (in time) of the vorticity gradient of
2D Euler solutions in the unit disk [8]. The odd symmetry, the stagnation
point and the boundary appear to be important in their work. Other pursuits
for lower bounds for the vorticity gradient of the 2D Euler equation can be
found in [5, 12]. Our goal here is to provide explicit solutions to the 2D in-
compressible Boussinesq equations which exhibit exponential growth in time.
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The 2D Boussinesq equations are


∂tω + u · ∇ω = ∂x1

θ, x ∈ R2, t > 0,
∂tθ + u · ∇θ = 0,

u = ∇⊥ψ, ∆ψ = ω.
(1.3)

As pointed out in [10], (1.3) is closely related to the 3D axisymmetric Euler
equations. We construct two families of solutions of (1.3). The first family is
given in a fixed domain with a stagnation point at the corner of the domain.
The solutions in the family have an odd symmetry with respect to x2 = 0,
i.e. they are odd as functions of x2, in the direction of gravity, and have ∇θ
growing exponentially in time. The second family of solutions of (1.3) consists
of smooth global solutions in a domain with a moving boundary. Both ∇ω
and ∇θ grow exponentially in time. It may be possible to further exploit and
extend these constructions to obtain solutions with gradients with double
exponential growth.

We also propose for study the following modified 2D Boussinesq system


∂tω + u · ∇ω = −∂x2

(θ2), x ∈ R2, t > 0,
∂tθ + u · ∇θ = 0,

u = ∇⊥ψ, ∆ψ = ω.
(1.4)

(1.4) differs from (1.3) on the right-hand side of the vorticity equation, and
has a different parity symmetry. Note that the gravity now points in the x1
direction, which might be confusing but it is done to mimic the set-up of
Luo and Hou, but the main difference with usual Boussinesq is that but both
θ and ω are allowed to be odd in x2, i.e. in the direction perpendicular to
gravity, not parallel to it. As explained in Section 4, (1.4) appears to be a
more exact match with the 3D axisymmetric Euler equations as set up in the
numerical simulations of Luo and Hou [9]. We construct a class of solutions
of (1.4) whose gradients exhibit exponential growth.

The rest of the paper is divided into three sections. The second section
details the active scalar model similar to the SQG equation and describes its
solutions which develop finite-time singularities. The third section constructs
two families of solutions to the 2D Boussinesq equations while the last section
presents a variant of the 2D Boussinesq equations and some of its explicit
solutions with exponential gradient growth.

2. A 2D model with finite-time singularity

This section presents an active scalar equation transported by an divergence-
free velocity field that admits solutions with finite-time singularities.
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Consider the initial-value problem (1.2), namely
∂tθ + u · ∇θ = 0, x ∈ R2, t > 0,

u = ∇⊥ψ, −∂x2
ψ = θ,

ψ(x, 0) = ψ0(x).
(2.1)

It is not difficult to see that (2.1) is locally well-posed if ψ0 ∈ Hs(R2) with
s > 3 and θ0 = −∂x2

ψ0 ∈ L1(R2). Now, we assume that the initial stream
function ψ0, the initial active scalar θ0 and the initial-velocity u0 obey the
following symmetry, for any (x1, x2) ∈ R2,

ψ0(x1,−x2) = −ψ0(x1, x2), θ0(x1,−x2) = θ0(x1, x2),

u01(x1,−x2) = u01(x1, x2), u02(x1,−x2) = −u02(x1, x2).

It is easy to check that the corresponding solution of (2.1) preserves this
symmetry. In particular, u2(x1, 0, t) = 0 and the equation for θ on the x1-
axis becomes

∂tθ(x1, 0, t) + u1(x1, 0, t)∂x1
θ(x1, 0, t) = 0.

or

∂tθ(x1, 0, t) + θ(x1, 0, t)∂x1θ(x1, 0, t) = 0, (2.2)

which is the inviscid Burgers equation. It is well-known that Burgers’ equation
can develop discontinuities. In fact, if the initial data satisfies

∂x1
θ0(x1, 0) < 0 for some x1 ∈ R,

then the corresponding solution θ(x1, 0, t) of (2.2) becomes singular in a finite
time, namely ∂x1

θ becomes infinity in a finite time. One could also restrict
to a periodic domain and obtain a finite time blow up. For example,

ψ0(x1, x2) = − cos(x1) sin(x2)

will generate a solution that becomes singular in a finite time.

3. Explicit solutions of the 2D Boussinesq equations

In this section we construct two families of solutions to the 2D Boussinesq
equations given by (1.3). The first family of solutions is defined in a wedge and
the gradient of θ grows exponentially in time. The second family of solutions
is close to the first family, but it is defined in a smooth domain with a moving
boundary, and the gradients of both ω and θ grow exponentially in time.

3.1. Explicit solutions in a wedge

The spatial domain is bounded by two half-lines in the positive half-plane:

x2 = 2x1, x2 = −2x1, x1 ≥ 0.
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The stream function, the velocity field and the vorticity are given by

ψ(x) =

{
x2
2

2 − x1x2, x2 ≥ 0,

−x
2
2

2 − x1x2, x2 < 0;

u1(x) =− ∂x2
ψ =

{
−x2 + x1, x2 ≥ 0,
x2 + x1, x2 < 0;

u2(x) =∂x1ψ = −x2;

ω(x) =∆ψ =

{
1, x2 ≥ 0,
−1, x2 < 0;

It is clear that ψ = 0 on the boundary of the domain and, consequently, u
satisfies the no-penetration boundary condition. Given any initial data θ0(x)
depending only on x2 and odd with respect to x1-axis, namely

θ0(x) = θ0(x2), θ0(−x2) = −θ0(x2), x2 ∈ R,

the corresponding solution θ(x, t) preserves these properties and satisfies{
∂tθ(x2, t)− x2 ∂x2

θ(x2, t) = 0,
θ(x, 0) = θ0(x2).

(3.1)

Integrating on characteristics, θ is given by

θ(x2, t) = θ0(etx2).

with arbitrary odd θ0. It is easy to see that the gradient of any solution to
(3.1) grows exponentially in time. In fact, ∂x2θ satisfies

∂t(∂x2θ)− ∂x2θ − x2∂x2(∂x2θ) = 0,

which is solved by

∂x2θ = et (θ′0)(etx2).

A special example is given by

θ(x, t) = sin(x2 e
t), ∂x2θ(x, t) = et cos(x2 e

t).

Many other explicit solutions can be obtained by taking different initial data.

3.2. Explicit smooth solutions in a moving domain

The spatial domain in the previous subsection has a sharp corner at the origin
and the vorticity has jumps when crossing the x1-axis. In this subsection we
construct a smooth solution.

For σ(x2, t) to be explicitly determined later, we seek solutions with
stream function, velocity field and vorticity given by

ψ(x) =


1
2σ(x2, t)x

2
2 − x1x2, x2 ≥ 0,

− 1
2σ(x2, t)x

2
2 − x1x2, x2 < 0;
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u1(x) =− ∂x2ψ =

 −σ(x2, t)x2 − 1
2x

2
2 ∂x2σ + x1, x2 ≥ 0,

σ(x2, t)x2 + 1
2x

2
2 ∂x2

σ + x1, x2 < 0;

u2(x) =∂x1
ψ = −x2;

ω(x) =∆ψ =


1
2 ∂

2
x2

(σ(x2, t)x
2
2), x2 ≥ 0,

− 1
2 ∂

2
x2

(σ(x2, t)x
2
2), x2 < 0.

Consequently, the boundary of the domain is given by ψ = 0, namely

2x1 = σ(x2, t)x2, 2x1 = −σ(x2, t)x2.

Since the vorticity depends only on x2, the vorticity equation is reduced to

∂tω − x2 ∂x2ω = 0, ω(x2, 0) = ω0(x2),

which is solved by
ω(x, t) = ω0(etx2).

Therefore, σ(x2, t) must satisfy

∂2x2
(σ(x2, t)x

2
2) = 2ω0(etx2), for x2 > 0 and −∂2x2

(σ(x2, t)x
2
2) = 2ω0(etx2), for x2 < 0.

We also seek a solution θ depending on x2 and t only, namely θ = θ(x2, t),
then

∂tθ − x2 ∂x2
θ = 0, θ(x2, 0) = θ0(x2),

which is solved by
θ(x, t) = θ0(etx2).

Some special examples of the solutions include

ψ(x, t) =
1

6
x32 e

t − x1x2, ω = x2 e
t, θ = x2 e

t

in the domain bounded by x1 = 1
6x

2
2 e

t.

4. A variant of the 2D Boussinesq equations

In this section we suggest a new 2D Boussinesq system for study. This new
system modifies the standard 2D Boussinesq equations and appears to be
a more direct parallel to the 3D axisymmetric Euler equations. A class of
explicit solutions are constructed to exemplify the behavior of it solutions.

The modified 2D Boussinesq equations are given in (1.4). We explain
why this modified system is identical to the 3D axisymmetric Euler equations,
away from the axis of symmetry. We first recall the 3D axisymmetric Euler
equations in cylindrical coordinates (see, e.g., [3, 10]). Let er, eθ and ez be
the orthonormal unit vectors defining the cylindrical coordinate system,

er =
(x1
r
,
x2
r
, 0
)
, eθ =

(
−x2
r
,
x1
r
, 0
)
, ez = (0, 0, 1),

where r =
√
x21 + x22. A vector field v is axisymmetric if

v = vr(r, z, t) er + vθ(r, z, t) eθ + vz(r, z, t) ez.
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The 3D axisymmetric Euler equations can be written as

D̃

Dt
(ruθ) = 0,

D̃

Dt

(
ωθ

r

)
= − 1

r4
∂z(ru

θ)2,

(
∂2r + 1

r∂r + ∂2z − 1
r2

)
ψθ = ωθ,

(4.1)

where uθ, ωθ and ψθ are the angular components of the velocity, vorticity
and stream function, respectively, and

D̃

Dt
= ∂t + ur∂r + uz∂z.

(4.1) is a complete system since ur and uz can be recovered from ψθ by

ur = −∂zψθ, uz =
1

r
∂r(rψ

θ).

Therefore the divergence-free condition

∂r(ru
r) + ∂z(ru

z) = 0

is automatically satisfied. We remark that the notation in the book of Majda
and Bertozzi [10, p.62-66] is slightly different from that in Luo and Hou [9].
In particular, ψ in [10] corresponds to rψθ in [9] and ωθ in [10] corresponds
to −ωθ in [9].

[9] numerically solved (4.1) in the cylinder

D(1, L) = {(r, z) : 0 ≤ r ≤ 1, 0 ≤ z ≤ L}

with the initial data

uθ0(r, z) = 100r e−30(1−r
2)4 sin

(
2π

L
z

)
, ωθ0(r, z) = ψθ0(r, z) = 0

subject to the periodic boundary condition in z,

uθ(r, 0, t) = uθ(r, L, t), ωθ(r, 0, t) = ωθ(r, L, t), ψθ(r, 0, t) = ψθ(r, L, t)

and the no-flow boundary condition on the solid boundary r = 1,

ψθ(1, z, t) = 0.

Since the initial data (uθ0, ω
θ
0 , ψ

θ
0) is odd with respect to z = 0, the solution

(uθ, ωθ, ψθ) is also odd with respect to z = 0. Consequently,

ur(1, z, t) = 0, uz(r, 0, t) = 0.

In particular, at z = 0 and r = 1,

u = (ur, uθ, uz) = 0

and all points on this circle are stagnation points.
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The modified 2D Boussinesq system that we propose for study is given
by (1.4), namely

∂tω + u · ∇ω = −∂x2
(ρ2), x ∈ R2, t > 0,

∂tρ+ u · ∇ρ = 0,

u = ∇⊥ψ, ∆ψ = ω.

(4.2)

We changed the name of the scalar θ to ρ in order to avoid confusing it with
the notation for the angular variable. We have the following correspondence
between (4.1) and (4.2):

r ↔ x1, z ↔ x2, ruθ ↔ ρ,
ωθ

r
↔ ω, (ur, uz)↔ u, ψθ ↔ ψ.

Thus, away from the symmetry axis, the behavior of the solutions to these
two systems are expected to be identical. In addition, both ω and ρ can have
the same parity symmetry with respect to x2 = 0 (they are both odd). Note
that the direction x2 is not the direction of gravity, but it is perpendicular
on it.

We seek a family of solutions to (4.2) independent of x1,

ω = ω(x2, t), u2 = u2(x2, t), ρ = ρ(x2, t).

Then, from ∂1u2 − ∂2u1 = ω we have −∂2u1 = ω(x2, t), which yields

u1 = −
∫ x2

0

ω(s, t)ds+ φ(x1, t)

for some function φ(·). By the divergence free condition we have

∂1u1 = φ′(x1, t) = −∂2u2 = −u′2(x2, t),

from which we obtain

u2(x2, t) = −φ′(x1, t)x2 + ψ(x1, t), ∀x1, x2 ∈ R
for a function ψ(·). This provides us with φ′(x1, t) = C1(t), ψ(x1, t) = C2(t),
and

u2(x2, t) = C1(t)x2 + C2(t).

The divergence free condition again provides us with

u1(x, t) = −C1(t)x1 + f(x2, t)

for some f(·, ·). To make a comparison with the setup in [9], we further assume
the odd symmetry with respect to x2 = 0. To simplify the calculation, we
also assume that u2 is time independent. Then we have further reduction;
C1 =constant, C2 = 0, and thus.

u2 = −x2, u1 = x1 + f(x2, t).

The equations for ω and ρ are now reduced to{
∂tω − x2∂x2ω = −∂x2(ρ2),
∂tρ− x2∂x2

ρ = 0.
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From this system we find that the solution ρ is given by

ρ(x2, t) = ρ0(etx2),

and ω by

ω(x2, t) = ω0(etx2)− 2(et − 1)ρ0(etx2)ρ′0(etx2)

with ρ0, ω0 arbitrary functions of one variable. If we choose, in particular,
ρ0(x2) = x2(fixed), and ω0(x2) = x1012 , sinh(x2), sinh(sinhx2), etc, we find
that arbitrary growth (algebraic, exponential, double exponential, etc) in ω0

in space engenders arbitrary growth in time for |∂2ω(x2, t)| (exponential, dou-
ble exponential, triple exponential, etc). Other special example is as follows:

ψ =


(
1− 2

3e
t(et − 1)x2

) x2
2

2 − x1x2, x2 ≥ 0,

−
(
1 + 2

3e
t(et − 1)x2

) x2
2

2 − x1x2, x2 < 0;

u1 =− ∂x2ψ =

 −x2 + et(et − 1)x22 + x1, x2 ≥ 0,

x2 + et(et − 1)x22 + x1, x2 < 0;

u2 =∂x1
ψ = −x2

and

ω =∆ψ =

 1− 2x2e
t(et − 1), x2 ≥ 0,

−1− 2x2e
t(et − 1), x2 < 0;

ρ =x2e
t.

One may also construct examples with fast oscillations such as

ω =

 1− (et − 1) sin(2x2e
t), x2 ≥ 0,

−1− (et − 1) sin(2x2e
t), x2 < 0;

ρ = sin(2x2e
t).
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