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ABSTRACT. We review some results about nonlocal advection-diffusion equations based on lower bounds for
the fractional Laplacian.

To Haim, with respect and admiration.

1. Introduction

Nonlocal and nonlinear advection-diffusion equations arise in hydrodynamics and are of general scien-
tific and mathematical interest. In this paper I would like to present concisely some of the results in the
area, with enough detail to capture the main ideas, but without all the technical details that might end up by
obscuring them (and taking too much space). The equations are of the type

∂tθ + u · ∇θ + κΛsθ = 0 (1)

for θ(x, t) a real scalar-valued function of x ∈ Rd and t ≥ 0, with u given by

u = P (Λ)R⊥θ, (2)

and where we denote
Λ = (−∆)

1
2 (3)

and
R = ∇Λ−1 (4)

the Riesz transforms. We define R⊥ = MR where M is a fixed antisymmetric constant matrix. In most of
our discussions below d = 2 andR⊥ isR rotated counterclockwise by 90 degrees. Note that by construction

∇ · u = 0. (5)

The power s and the real function P (λ) define the model, and the nonnegative constant κ distinguishes
between the inviscid (κ = 0) and dissipative (κ > 0) cases. The major examples are, for d = 2, P (λ) =
λ−1 with s = 2, and P (λ) = λ0 with s = 1. The case P (λ) = λ−1, s = 2 corresponds to the 2D
Euler and, respectively, the Navier-Stokes equations. The case P (λ) = λ0 and s = 1 corresponds to the
inviscid Surface Quasi-Geostrophic equation (SQG), and, respectively, to the critical dissipative SQG. The
term “critical” here refers to the fact that the pseudodifferential order of the dissipation is the same as the
differential order of the nonlinear term. This is criticality in the sense of Goldilocks: the case s > 1 is too
easy, the case s < 1 is too hard, and the case s = 1 is just right. There is no reason why criticality in the
sense of Goldilocks cannot be true criticality, i.e. a threshold for qualitative change. In the Burgers equation
with fractional dissipation, s = 1 is a true critical case: blow up behavior occurs for s < 1, and does not for
s ≥ 1 ([1], [23]).

It is well-known that the 2D Euler equations have global smooth solutions if the initial data are smooth
and localized. In fact, a slightly more singular constitutive equation P (λ) = λ−1 log log(e + λ) still gives
rise to global smooth solutions ([5]). It is not known if solutions with P (λ) growing faster at infinity have
global smooth solutions.

Key words and phrases. nonlocal, advection, diffusion, fractional Laplacian.
MSC Classification: 35Q35, 35Q86.

1



2 PETER CONSTANTIN

SQG appeared as an equation for frontogenesis in meteorology, but its mathematical study was devel-
oped because of analogies with 3D incompressible Euler equations ([9], [20]). The inviscid SQG equation
is

∂tθ + u · ∇θ = 0, u = R⊥θ. (6)

We briefly recall some of the analogies between 2D SQG and 3D Euler equations. The 3D Euler
equations are conservative (kinetic energy is conserved) but they could potentially form a first singularity
from smooth and localized initial data at time T . This could happen if, and only if, the vorticity ω = ∇× u
diverges in L∞ in such a manner that ∫ T

0
‖ω‖L∞(R3)dt =∞. (7)

This is the celebrated Beale-Kato-Majda criterion ([2]). The vorticity has special properties in the 3D Euler
equations. It evolves according to

∂tω + u · ∇ω = ω · ∇u. (8)

In this equation, the advecting velocity is one derivative smoother than the advected vector ω. In two
dimensions the right-hand side of (8) vanishes identically. In three dimensions this stretching term can
produce growth of vorticity magnitude. The equation is geometric, it is the transport equation for tangent
fields, and it is equivalent to the commutation relation

[Dt, ω · ∇] = 0 (9)

where Dt = ∂t + u · ∇ is material derivative. The meaning of this relation is that the integral curves of the
vector field ω(·, t) are transported by the flow: vortex lines are material curves.

Inviscid SQG in 2D has all these properties: it is conservative (kinetic energy is conserved) and the
vector ω = ∇⊥θ (not to be confused with the curl of the SQG velocity u) obeys the same transport equation
(8) by a velocity u that is one derivative smoother, and the same commutation relation (9) holds. The
transported integral lines are level sets of the scalar θ. The same Beale-Kato-Majda criterion (7) applies.
Both the Euler equations and SQG have a geometric depletion of nonlinearity that reduces the order of the
nonlinear stretching if the direction field ω

|ω| is regular in regions of high |ω|.
There are differences between the two equations: SQG has more known conservation laws: the whole

distribution function of θ is conserved, and the Ḣ−
1
2 norm is conserved as well. Nevertheless, the blow up

problem is open for both the 3D Euler and the 2D SQG equations.
The 2D SQG equations have a form of weak continuity of the nonlinearity that permits the construction

of weak solutions in L2 from arbitrary initial data ([25]). In fact, local existence of smooth solutions and
global existence of weak solutions holds for inviscid equations with P (λ) = λ−1+β for 1 ≤ β ≤ 2 ([6]).

The critical dissipative SQG has global smooth solutions. This was proved independently by Caffarelli
and Vasseur ([4]) and by Kiselev, Nazarov and Volberg ([21]). The proofs are different in spirit. The proof
of ([4]) uses a harmonic extension and a de Giorgi methodology of zooming in. The proof of ([21]) uses an
invariant family of moduli of continuity. Other proofs exist ([22]). An extension of an inequality of Córdoba
and Córdoba ([14]) providing a nonlinear lower bound for the fractional Laplacian ([11]) was used for yet a
different proof. The proof I describe below appeared in ([10]) and was used to study long time behavior of
forced critical SQG. Global regularity can be obtained also for critical modified SQG equations ([8]) and for
slightly supercritical SQG equations ([16], [17], [29]). The problem of global existence of smooth solutions
for supercritical SQG, by which we mean equations (1) with u given in (2) with P (λ) = λ0 and with κ > 0
but 0 < s < 1, is open. Solutions of supercritical s < 1 drift diffusion equations with u ∈ Cα, with
α = 1− s are Hölder continuous with small exponent ([13], [26]). This condition is sharp in the sense that
there exist linear drift diffusion equations with drift of lower regularity than C1−s for which the solutions
loose continuity in finite time ([28]). Higher regularity is obtained if u ∈ Cα with α > 1 − s ([12], [19]).
Thus, in the critical case s = 1, any Cα regularity with α > 0 implies full regularity. All weak solutions the
supercritical SQG become regular after a finite time ([18], [24], [27], [15]).
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In this paper we discuss a method of proof based on lower bounds for the fractional Laplacian. We
discuss results in the whole space Rd, and comment on counterparts in the case of bounded domains. In
order to make the presentation simple, we discuss only the critical dissipative SQG.

2. Lower Bounds

The motivation for the lower bounds is as follows: we consider the equation

∂tθ + u · ∇θ + Λθ = 0, u = R⊥θ (10)

with initial data θ0. Suppose the problem is set in Rd and we would like to prove that smooth initial data (in
appropriate sense) give rise to solutions that remain smooth for all time. It is known that the equation has
weak solutions with a weak maximum principle ([25])

sup
t
‖θ‖L∞ ≤ ‖θ0‖L∞ . (11)

Differentiating the equation results formally in

∂tg + u · ∇g = −Λg − (∇u)T g (12)

for g = ∇θ. Because ∂t + u · ∇ is pure transport, it does not add size to g. We would like Λg to win the
battle with (∇u)g. This leads us to consider Λg for functions g which are gradients of bounded functions.

It is quite remarkable that Λg, as it turns out, does in fact beat (∇u)g, because ∇u ∼ g, and for large
data the battle looks hopeless.

The fractional Laplacian has an explicit kernel in Rd,

Λsf(x) = cPV

∫
Rd

f(x)− f(y)

|x− y|d+s
dy (13)

and it is this explicit form that was used in ([11]) to prove the lower bound that we are discussing. We
are also interested in the same problem in bounded domains, where ΛD is the Dirichlet Laplacian. This is
defined in terms of the eigenfunction expansion, and the kernel is not explicit. Let us consider a bounded
open domain Ω ⊂ Rd with smooth boundary. Let ∆ denote the Laplacian operator with homogeneous
Dirichlet boundary conditions. Its L2(Ω) - normalized eigenfunctions are denoted wj , and its eigenvalues
counted with their multiplicities are denoted λj :

−∆wj = λjwj . (14)

It is well known that 0 < λ1 ≤ ... ≤ λj →∞ and that −∆ is a positive selfadjoint operator in L2(Ω) with
domainD (−∆) = H2(Ω)∩H1

0 (Ω). Functional calculus can be defined using the eigenfunction expansion.
In particular

(−∆)α f =

∞∑
j=1

λαj fjwj (15)

with
fj =

∫
Ω
f(y)wj(y)dy

for f ∈ D ((−∆)α) = {f | (λαj fj) ∈ `2(N)}. We denote by

ΛsD = (−∆)α , s = 2α (16)

the fractional powers of the Dirichlet Laplacian, with 0 ≤ α ≤ 1 and with ‖f‖s,D the norm in D (ΛsD):

‖f‖2s,D =

∞∑
j=1

λsjf
2
j . (17)

Note that in view of the identity

λα = cα

∫ ∞
0

(1− e−tλ)t−1−αdt, (18)
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with

1 = cα

∫ ∞
0

(1− e−s)s−1−αds,

valid for 0 ≤ α < 1, we have the representation

((−∆)α f) (x) = cα

∫ ∞
0

[
f(x)− et∆f(x)

]
t−1−αdt (19)

for f ∈ D ((−∆)α). The same representation holds in the whole space (using the Fourier transform). The
kernel of the heat semigroup in the whole space is explicit

Gt(z) = (4πt)−
d
2 e−

|z|2
4t (20)

and this, together with the fact that
∫
Rd Gt(z)dz = 1 gives

Λsf(x) = c

∫ ∞
0

t−1− s
2

∫
Rd
Gt(z)(f(x)− f(x− z))dz,

which yields (13). It is known that the kernel HD(x, y, t) of the Dirichlet heat semigroup in bounded
domains,

HD(x, y, t) =
∞∑
j=1

e−tλjwj(x)wj(y), (21)

is positive and nonsingular for t > 0, and this is enough to prove the analogue of the Córdoba-Córdoba
inequality ([14]) in the case of bounded domains as well ([7]):

PROPOSITION 1. Let Φ be a C2 convex function satisfying Φ(0) = 0. Let f ∈ C∞0 (Ω) and let 0 ≤ s ≤
2. Then

Φ′(f)Λsf − Λs(Φ(f)) ≥ 0 (22)
holds pointwise almost everywhere in Ω.

In order to go beyond this inequality, more information about the kernel is needed. Let us explain the
case of Rd, Φ(f) = 1

2f
2 and s = 1. We define D2(g),

D2(g)(x) = g(x)Λg(x)− 1

2
Λg2(x), (23)

and estimate it for a scalar valued function g = ∂1f where ∂1 is a partial derivative, and f is a bounded
function. We use the explicit representation (13) and compute

D2(g)(x) =
c

2

∫
Rd

(g(x)− g(y))2

|x− y|d+1
dy (24)

We take a smooth radial cutoff function ψ(r) obeying 0 ≤ ψ(r) ≤ 1 with ψ(r) = 0 for r ∈ [0, 1
2 ]

ψ(r) = 1 on r ∈ [1,∞). We take an arbitrary length ` (to be chosen later) and write

D2(g)(x) ≥ c

2

∫
Rd
ψ

(
|x− y|
`

)
(g(x)− g(y))2

|x− y|d+1
dy (25)

We open brackets and ignore one positive term

D2(g)(x) ≥ c
2g

2(x)
∫
Rd ψ

(
|x−y|
`

)
1

|x−y|d+1dy − cg(x)
∫
Rd ψ

(
|x−y|
`

)
g(y)

|x−y|d+1dy

= G(x)−B(x)
(26)

It is time to remember that g = ∂1f . We integrate by parts in the bad term B(x) and bound from above:

|B(x)| ≤ C1|g(x)|`−2‖f‖L∞
We bound the good term G(x) below:

G(x) ≥ C2g
2(x)`−1.
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Now we choose ` so that |B(x)| ≤ 1
2G(x), i.e.

`−1 ≤ C3|g(x)|‖f‖−1
L∞

This proves ([11])
D2(g)(x) ≥ C‖f‖−1

L∞ |g(x)|3. (27)
This is effectively a cubic lower bound for a quadratic form, given the existing information on f . The fact
that the kernel was precisely a power was not important. What we used was: the translation invariance (the
kernel is a function of x − y), the positivity of the kernel, the fact that the kernel is not integrable near the
origin, and the fact that the kernel is integrable at infinity. The translation invariance requirement can be
relaxed. In fact, a similar lower bound can be obtained in the case of the fractional Laplacian with Dirichlet
boundary conditions ΛD ([7]):

D2(g)(x) ≥ C‖f‖−1
L∞ |gd(x)|3. (28)

where gd(x) = g(x) if |g(x)| ≥ ‖f‖L∞
(dist(x,∂Ω)) and gd = 0 otherwise. The proof of this fact requires a different

treatment, because we don’t have in general explicit representations of the kernel of the fractional Laplacian.
We use instead the heat kernel representation (19) and precise lower bounds on the heat kernel and upper
bounds on its gradient.

There are many possible variants of the arguments above and lower bounds, corresponding to the avail-
able information on g. A useful variant concerns finite differences, when

g(x) = (δhf)(x) = f(x+ h)− f(x)

where h is vector in Rd. Then, in the case of Rd we obtain

D2(δhf)(x) ≥ C|h|−1‖f‖−1
L∞ |δhf(x)|3. (29)

3. Hölder regularity

The velocity advecting the scalar θ in (10) is given explicitly by

u(x, t) = cP.V.

∫
Rd

(x− y)⊥

|x− y|d+1
θ(y, t)dy. (30)

We take a finite difference g = δhθ and compute its evolution:

(∂t + u · ∇x + δh(u) · ∇h + Λ) g = 0. (31)

We used here the fact that δh(u) · ∇xθ(x+ h) = δh(u) · ∇h(δhu)(x). Let us denote by L the operator

L = (∂t + u · ∇x + δh(u) · ∇h + Λ) (32)

and note that it has a weak maximum principle. The easiest way to see this is by time-splitting: the short time
evolution under the pure transport term does not add size, and the short time evolution under the dissipative
semigroup does not add size either. We multiply (31) by g in order to have nonnegative quantities, obtain

1

2
L(g2) +D2(g) = 0, (33)

and then we divide by |h|2α:
1

2
L(|h|−2αg2) + |h|−2αD2(g) =

1

2

(
δh(u) · ∇|h|−2α

)
g2. (34)

The right-hand side is bounded by∣∣∣∣12 (δh(u) · ∇|h|−2α
)
g2

∣∣∣∣ ≤ α|δh(u)||h|−2α−1g2. (35)

The job of |h|−2αD2(g) is to be larger than this bound of the right hand side. As usual in critical cases,
constants do matter. Nevertheless, we use the same name C for all constants; they are explicitly computable
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and universal, and the order in which they are computed can be easily unraveled by the interested reader.
We know from (29) that

|h|−2αD2(g) ≥ C‖θ‖−1
L∞ |h|

−2α−1g3. (36)

Now δhu ∼ g is true in spirit, but not in flesh (pointwise). We use the representation (30) and split

δhu = δhuin + δhuout (37)

with

δhuin = cP.V.

∫
Rd

(
1− ψ

(
|x− y|
`

))
(x− y)⊥

|x− y|d+1
(g(y)− g(x))dy (38)

and

δhuout = cP.V.

∫
Rd
δ−h

[
ψ

(
|x− y|
`

)
(x− y)⊥

|x− y|d+1

]
θ(y)dy (39)

with the ψ we used before and with an ` we’ll choose shortly. We used translation invariance and, in (38)
we used the fact that g = δhθ and the vanishing of the spherical averages of the kernel, while in (39) we
moved the finite difference onto the kernel. We bound δhuin using the expression (24):

|δhuin(x)| ≤ C
√
`D2(g) (40)

and we bound δhuout by

|δhuout(x)| ≤ C |h|
`
‖θ‖L∞ . (41)

These bounds are easily obtained using Schwartz inequalities in the first and the homogeneity and smooth-
ness of the kernel in the second. The term α|h|−2α−1g2|δhuin| in (35) can be hidden in 1

4 |h|
−2αD2(g)

(using Young’s inequality) and the price is

Cα2`|h|−2−2αg4.

Let us choose
` = |h|g−1‖θ‖L∞ (42)

and so the price is
Cα2|h|−1−2αg3‖θ‖L∞

i.e.,

α|h|−2α−1g2|δhuin| ≤
1

4
|h|−2αD2(g) + Cα2|h|−1−2αg3‖θ‖L∞ (43)

The term α|h|−2α−1g2|δhuout| in (35) is bounded with our choice (42) of ` by

α|h|−2α−1g2|δhuout| ≤ Cα|h|−2α−1g3. (44)

Putting together the bounds (43) and (44) and using (36) in (34) we have

L(|h|−2αg) + C|h|−2α−1g3‖θ‖−1
L∞ ≤ C

(
α+ α2‖θ‖L∞

)
g3|h|−2α−1 (45)

The right-hand side and the dissipation have the same order of magnitude, g3|h|−2α−1 as it befits a critical
case. There are no adjustable parameters, except one: α itself. If this is chosen small enough

α‖θ‖L∞ ≤ c (46)

then we obtain
L(|h|−2α−1g) ≤ 0 (47)

and consequently,

sup
h6=0

sup
x,t

|δhθ(x, t)|
|h|2α

≤ sup
h6=0

sup
x

|δhθ0(x)|
|h|2α

. (48)

We proved thus ([10])
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THEOREM 1. Let θ0 ∈ L∞(Rd). There exists α depending only on ‖θ0‖L∞ such that, if θ(x, t) solves
(10) then

‖θ(·, t)‖Cα ≤ ‖θ0‖Cα (49)
holds for all t ≥ 0.

In the case of bounded domains we can obtain global existence of weak solutions ([7]).

4. Higher regularity

The proof of higher regularity of solutions given in ([12]) is done using the Littlewood-Paley decompo-
sition. Here we present a different proof based on a version of the nonlinear lower bound on the fractional
Laplacian. In this section we consider the supercritical case

∂tθ + u · ∇θ + Λsθ = 0, u = R⊥θ, (50)

with 0 < s ≤ 1, and assume we are given a solution on a time interval [0, T ] and that the solution is bounded
in Cα, with α > 1− s

sup
t∈[0,T ]

‖θ‖Cα = Γ <∞ (51)

We use now a version of the lower bound on D2(g)

D2(g)(x) = g(x)Λsg(x)− 1

2
(Λs(g2))(x) =

c

2

∫
Rd

(g(x)− g(y))2

|x− y|d+s
dy (52)

suitable for the case g = ∂1f with f ∈ Cα ([11]):

D2(g)(x) ≥ Cg2+ s
1−α ‖f‖

− s
1−α

Cα (53)

The proof of this inequality is very similar to the proof of (27) and is left as an exercise for the dilligent
reader. We differentiate (50), denote g = ∇θ and multiply by∇θ.

1

2
(∂t + u · ∇+ Λs) |g|2 +D2(g) = −g(∇u)g (54)

Notice that our assumption α > 1− s makes the situation subcritical (in the sense of Goldilocks): the lower
bound (52) is better than cubic,

D2(g) ≥ CΓ−
s

1−α g3+ s+α−1
1−α . (55)

Now in order to bound the right hand side of (54) we have again a situation in which ∇u ∼ g in spirit but
not in flesh. We split

∇u = ∇uin +∇umed +∇uout (56)
where

∇uin(x) = cP.V.

∫
Rd
χ1(|x− y|) (x− y)⊥

|x− y|d+1
(g(y)− g(x))dy, (57)

∇umed(x) =

∫
Rd
χ2(|x− y|) (x− y)⊥

|x− y|d+1
∇y(θ(y)− θ(x))dy, (58)

and

∇uout =

∫
Rd
χ3(|x− y|) (x− y)⊥

|x− y|d+1
∇θ(y)dy. (59)

We employed here a radial partition of unity χ1(r)+χ2(r)+χ3(r) = 1, where χ1 is supported on [0, 2ρ), χ2

supported on [ρ, 2) and χ3 supported on (1,∞). We choose χi so that 0 ≤ χi(r) ≤ 1 and |χ′2(r)| ≤ Cρ−1,
|χ′3(r)| ≤ C. (For example χ1(r) = φ( rρ), χ2(r) = −φ( rρ) + φ(r) and χ3(r) = 1 − φ(r) with φ smooth,
nonincreasing, 0 ≤ φ(r) ≤ 1, identically equal to 1 on [0, 1] and compactly supported in [0, 2)). We’ll
choose ρ < 1

2 below. We use (52) and a Schwartz inequality for∇uin

|∇uin(x)| ≤ Cρ
s
2

√
D2(g). (60)
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For∇umed we integrate by parts and use the assumption on θ:

|∇umed(x)| ≤ CΓρ−1+α. (61)

For∇uout we just integrate by parts
|∇uout(x)| ≤ C‖θ‖L∞ . (62)

We choose ρ to balance the first two terms:

ρ = C
[
ΓD2(g)−

1
2

] 1
1−α+ s2 (63)

and we get therefore the upper bound

|g(∇u)g| ≤ C
[
‖θ‖L∞ + Γ

s
s+2(1−α)D2(g)

1−α
s+2(1−α)

]
g2. (64)

Hiding the term involving D2(g) results in

CΓ
s

s+2(1−α)D2(g)
1−α

s+2(1−α) g2 ≤ 1

2
D2(g) + CΓ

s
1−α+s g

2(s+2(1−α))
1−α+s

The beauty of this ugly calculation is that the exponent of g above, 2(s+2(1−α))
1−α+s , is strictly smaller than the

exponent of g in the lower bound (55), 3 + s+α−1
1−α , if, and only if s + α − 1 > 0, which is precisely our

situation. This allows to hide again the right hand side,

CΓ
s

s+2(1−α)D2(g)
1−α

s+2(1−α) g2 ≤ 3

4
D2(g) + CΓ

3s
s+α−1

Putting these considerations together results in the bound
1

2
(∂t + u · ∇+ Λs) |g|2 +

1

4
D2(g) ≤ C [‖θ‖L∞ + Γ] g2 + CΓ

3s
s+α−1 . (65)

The Γ added in the term with g2 in the righ hand side of (65) is not needed if the ρ defined in (63) obeys
ρ < 1

2 . If this inequality fails, it fails because we have D2(g) ≤ CΓ2. In that case, using (60, 61, 62) with
ρ = 1

4 we obtain that
|∇u(x)| ≤ C[‖θ‖L∞ + Γ],

and that makes (65) true in all cases. We obtain therefore

THEOREM 2. Let θ be a solution of (50) obeying the bound (51) on [0, T ]. Then there exists a constant
C depending on Γ, ‖θ0‖L∞ and T such that

sup ‖∇θ‖L∞ ≤ C[‖∇θ0‖L∞ + 1]. (66)

Passing now to C1,α bounds is easy, and higher still regularity can be obtained by calculus inequalities.
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