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ABSTRACT. Electroconvection in a porous medium under a strong transversal magnetic field is described by
an active scalar equation for the charge density. The equation has global weak solutions with L∞ data. We
show that for strong enough magnetic fields, L∞-small solutions are smooth globally in time and they obey
surface quasigeostrophic equations in the limit of infinite magnetic field strength.

1. INTRODUCTION

Electroconvection, the flow of charges in fluids, is characterized by the fact that the charge density and the
fluid’s velocity and pressure are directly coupled. The charges in the solvent exert forces on the fluid. The
fluid responds to these forces while convecting the charges. This results in a nonlinearly coupled system of
equations for the charge density and the fluid’s velocity and pressure. The subject belongs to a large class of
electrohydrodynamic problems of broad scientific interest. Experimental and theoretical studies [19–21,34]
on smectic films revealed complex dynamical behavior in rotating, two-dimensional conductive fluids sub-
jected to three-dimensional electrostatic forces. In experimental studies, applied transversal magnetic fields
significantly impact the dynamics of the electroconvection [4, 24, 27–29]. In particular, when a magnetic
field is applied, the critical voltage required for instability increases, leading to enhanced system stabil-
ity [4]. Magnetic fields applied to ordered electrically sensitive fluid, such as liquid crystals in porous
media, have been documented to produce modifications in phase transitions, changes in orientational order,
alterations in the elastic properties and in the behavior of the director field [18, 25, 38].

In this paper we are concerned with mathematical properties of electroconvection in a magnetic field. We
show that in the limit of strong transversal magnetic field, the solutions of equations of electroconvection in
porous media converge to solutions of the surface quasigeostrophic equation (SQG).

The charge density q(x, t) of electroconvection in porous media is an active scalar. Active scalars [8, 35]
are transported by incompressible velocities they create by means of a time-independent equation. This
widely studied class of equations includes the two-dimensional incompressible vorticity equation, the sur-
face quasigeostrophic equation SQG and generalized g-SQG equations interpolating between them. The
SQG active scalar arose in geophysics [26] as a model of the large scale mid-latitude surface temperature
evolution in quasigeostrophic flow. Electroconvection of charges in porous media under strong magnetic
fields and atmosphere-ocean thermal dynamics are such disparate physical systems, and yet, mathematically,
they turn out to be related. The inviscid SQG equation is studied in the context of singularity formation in
fluids [8, 11, 15]. Global regularity from arbitrary smooth data is not known. The equation is ill posed in
spaces of low regularity [16, 17]. Global weak solutions were obtained in [36] (see also [12] for bounded
domains). Well-posedness and loss of regularity results have been obtained for g-SQG in the case the initial
data is a patch (that is a step function) with smooth boundary in a half-space [23,31,32,39] and fronts [5,22].
Solutions that exist for all time have been constructed. They include steady radial solutions, time-periodic
rotating solutions [7] and quasiperiodic solutions (see the monograph [37] and references therein). The crit-
ical dissipative SQG equation has global smooth solutions from arbitrary data [6, 30]. Critical dissipative
SQG is L∞ critical. Small L∞ data lead to stability and global existence [9]; for large data, an initial data
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dependent modulus of continuity [30] or a Cα norm [13] are non-increasing in time. These quantities de-
pend on the size of the initial data in L∞ and are highly sensitive to the structure of the equation: finding
them relies on the linear nonlocal equation of state of the velocity in terms of the scalar. This is a source of
difficulty in analyzing nonlinear nonlocal top-order perturbations of the critical SQG, such as we encounter
in the present work. Once these quantities are finite, higher regularity follows [14].

We describe now the electroconvection setting we are discussing in this paper. We consider an in-
compressible fluid occupying a very thin region in space, represented as the two dimensional plane Ω =
R2 = {(x, y, z) ∣ z = 0} ⊂ R3. We denote by q a charge density in Ω, denote by Ẽ = (Ẽ1, Ẽ2, Ẽ3) and
B̃ = (B̃1, B̃2, B̃3) three-dimensional electric and magnetic fields, and by ρ the total charge density ρ = 2qδΩ
as a distribution in the whole space. We also denote by E = (E1,E2) the restriction of (Ẽ1, Ẽ2) to Ω. The
three-dimensional electric field Ẽ obeys Gauss’ law

∇3 ⋅ Ẽ =
1

ϵ0
ρ = 1

ϵ0
2qδΩ, (1.1)

where ϵ0 is the vacuum permittivity and we denote by ∇3 the three dimensional gradient. The electric field
is given by an electrostatic potential Φ,

Ẽ = −∇3Φ. (1.2)
Gauss’ law gives the Poisson equation obeyed by Φ,

−∆3Φ =
1

ϵ0
2qδΩ. (1.3)

We discuss the case when q and Φ are 2π periodic functions of x and y and Φ vanishes as ∣z∣ → ∞. The
potential Φ is then given by

Φ(x, y, z) =
⎧⎪⎪⎨⎪⎪⎩

1
ϵ0
e−zΛΛ−1q, z > 0,

1
ϵ0
ezΛΛ−1q, z < 0,

(1.4)

where Λ =
√
−∆ is the square root of the two dimensional Laplacian with 2π periodic boundary conditions.

Therefore, E ∶= (Ẽ1, Ẽ2)∣z=0 can be expressed as

E = − 1

ϵ0
∇Λ−1q (1.5)

where ∇ is the two dimensional gradient. We denote by R the Riesz transforms

R = ∇Λ−1 (1.6)

and thus the electric field restricted to the domain occupied by fluid is

E = − 1

ϵ0
Rq. (1.7)

The magnetic field generated by the electric field is negligible. We consider an imposed external magnetic
field B̃ = (0,0,B) where B ≥ 0 is a constant independent of both time and space. Notice that this external
magnetic field B̃ satisfies the divergence-free condition, has zero curl, and is time-independent.

The total current density is given by the sum of the advective current (u1, u2,0)q and the Ohmic conduc-
tion current σẼ′, where σ > 0 is the conductivity of the medium and Ẽ′ is the electric field experienced by
the fluid element in its rest frame [33]. When the fluid is moving with respect to the external magnetic field
at the velocity u, using the Lorentz transformation we have

Ẽ′ = Ẽ + (u1, u2,0) × B̃.
Therefore,

j̃ = (u1, u2,0)q + σ(Ẽ + (u1, u2,0) × B̃). (1.8)
The restriction of j̃ to the surface is denoted by j = (j̃1, j̃2)∣z=0 and is therefore

j = uq + σ(E −Bu⊥), (1.9)
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where u⊥ = (−u2, u1). The surface charge density q obeys the conservation

∂tq +∇ ⋅ j = 0 (1.10)

which is, in view of (1.9),

∂tq + u ⋅ ∇q + σ(
1

ϵ0
Λq −B∇ ⋅ u⊥) = 0. (1.11)

The fluid’s divergence-free velocity u obeys an equation forced by the electrostatic force qE plus the Lorentz
force (j̃ × B̃) in the plane, which is computed as

(j̃ × B̃)∣R2 = σ
ϵ0
BR⊥q −Bqu⊥ − σB2u. (1.12)

To ease the notation we take σ = ϵ0 = 1. The total force exerted on the fluid is given by

F = BR⊥q − qRq −Bqu⊥ −B2u. (1.13)

There are two important velocity contributions in F due to the imposed external magnetic field. The first
one, −Bqu⊥, yields a rotation effect similar to a Coriolis force with frequency Bq. The second one −B2u,
is a strong damping or friction effect. Electroconvection equations couple (1.11) to a momentum equation
driven by F . For instance, the Navier-Stokes equations forced by F are

∂tu + u ⋅ ∇u − ν∆u +B2u +Bqu⊥ +∇p = BR⊥q − qRq, ∇ ⋅ u = 0, (1.14)

where ν > 0 is the kinematic viscosity. In the absence of an applied transversal magnetic field, the Navier-
Stokes electroconvection system, i.e the system (1.11), (1.14) with B = 0, was shown to have global solu-
tions in [10]. The long time dynamics were described in [1] in T2 and in [3] in bounded domains, both with,
and without time independent body forces in the fluid.

If we replace viscous friction by Darcy’s law and neglect inertial time dependence, we arrive at the
equations

µu +∇p = F, ∇ ⋅ u = 0, (1.15)

where µ > 0 is porosity. This is the fluid equation we consider in this paper. Taking µ = 1 and retaining B
as the only (large) parameter, (1.15) becomes the time independent law

(1 +B2)u +Bqu⊥ +∇p = BR⊥q − qRq, ∇ ⋅ u = 0. (1.16)

Together with the charge density equation (1.11), this gives rise to the following system,

∂tq + u ⋅ ∇q +Λq −B∇ ⋅ u⊥ = 0, (1.17)

(1 +B2)u +Bqu⊥ +∇p = BR⊥q − qRq, (1.18)
∇ ⋅ u = 0. (1.19)

The unknowns are q, u, p. Using −B∇ ⋅ u⊥ = Bω, taking the two dimensional curl of (1.18), and replacing
in (1.17), the latter becomes

∂tq +
B

1 +B2
(R⊥q ⋅ ∇q) + 1

1 +B2
u ⋅ ∇q + 1

1 +B2
Λq = 0. (1.20)

In the absence of an external magnetic field, i.e. when B = 0, the system (1.17)-(1.19) describes electro-
convection in a porous medium. The global existence for large data of smooth solutions of this system is
a challenging open problem. Global regularity for small initial data in Besov spaces smaller than L∞ was
obtained in [2].

We consider three time scales, t = tlab the laboratory time scale, t1, the magnetic gyration time scale or
first magnetic time scale, and t2, the magnetic friction time scale or second magnetic time scale. They are
related by

t1 =
B

1 +B2
t and t2 =

1

B
t1 =

1

1 +B2
t. (1.21)
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In laboratory time scale, the equation for the unknown q(x, t) is (1.20), that is

∂tq +
B

1 +B2
(R⊥q ⋅ ∇q) + 1

1 +B2
(u[q] ⋅ ∇ +Λ) q = 0, (1.22)

with u[q] = u the unique solution of

(1 +B2) (u + B

1 +B2
P(qu⊥)) = BR⊥q − P(qRq) (1.23)

where P = I + ∇(−∆)−1∇⋅ = I + R ⊗ R is the Leray projector on divergence free vector fields. The time
independent equation of state u[q] and its properties are described in detail below in Section 2.

In the first (gyration) magnetic time scale, the equation for q1(x, t1) = q(x, 1+B
2

B t1)where q solves (1.22)
becomes

∂t1q1 +R
⊥q1 ⋅ ∇q1 +

1

B
(u[q1] ⋅ ∇ +Λ) q1 = 0. (1.24)

The initial data are the same, q(x,0) = q1(x,0), and there is no rescaling of space variable x.
In the second magnetic time scale, the equation for the boosted field

Q(x, t2) = Bq1(x,Bt2) = Bq(x, (1 +B2)t2) (1.25)

becomes
∂t2Q +R

⊥Q ⋅ ∇Q + (u [Q
B
] ⋅ ∇ +Λ)Q = 0. (1.26)

The initial data is Q(x,0) = Bq(x,0) and there is no rescaling of space variable. Note that Q = Bq is the
frequency of rotation produced by the force F .

For fixed B, the three equations (1.22), (1.24), (1.26) are versions of the same equation, and they are
entirely equivalent. We refer to these equations as Darcy law electroconvection in a magnetic field, DECM
equations.

The main results of this work are as follows. We prove first that weak solutions of (1.20) with initial data
in L∞ exist globally (Theorem 3.1). As B →∞, in laboratory time scale, the equation converges to ∂tq = 0.
It is only in the first magnetic time scale that nontrivial dynamics arise. The solutions q1 of (1.24) converge
to solutions of inviscid SQG. We prove (Theorem 4.1)

Theorem 1.1. Any family of weak solutions qBof (1.20) has a subsequence such that qB(x, 1+B2

B t) con-
verges weakly as B →∞ to a weak solution q(x, t) of the inviscid SQG

∂tq + (R⊥q) ⋅ ∇q = 0,
in L2(0, T ;L2).

The dissipative nature of the DECM equation emerges in longer time scales, and the boosted field Q con-
verges in the second magnetic time scale to solutions of critical dissipative SQG. We prove global regularity
of the boosted field Q (Theorem 5.1) for small L∞ initial data and large enough B. In laboratory time scale,
the regularity result is (Remark 5.1)

Theorem 1.2. There exist c > 0 and C > 0 such that, if q0 obeys B∥q0∥L∞ ≤ c and ∥q0∥H3 ≤ C(1 +B2),
then the solution of (1.20) with initial data q0 exists globally, is unique, and satisfies

∥q(⋅, t)∥H3 ≤ ∥q0∥H3e
− t

4(1+B2)

for all t ≥ 0.

The regularity in H3 implies by parabolic estimates C∞ regularity, a fact that follows by well known
methods and is not pursued in this paper.

We prove convergence to dissipative critical SQG without assuming the condition of small initial L∞

norm of q, but we do need to assume enough regularity to allow for absolute continuity of the L2 norm of
the DECM solution. Of course, this regularity is guaranteed for short time or for arbitrary time if the initial
L∞ norm is small. The result we prove is (Theorem 5.2 and Remark 5.2)
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Theorem 1.3. Let q be a strong solution of (1.20) on [0, (1 +B2)T ] with initial data q0 = 1
BQ0, with fixed

Q0 ∈H3. There exists a constant C depending only on ∥Q0∥H3 and T such that

sup
t∈[0,T ]

∥Bq(⋅, (1 +B2)t) −Q(t)∥L2 ≤ C

1 +B2

where Q is the global smooth solution of critical SQG

∂tQ + (R⊥Q) ⋅ ∇Q +ΛQ = 0
with initial data Q0.

The constant C above is in fact finite as soon as Q0 ∈ Cα, for any α > 0. The result holds for fixed Q0

while B varies, and not for fixed q0. If we fix q0 and consider the family of initial data Bq0 for the critical
SQG, then the constant C depends badly on B.

The paper is organized as follows. In Section 2 we discuss in detail the equation of state for the velocity.
We show that solving for the velocity in terms of q yields a unique solution

u[q] = R⊥ (w[q] + Bq

1 +B2
) ,

where w is small in H3 compared to ∥q∥2H3 for large B (Proposition 2.2). This is a crucial ingredient in
the proof of global regularity. In Section 3 we prove the global existence of weak solutions by introducing
a judicious approximation. Section 4 is where we prove convergence to inviscid SQG equations in the
first magnetic time scale. In Section 5 we prove the global regularity and dissipative SQG limit in the
second magnetic time scale. We provide the proof of Proposition 2.2 in Appendix A and the proof of global
regularity of the approximation in Appendix B.

2. EQUATION OF STATE FOR THE VELOCITY IN TERMS OF THE CHARGE DENSITY

Taking the curl of (1.23) we obtain the time-independent equation for the vorticity,

ω = 1

1 +B2
(R⊥q ⋅ ∇q) − B

1 +B2
(u ⋅ ∇q +Λq) , (2.1)

where
ω = ∇⊥ ⋅ u =∆ψ, ∇ ⋅ u = 0. (2.2)

Writing ω = −Λv where v = Λψ with ψ the stream function, we have from (2.1) after applying −Λ−1 to both
sides

v − B

1 +B2
R ⋅ (qR⊥v) = B

1 +B2
(q − 1

B
R ⋅ (qR⊥q)) , (2.3)

and
u = R⊥v. (2.4)

We denote by Lq the operator
Lq(f) = R ⋅ (qR⊥f) (2.5)

Both q and f are scalar. Because R ⋅R⊥ = 0, this is a commutator,

Lq(f) = [R, q] ⋅R⊥f. (2.6)

Now (2.3) can be written as

v − B

1 +B2
Lqv =

B

1 +B2
(q − 1

B
Lqq) . (2.7)

The operator I − B
1+B2Lq is bounded in L2 (if q ∈ L∞) and unconditionally invertible. Because q is real,

the operator Lq is bounded anti-selfadjoint in L2 so its spectrum lies in a segment of iR. The inverse of
I − B

1+B2Lq can be defined by familiar functional calculus, and has norm less than 1, no matter how large is
the norm of ∥q∥L∞ . We recall that under DECM equations this norm is not growing in time.
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Introducing

w = v − B

1 +B2
q (2.8)

the equation (2.7) becomes

w − B

1 +B2
Lqw = −

1

(1 +B2)2
Lqq, (2.9)

that is,

w[q] = − 1

(1 +B2)2
(I −

BLq

1 +B2
)
−1
(Lqq) (2.10)

and (2.4) becomes

u[q] = R⊥ (w[q] + Bq

1 +B2
) . (2.11)

The left hand side of (1.23) defines an operator Tq in H , the space of periodic divergence-free vector fields
in L2:

Tq(u) = (1 +B2) (u + B

1 +B2
P(qu⊥)) . (2.12)

Using (2.4) we express in terms of v,

Tq(u) = (1 +B2) (R⊥v − B

1 +B2
P(qRv)) . (2.13)

Now, in view of
(Pf)i = (δij +RiRj) fj (2.14)

Lq(v) = −R⊥ ⋅ (qRv), (2.15)
and

RiRi = −I, (2.16)
by applying from the left R⊥i = ϵjiRj to (2.13) (where ϵji = 0 if j = i, and it is the signature of the
permutation (1,2) ↦ (j, i) if j ≠ i), we obtain

R⊥ ⋅ Tq(u) = −(1 +B2) (I − B

1 +B2
Lq) (v). (2.17)

This shows that u determined by inverting Tq is the same as u[q]. Indeed, using (2.7) to solve for v, we
deduce

R⊥ ⋅ Tq(u) = −(1 +B2) B

1 +B2
(q − 1

B
Lqq) = −Bq +Lqq. (2.18)

Now, because Tq(u) is divergence-free, we have

Tq(u) = −R⊥(R⊥ ⋅ Tq(u)), (2.19)

and using (2.18) we deduce
Tq(u) = BR⊥q −R⊥(Lqq). (2.20)

Because P(qRq) is divergence free we have that

P(qRq) = −R⊥ (R⊥ ⋅ P(qRq)) , (2.21)

and using (2.15) we see that
P(qRq) = R⊥(Lqq) (2.22)

and thus, from (2.20) that
Tq(u) = BR⊥q − P(qRq). (2.23)

This shows that u = R⊥v solves (2.23). The solution is unique, and this establishes the converse implication
as well. We have thus,
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Proposition 2.1. Let q ∈ L∞. The unique solution in H of (1.23),

u[q] = T −1q (BR⊥q − P(qRq)) (2.24)

is given by (2.11) with w[q] solving (2.9) given by (2.10).

Note that Lq(f) is bilinear, in particular BLq = LBq. In view of (2.10) and (2.11) we have

u[q] = B

1 +B2
R⊥ (q − 1

B2

∞
∑
n=0
(
BLq

1 +B2
)
n+1

q) . (2.25)

For Q = Bq we have

U[Q] = R⊥ ( 1

1 +B2
Q +W [Q]) (2.26)

with

W [Q] = − 1

B2(1 +B2)

∞
∑
n=0
(

LQ

(1 +B2)
)
n+1

Q. (2.27)

The scalar w and velocity u are unchanged,

W [Q] = w [Q
B
] , (2.28)

U[Q] = u [Q
B
] . (2.29)

Let us consider a Banach algebra B, smaller than L∞ and where the Riesz transforms are bounded. Two
canonical examples are Cα and Hs, s > 1. Then, if Q ∈ B we have that LQ is bounded in B with

∥LQ∥L(B,B) ≤ γ∥Q∥B. (2.30)

The expressions (2.25), (2.27) are explicit analytic expansions in B, and we have

∥W [Q]∥B ≤
γ

B2(1 +B2)2
∥Q∥2B

(1 − γ
1+B2 ∥Q∥B)

. (2.31)

If

∥Q∥B ≤
1 +B2

2γ
(2.32)

then
∥W (Q)∥B ≤

2γ

B2(1 +B2)2
∥Q∥2B. (2.33)

These considerations can be greatly improved by removing the quantitative condition (2.32) in Hs spaces.
This is done by taking advantage of the unconditional invertibility in L2, provided Q ∈ L∞, and then
using the same cancellation and commutator estimates for higher derivatives. Because we are interested
in the DECM transport equations, we work in a Sobolev space Hs that is smaller than W 1,∞ to guarantee
Lipschitz velocities, which means that we need s > 2. For simplicity we take s an integer, s = 3. We have

Proposition 2.2. For any Q ∈H3, the equation

w − 1

1 +B2
R ⋅ (QR⊥w) = − 1

B2(1 +B2)2
R ⋅ (QR⊥Q) (2.34)

has a unique solution w =W [Q]. There exists an absolute constant C such that w obeys

∥w∥2L2 ≤
C

B4(1 +B2)4
∥Q∥4L4 , (2.35)

and

∥∇∆w∥2L2 ≤
C(∥Q∥5L∞ + ∥Q∥3L∞ + ∥Q∥2L∞)

B4(1 +B2)4
∥Q∥4H3 +

C∥Q∥2L∞
B4(1 +B2)4

∥Q∥2H3 . (2.36)
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We expressed w solving (2.9) as a function ofQ = Bq, and thus rewrote (2.9) in terms ofQ as (2.34). The
function w is the same, W [Q] = w [QB ]. Note that the leading order bound on ∥∇∆w∥L2 of (2.36) relative

to the square of theH3 norm isB−2(1+B2)−2, the same as in the abstract bound (2.33), but it holds without
the condition (2.32). The proof of Proposition 2.2 is found in Appendix A.

We conclude this section by showing some continuity properties of T−1q .

Proposition 2.3. Let q ∈ L∞, and let the linear operator Tq ∶H →H be defined in (2.12)

Tqu = (1 +B2)u +BP (qu⊥) . (2.37)

(1) The operator Tq is invertible and its inverse T−1q obeys

∥T −1q u∥L2 ≤ 1

1 +B2
∥u∥H (2.38)

for all u ∈H .
(2) If q1, q2 ∈ L∞, then, for every u ∈H , we have

∥T −1q1 u − T
−1
q2 u∥H ≤

B

(1 +B2)2
∥q1 − q2∥L∞∥u∥H . (2.39)

(3) Let {qn}n∈N be a sequence of functions such that {qn}n∈N is uniformly bounded in L∞ and {qn}n∈N
converges pointwise to q ∈ L∞ almost everywhere. Then, for every u ∈ H , {T −1qn u}n∈N converges
strongly in H to T −1q u.

(4) Let {qn}n∈N be a sequence of functions such that {qn}n∈N is uniformly bounded in L∞ and {qn}n∈N
converges strongly in Lp to q ∈ L∞ for some p ∈ (1,∞). Then, for every u ∈ H , {T−1qn u}n∈N has a
subsequence that converges strongly in H to T −1q u.

Proof. We prove now (1)–(4).

(1) The linear bounded operator Jq(u) = P(qu⊥) is anti-selfadjoint in H , and therefore I + B
1+B2Jq is

invertible with inverse of norm less than 1. Taking the scalar product of the equation Tq(u) = f with
u and using the anti-symmetry of Jq we have

(1 +B2)∥u∥2H = (u, f)H ≤ ∥u∥H∥f∥H (2.40)

and thus (1 +B2)∥u∥H ≤ ∥f∥H . Because u = T−1q f we have

∥T−1q f∥H ≤
1

1 +B2
∥f∥H . (2.41)

(2) Let q1, q2 ∈ L∞. We have

∥T −1q1 u − T
−1
q2 u∥H = ∥T

−1
q1 (Tq2 − Tq1)T

−1
q2 u∥H ≤

1

1 +B2
∥(Tq2 − Tq1)T

−1
q2 u∥H . (2.42)

But, for f = T −1q2 u,

∥Tq2f − Tq1f∥H = B∥P((q2 − q1)f
⊥)∥H ≤ B∥q2 − q1∥L∞∥f∥H . (2.43)

It follows that

∥T −1q1 u − T
−1
q2 u∥H ≤

B

1 +B2
∥q2 − q1∥L∞∥T −1q2 u∥L2 ≤ B

(1 +B2)2
∥q1 − q2∥L∞∥u∥H (2.44)

for any u ∈H .
(3) Let u ∈H . Then we have

∥T −1qn u − T
−1
q u∥H = ∥T−1qn (Tq − Tqn)T

−1
q u∥H = ∥T−1qn (BP((q − qn)(T −1q u)⊥)) ∥H . (2.45)
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Using the uniform boundedness of the operators T−1qn and the Leray projector P on L2, we bound the
latter as follows,

∥T−1qn u − T
−1
q u∥H ≤

B

1 +B2
∥(q − qn)(T −1q u)⊥∥L2 . (2.46)

Since ∣(q − qn)(T −1q u)⊥∣ ≤ (∥q∥L∞ + sup
n∈N
∥qn∥L∞) ∣(T −1q u)⊥∣, (T −1q u)⊥ is bounded in L2 by a con-

stant multiple of ∥u∥L2 , and qn converges pointwise to q a.e., we deduce that

lim
n→∞
∥(q − qn)(T −1q u)⊥∥L2 = 0 (2.47)

by the Lebesgue Dominated Convergence Theorem, and consequently

lim
n→∞
∥T −1qn u − T

−1
q u∥H = 0. (2.48)

(4) This follows from (3) and the fact that {qn}n∈N has a subsequence that converges to x for a.e. x ∈ T2.
□

3. EXISTENCE OF GLOBAL WEAK SOLUTIONS

In this section, we prove the existence of global weak solutions of (1.22) with (1.23), for L2 initial charge
density on T2.

For each ϵ ∈ (0,1), we let Jϵ be a standard mollifier, and we consider the ϵ-approximate system

∂tq
ϵ + 1

1 +B2
uϵ ⋅ ∇qϵ + B

(1 +B2)
JϵR

⊥qϵ ⋅ ∇qϵ + 1

(1 +B2)
Λqϵ − ϵ∆qϵ = 0, (3.1)

uϵ = JϵT−1Jϵqϵ [−P (Jϵq
ϵRJϵq

ϵ) +BR⊥Jϵqϵ] , (3.2)

qϵ(0) = Jϵq0, (3.3)

in T2 with periodic boundary conditions.

Proposition 3.1. Let ϵ ∈ (0,1). Let q0 ∈ L2. Then the ϵ-approximate system (3.1)-(3.3) has a unique global
smooth solution.

The proof of this proposition is found in Appendix B.

Proposition 3.2. Let ϵ ∈ (0,1) and T > 0. Suppose q0 ∈ L∞. Then the family {qϵ} of solutions of (3.1)-(3.3)
is uniformly bounded in L∞(0, T ;L∞) and L2(0, T ;H

1
2 ). Moreover, the family {uϵ} is uniformly bounded

in L∞(0, T ;L2).

Proof. The time evolution of the L2 norm of qϵ is described by the energy balance
1

2

d

dt
∥qϵ∥2L2 +

1

(1 +B2)
∥Λ

1
2 qϵ∥2L2 + ϵ∥∇qϵ∥2L2 = 0. (3.4)

Here we used the fact that uϵ and JϵR⊥qϵ are divergence-free. Applying the Grönwall inequality, we obtain

∥qϵ(t)∥2L2 +
2

(1 +B2) ∫
t

0
∥Λ

1
2 qϵ(s)∥2L2ds + 2ϵ∫

t

0
∥∇qϵ(s)∥2L2ds = ∥qϵ(0)∥2L2 ≤ ∥q(0)∥2L2 . (3.5)

for all t ≥ 0. Now we address the Lp evolution of qϵ for even integers p > 2. To this end, we multiply the
equation obeyed by qϵ by (qϵ)p−1, integrate over T2, make use of the divergence-free property obeyed by
the vector fields uϵ and R⊥qϵ, apply the Córdoba–Córdoba inequality, and obtain

1

p

d

dt
∥qϵ∥pLp ≤ 0. (3.6)

Integrating in time from 0 to t, we infer that

∥qϵ(t)∥Lp ≤ ∥qϵ(0)∥Lp ≤ ∥q(0)∥Lp (3.7)
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for any t ≥ 0. Letting p→∞, we obtain the L∞ bound

∥qϵ(t)∥L∞ ≤ ∥q(0)∥L∞ (3.8)

for all positive times t ≥ 0. As a consequence of the above estimates, it follows that {qϵ} is uniformly
bounded in L∞(0, T ;L∞) and L2(0, T ;H

1
2 ). Finally, we turn our attention to the regularity of the ϵ-

regularized velocities. Due to the boundedness of the operators Jϵ, T −1Jϵqϵ
, P, and R on L2, we have

∥uϵ∥L2 =∥JϵT−1Jϵqϵ [−P (Jϵq
ϵRJϵq

ϵ) +BR⊥Jϵqϵ]∥L2

≤C ∥JϵqϵRJϵqϵ∥L2 +C∥qϵ∥L2

≤C(∥qϵ∥L∞ + 1)∥qϵ∥L2

(3.9)

for some positive constant C depending on B and some universal constants. Therefore, the family {uϵ} is
uniformly bounded in L∞(0, T ;L2).

□

Proposition 3.3. Let ϵ ∈ (0,1) and T > 0. Let q0 ∈ L∞. The family {∂tqϵ} of solutions of (3.1)-(3.3) is
uniformly bounded in L2(0, T ;H−

3
2 ).

Proof. We take an arbitrary test function ϕ ∈ H
3
2 and consider the L2 inner product of ϕ with each term in

(3.1). For the linear terms, we have

(ϵ∆qϵ, ϕ)L2 ≤ ϵ∥Λ
1
2 qϵ∥L2∥ϕ∥

H
3
2

(3.10)

and
(Λqϵ, ϕ)L2 ≤ ∥qϵ∥L2∥ϕ∥H1 . (3.11)

For the nonlinear terms, we integrate by parts, apply the Hölder and Sobolev inequalities, and obtain

(uϵ ⋅ ∇qϵ, ϕ)L2 = −(uϵ ⋅ ∇ϕ, qϵ)L2 ≤ ∥uϵ∥L2∥∇ϕ∥L4∥qϵ∥L4 ≤ C∥uϵ∥L2∥Λ
1
2 qϵ∥L2∥ϕ∥

H
3
2

(3.12)

and
(JϵR⊥qϵ ⋅ ∇qϵ, ϕ)L2 = −(JϵR⊥qϵ ⋅ ∇ϕ, qϵ)L2 ≤ C∥qϵ∥L2∥Λ

1
2 qϵ∥L2∥ϕ∥

H
3
2
. (3.13)

Putting the above estimates together and using the uniform bounds derived in Proposition 3.2, we conclude
that {∂tqϵ} is uniformly bounded in L2(0, T ;H−

3
2 ).

□

Theorem 3.1. Let T > 0, let q0 ∈ L∞. Then there exists a global weak solution q of the DECM equation
(1.20), satisfying

q ∈ Cw∗([0, T ];L∞) ∩L2(0, T ;H
1
2 ). (3.14)

Proof. As {qϵ}ϵ∈(0,1) is uniformly bounded in L∞(0, T ;L∞)∩L2(0, T ;H
1
2 ) and {∂tqϵ}ϵ∈(0,1) is uniformly

bounded in L2(0, T ;H−
3
2 ), there exists a subsequence, also denoted by {qϵ}ϵ∈(0,1), and a limit q, such that

qϵ
∗⇀ q in L∞(0, T ;L∞), qϵ ⇀ q in L2(0, T ;H

1
2 ), ∂tq

ϵ ⇀ ∂tq in L2(0, T ;H−
3
2 ) (3.15)

by the Banach-Alaoglu theorem. In addition, by the Aubin-Lions and Lions-Magenes lemmas, we have

qϵ → q in L2(0, T ;L2) ∩C([0, T );H−
1
2 ). (3.16)

Since q ∈ L∞(0, T ;L∞), it follows that q ∈ Cw∗([0, T );L∞).
We denote by

u ∶= T−1q [−P (qRq) +BR⊥q] . (3.17)

and show that uϵ → u strongly in L2(0, T ;L2). Denoting

vϵ ∶= −P (JϵqϵRJϵqϵ) +BR⊥Jϵqϵ, v ∶= −P (qRq) +BR⊥q,
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and estimating as in (3.9), we have vϵ, v ∈ L∞(0, T ;L2). We show that vϵ → v strongly in L2(0, T ;L2).
The convergence of the linear terms follows directly from the boundedness of the Riesz transform on Lp

spaces, the convergence property of the mollifiers Jϵ, and the strong convergence of qϵ obtained in (3.16).
As for the nonlinear terms, we have

∥JϵqϵRJϵqϵ − qRq∥L2 ≤ ∥Jϵqϵ − q∥L4∥RJϵqϵ∥L4 + ∥q∥L∞∥R(Jϵqϵ − q)∥L2

≤ C∥Jϵqϵ − q∥
1
4

L2(∥qϵ∥L6 + ∥q∥L6)
3
4 ∥qϵ∥L4 +C∥q∥L∞∥Jϵqϵ − q∥L2 .

(3.18)

As q, qϵ ∈ L∞(0, T ;L∞) and qϵ → q in L2(0, T ;L2), we deduce that vϵ → v in L2(0, T ;L2). We write

uϵ − u = JϵT−1Jϵqϵv
ϵ − T −1q v

= (JϵT−1Jϵqϵ(v
ϵ − v)) + (Jϵ(T−1Jϵqϵv − T

−1
q v)) + (JϵT−1q v − T−1q v) ∶= I1 + I2 + I3.

In view of the uniform boundedness of T−1Jϵqϵ
inL2 and the convergence vϵ → v inL2(0, T ;L2), we conclude

that I1 → 0 in L2(0, T ;L2). Since Jϵqϵ → q in L2(0, T ;L2) and v ∈ L∞(0, T ;L2), an application of
Proposition 2.3 yields the convergence of I2 to 0 in L2(0, T ;L2). Due to the convergence properties of the
mollifiers Jϵ, we have I3 → 0 in L2(0, T ;L2). Therefore, we conclude that uϵ → u strongly in L2(0, T ;L2).

Finally, let ϕ be a test function in C∞([0, T ] × T2). By virtue of (3.15), (3.16), and the regularity of
u,uϵ, q, qϵ, we have

⟨∂tqϵ, ϕ⟩ → ⟨∂tq, ϕ⟩, ⟨Λqϵ, ϕ⟩ → ⟨Λq, ϕ⟩, ϵ⟨∆qϵ, ϕ⟩ → 0,

and
⟨uϵ ⋅ ∇qϵ, ϕ⟩ → ⟨u ⋅ ∇q, ϕ⟩, ⟨JϵR⊥qϵ ⋅ ∇qϵ, ϕ⟩ → ⟨R⊥q ⋅ ∇q, ϕ⟩.

By a density argument, it follows that

∂tq +
1

1 +B2
u ⋅ ∇q + B

(1 +B2)
R⊥q ⋅ ∇q + 1

(1 +B2)
Λq = 0 in L2(0, T ;H−

3
2 ),

where u obeys (3.17). The initial condition q(0) = q0 holds due to the weak continuity in time of q.
□

4. CONVERGENCE TO INVISCID SQG

As mentioned in the introduction, solutions q(x, ⋅) of (1.20) obey (1.24) on the first magnetic time scale,
that is qB(x, t) = q(x, 1+B2

B t) obeys

∂tq
B +R⊥qB ⋅ ∇qB + 1

B
uB ⋅ ∇qB + 1

B
ΛqB = 0, (4.1)

with

uB = − 1

1 +B2
P (qBRqB +BqB(uB)⊥ −BR⊥qB) , (4.2)

in T2, with fixed initial data qB(0) = q0.
In this section, we prove that any family {qB}

B≥1 of weak solutions has a subsequence that converges as
B →∞ to a weak solution of the inviscid SQG equation

∂tq + (R⊥q) ⋅ ∇q = 0 (4.3)

in T2.

Theorem 4.1. Let T > 0 and {qB}
B≥1 be a family of weak solutions of the DECM equation (4.1) on [0, T ].

Then the family has a subsequence that converges weakly as B → ∞ in L2(0, T ;L2) to a weak solution of
the inviscid SQG equation (4.3).
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Remark 4.1. In the laboratory time scale, any family qB of weak solutions of (1.20) has a subsequence
such that qB(x, 1+B2

B t) converges weakly asB →∞ to a weak solution q(x, t) of the inviscid SQG equation
(4.3) in L2(0, T ;L2).

Proof. Since {qB}
B≥1 is uniformly bounded in L2(0, T ;L2), there is an unbounded increasing sequence

{Bn}n∈N and a subsequence of solutions, denoted by {qBn}
n∈N, converging weakly in L2(0, T ;L2) to

some scalar function q ∈ L2(0, T ;L2). Due to the uniform boundedness of {qBn}
n∈N in L∞(0, T ;L∞), the

divergence-free property obeyed by uBn and R⊥qBn , the boundedness of the Riesz transform on L2, and the
fact that Bn ≥ 1, we have

∥∂tΛ−1qBn∥L2 ≤ 1

Bn
∥qBn∥L2 + 1

Bn
∥Λ−1(uBn ⋅ ∇qBn)∥L2 + ∥Λ−1(R⊥qBn ⋅ ∇qBn)∥L2

≤ ∥qBn∥L2 + ∥uBn∥L2∥qBn∥L∞ + ∥R⊥qBn∥L2∥qBn∥L∞

≤ C (∥q0∥3L∞ + ∥q0∥2L∞ + ∥q0∥L∞) ,

(4.4)

and consequently, we deduce that {∂tΛ−1qBn}
n≥0 is uniformly bounded in L2(0, T ;L2). As {Λ−1qBn}

n∈N
is uniformly bounded in L2(0, T ;H1), there exists a subsequence, also denoted by {Λ−1qBn}, that con-

verges strongly in L2(0, T ;H
1
2 ) to some scalar function Q. But {qBn}

n∈N converges weakly to q in
L2(0, T ;L2), and so {Λ−1qBn}

n∈N converges weakly to Λ−1q in L2(0, T ;H1). Therefore, Q = Λ−1q.
Now we show that q obeys

∫
T2
(q(t) − q0)ϕ(x)dx = −∫

t

0
∫
T2
(R⊥q ⋅ ∇q)ϕ(x)dx (4.5)

for a.e. t ∈ [0, T ] and for all ϕ ∈H3(T2). To this end, we rewrite (4.1) as

qBn(t) − q0 = −∫
t

0
R⊥qBn ⋅ ∇qBnds − 1

Bn
∫

t

0
uBn ⋅ ∇qBndx − 1

Bn
∫

t

0
ΛqBnds. (4.6)

As {Λ−1qBn}
n∈N converges strongly in L2(0, T ;H

1
2 ), it has a subsequence, still denoted {Λ−1qBn}

n∈N,
which converges strongly in L2 to Λ−1q for a.e. t ∈ [0, T ], and hence,

∫
T2
(qBn − q)ϕ(x)dx = ∫

T2
Λ−

1
2 (qBn − q)Λ

1
2ϕdx→ 0 (4.7)

for a.e. t ∈ [0, T ] and for all ϕ ∈ H
1
2 . In view of the uniform bound ∥qBn∥L2 ≤ ∥q0∥L2 that holds for all

t ∈ [0, T ], we have
1

Bn
∣∫

T2
∫

t

0
ΛqBnϕdxds∣ ≤ 1

Bn
∥q0∥L2∥Λϕ∥L2T → 0, (4.8)

and thus,
1

Bn
∫

t

0
∫
T2

ΛqBnϕdxds→ 0 (4.9)

for all t ∈ [0, T ] and ϕ ∈H1. By making use of the uniform velocity bound ∥uBn∥L2 ≤ C(∥q0∥2L∞+∥q0∥L∞),
we estimate

∣∫
t

0
∫
T2
uBn ⋅ ∇qBnϕdxds∣ ≤ C ∫

t

0
∥uBn∥L2∥qBn∥L∞∥∇ϕ∥L2dx

≤ C∥q0∥2L∞(∥q0∥L∞ + 1)∥∇ϕ∥L2T,

(4.10)

and hence,
1

Bn
∫

t

0
∫
T2
uBn ⋅ ∇qBnϕdxds→ 0 (4.11)

for all t ∈ [0, T ] and ϕ ∈H1. Finally, we consider the difference

∫
t

0
∫
T2
R⊥qBn ⋅ ∇qBnϕdxds − ∫

t

0
∫
T2
R⊥q ⋅ ∇qϕdxds, (4.12)
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and we decompose it into the sum of two terms In and On where

In = ∫
t

0
∫
T2
(R⊥q ⋅ ∇(qBn − q) +R⊥(qBn − q) ⋅ ∇q)ϕdxds (4.13)

and

On = ∫
t

0
∫
T2
R⊥(qBn − q) ⋅ ∇(qBn − q)ϕdxds. (4.14)

Since q ∈ L∞(0, T ;L∞), it follows that both quantities R⊥q ⋅ ∇ϕ and R⊥ ⋅ (q∇ϕ) lie in L2(0, T ;L2) for any
ϕ ∈H2, and thus In → 0 by the weak convergence of qBn to q in L2(0, T ;L2). As for the termOn, we have

On = −∫
t

0
∫
T2
R⊥(qBn − q)(qBn − q) ⋅ ∇ϕdxds (4.15)

via integration by parts, and thus

On = −∫
t

0
∫
T2
∇⊥Λ−1(qBn − q)(qBn − q) ⋅ ∇ϕdxds

= ∫
t

0
∫
T2

Λ−1(qBn − q)∇⊥(qBn − q) ⋅ ∇ϕdxds

= ∫
t

0
∫
T2

Λ−1(qBn − q)Λ∇⊥Λ−1(qBn − q) ⋅ ∇ϕdxds

= ∫
t

0
∫
T2
R⊥(qBn − q) ⋅Λ (Λ−1(qBn − q)∇ϕ)dxds

= ∫
t

0
∫
T2
R⊥(qBn − q) ⋅ [Λ(Λ−1(qBn − q)∇ϕ) − ∇ϕΛ(Λ−1(qBn − q)]dxds −On.

(4.16)

The latter yields the identity

On =
1

2
∫

t

0
∫
T2
R⊥(qBn − q)[Λ,∇ϕ]Λ−1(qBn − q)dxds. (4.17)

An application of the Cauchy-Schwarz inequality in the spatial variable gives rise to

∣On∣ ≤ C ∫
t

0
(∥qBn − q∥L2∥[Λ,∇ϕ]Λ−1(qBn − q)∥L2)ds. (4.18)

Using the periodic commutator estimate

∥[Λ, f]g∥L2 ≤ C∥∇f∥L4∥g∥L4 (4.19)

that holds for any f ∈W 1,4 and g ∈ L4, and standard continuous Sobolev embeddings, we bound

∥[Λ,∇ϕ]Λ−1(qBn − q)∥L2 ≤ C∥ϕ∥H3∥Λ−
1
2 (qBn − q)∥L2 , (4.20)

and consequently, we obtain

∣On∣ ≤ C∥ϕ∥H3∥q0∥L2 ∫
t

0
∥Λ−

1
2 (qBn − q)∥L2ds→ 0 (4.21)

due to the strong convergence of Λ−1qBn to Λ−1q in L2(0, T ;H
1
2 ). Therefore, q is a weak solution of the

inviscid SQG equation. □

5. GLOBAL REGULARITY AND CONVERGENCE TO DISSIPATIVE CRITICAL SQG

We consider here the DECM equation for the boosted fieldQ. As mentioned in the introduction, if q(x, ⋅)
is a solution of (1.20) in laboratory time scale, then

Q(x, t) = Bq(x, (1 +B2)t) (5.1)

solves (1.26), which we write as

∂tQ +R⊥ ((1 +
1

1 +B2
)Q +w) ⋅ ∇Q +ΛQ = 0 (5.2)
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with
w =W [Q], (5.3)

which is the unique solution of (2.34) discussed in Proposition 2.2. We recall that Proposition 2.2 shows
that w is small relative to ∥Q∥2 in H3 when B is large. When B is of order 1, this term is difficult to
handle and global existence for large data of solutions of the equation is not known, just as in the case of
electroconvection in porous media. We prove here

Theorem 5.1. There exist constants c > 0, C > 0 such that if Q0 ∈H3(T2) obeys

∥Q0∥L∞ ≤ c (5.4)

and
∥Q0∥H3 ≤ CB(1 +B2), (5.5)

then the solution of (5.2), (5.3) with initial data Q0 is unique, exists for all time and obeys

∥Q(t)∥H3 ≤ ∥Q0∥H3e−
t
4 (5.6)

for all t ≥ 0.

Remark 5.1. In laboratory time scale, the result says that if q0 obeysB∥q0∥L∞ ≤ c and ∥q0∥H3 ≤ C(1+B2),
then

∥q(⋅, t)∥H3 ≤ ∥q0∥H3e
− t

4(1+B2) . (5.7)

Proof. We start by observing that, without loss of generality we may assume that

∫
T2
Q(x, t)dx = 0, (5.8)

because this average is time independent. Secondly, we note that the L∞ norm of Q is nonincreasing in
time. We denote by M

∥Q0∥L∞ =M (5.9)
and we have

∥Q(⋅, t)∥L∞ ≤M (5.10)
a priori. Next, we use the fact that

∥Q∥2H3 ∼ ∑
∣α∣=3
∫
T2
∣∂αQ(x, t)∣2dx (5.11)

because Q has mean zero. Above α = (α1, α2) is a multi-index, with αj ∈ N. We recall the notation
α! = α1!α2! and ∣α∣ = α1 + α2. We compute the evolution

1

2

d

dt
∑
∣α∣=3
∫
T2
∣∂αQ(x, t)∣2dx +D2 = R1 +R2, (5.12)

where
D2 = ∑

∣α∣=3
∥∂αQ∥2

H
1
2
, (5.13)

and
R1 = (1 +

1

1 +B2
) ∑
∣α∣=3

∑
β+γ=α,∣β∣>0

α!

β!γ!
∫
T2
(∂β(R⊥Q) ⋅ ∇∂γQ)∂αQdx, (5.14)

and
R2 = ∑

∣α∣=3
∑

β+γ=α,∣β∣>0

α!

β!γ!
∫
T2
(∂β(R⊥w) ⋅ ∇∂γQ)∂αQdx. (5.15)

The terms with β = 0 vanish because R⊥Q and R⊥w are divergence-free. Therefore ∣γ∣ ≤ 2. We estimate the
two contributions R1 and R2 differently. The first one, like in critical SQG [9], is going to be absorbed in
D2 if M is small,

∣R1∣ ≤ CMD2. (5.16)
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The second contribution is small compared to ∥Q∥4H3 ,

∣R2∣ ≤ C
1

B2(1 +B2)2
∥Q∥4H3 . (5.17)

We note that
D2 ≥ C∥Q∥2H3.5 (5.18)

because Q has mean zero.
For R1 we use L3 bounds.

∥∂βQ∥L3 ≤ CMaD1−a (5.19)

where a = 19−6∣β∣
15 ,

∥∇∂γQ∥L3 ≤ CM bD1−b (5.20)

where b = 19−6(∣γ∣+1)
15 and

∥∂αQ∥L3 ≤ CM cD1−c (5.21)

where c = 19−18
15 . These are all the same Gagliardo-Nirenberg inequality

∥∂sQ∥L3 ≤ C∥Q∥
19−6∣s∣

15
L∞ ∥Q∥

6∣s∣−4
15

H3.5 (5.22)

for 1 ≤ ∣s∣ ≤ 3. Noting that a + b + c = 1 because ∣β∣ + ∣γ∣ = 3, we proved (5.16).
For the term R2, if ∣β∣ = 1 then we estimate L∞ −L2 −L2.

∣∫
T2
(∂βR⊥w ⋅ ∇∂γQ)∂αQdx∣ ≤ C∥∇R⊥w∥L∞∥Q∥2H3 ≤ C∥w∥H3∥Q∥2H3 . (5.23)

If ∣β∣ = 2 then we estimate L4 −L4 −L2. We use the inequality

∥∂βR⊥w∥L4 ≤ C∥w∥
1
6

L2∥w∥
5
6

H3 (5.24)

∥∇∂γQ∥L4 ≤ C∥Q∥
1
6

L2∥Q∥
5
6

H3 . (5.25)

These are two instances of the inequality

∥∂sQ∥L4 ≤ C∥Q∥
1
6

L2∥Q∥
5
6

H3 (5.26)

for ∣s∣ = 2, so we have for ∣β∣ = 2,

∣∫
T2
(∂βR⊥w ⋅ ∇∂γQ)∂αQdx∣ ≤ C∥w∥

1
6

L2∥w∥
5
6

H3∥Q∥2H3 ≤ C∥w∥H3∥Q∥2H3 . (5.27)

Finally, for ∣β∣ = 3 we estimate using L2 −L∞ −L2 to obtain

∣∫
T2
(∂βR⊥w ⋅ ∇∂γQ)∂αQdx∣ ≤ C∥w∥H3∥∇Q∥L∞∥Q∥H3 ≤ C∥w∥H3∥Q∥2H3 . (5.28)

Putting these together we have
∣R2∣ ≤ C∥w∥H3∥Q∥2H3 . (5.29)

Now we use the bound (2.36) of Proposition 2.2. Assuming without loss of generality that M ≤ 1 we obtain
from (2.36)

∥w∥H3 ≤ C M

B2(1 +B2)2
∥Q∥H3(1 + ∥Q∥H3) (5.30)

and using it in (5.29) we obtain (5.17).
Considering now

y(t) = ∑
∣α∣=3
∫
T2
∣∂αQ(x, t)∣2dx (5.31)
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and taking CM ≤ 1
2 to absorb the term R1 in 1

2D
2 in view of (5.16), we have

dy

dt
+ y ≤ C 1

B2(1 +B2)2
y2 (5.32)

with some constant C > 0, where we used a Poincaré inequality D2 ≥ y. Thus, if

y(0) ≤ 1

3C
B2(1 +B2)2 (5.33)

then, as long as

y(t) ≤ 1

2C
B2(1 +B2)2, (5.34)

we have that y is decreasing in time and obeys

dy

dt
+ 1

2
y ≤ 0, (5.35)

which implies
y(t) ≤ y(0)e−

t
2 . (5.36)

But, because y is decreasing, y(t) ≤ y(0) and because of (5.33), the condition (5.34) is never violated,
so (5.36) holds for all time. The condition (5.5) is the square root of (5.33) (with another name for the
constant). The bound (5.6) is obtained by taking square roots of both sides of (5.36).

□

Theorem 5.2. Let T > 0 and let Q be a solution on [0, T ] of the dissipative critical SQG equation

∂tQ + (R⊥Q) ⋅ ∇Q +ΛQ = 0 (5.37)

with initial data Q0 ∈H3. We consider a strong solution Q ∈ L∞(0, T ;H
1
2 ∩L∞) ∩L2(0, T ;H1) of (5.2),

(5.3) with initial data Q0. Then, setting C = T exp{∫
T
0 ∥∇Q∥L∞dt} we have

sup
t∈[0,T ]

∥Q(t) −Q(t)∥L2 ≤ C ( 1

1 +B2
∥Q0∥L2 +C 1

B2(1 +B2)2
∥Q0∥2L4) . (5.38)

Remark 5.2. In laboratory time scale, this result says that strong solutions q of DECM equations (1.20)
with initial data q0 = Q0

B ∈H
3 obey

sup
t∈[0,T ]

∥Bq(⋅, (1+B2)t) −Q(t)∥L2 ≤ C ( 1

1 +B2
∥Q0∥L2 +C 1

B2(1 +B2)2
∥Q0∥2L4) = O (

1

1 +B2
) (5.39)

where Q is the global smooth solution of critical SQG (5.37) with initial data Q0.

Proof. Let δ = Q −Q. Writing

V = (1 + 1

1 +B2
)Q +w, (5.40)

we have
∂tδ +Λδ + (R⊥V ) ⋅ ∇δ +R⊥(V −Q) ⋅ ∇Q = 0. (5.41)

Because Q is a strong solution we have that ∂tQ ∈ L
4
3 , Q ∈ L∞(0, T ;L4), and because Q is smooth, we can

compute the evolution of δ in L2, and after cancellations we have

1

2

d

dt
∥δ∥2L2 + ∥δ∥2

H
1
2
≤ ∥∇Q∥L∞∥δ∥L2 ((1 + 1

1 +B2
)∥δ∥L2 + 1

1 +B2
∥Q∥L2 + ∥w∥L2) . (5.42)

Using (2.35) we have

d

dt
∥δ∥L2 ≤ ∥∇Q∥L∞ ((1 +

1

1 +B2
)∥δ∥L2 + 1

1 +B2
∥Q0∥L2 +C 1

B2(1 +B2)2
∥Q0∥2L4) , (5.43)
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and thus

sup
t∈[0,T ]

∥δ(t)∥L2 ≤ ( 1

1 +B2
∥Q0∥L2 +C 1

B2(1 +B2)2
∥Q0∥2L4)T exp{∫

T

0
∥∇Q∥L∞dt}. (5.44)

□

APPENDIX A. PROOF OF PROPOSITION 2.2

Step 1. L2 bounds for w. We multiply the equation (2.34) by w and integrate over T2. SinceR⊥w ⋅Rw =
0, the nonlinear term in w vanishes, and we obtain the identity

∥w∥2L2 =
1

B2(1 +B2)2 ∫T2
QR⊥Q ⋅Rwdx. (A.1)

Applications of the Cauchy-Schwarz and Young inequalities yield the bound

∥w∥2L2 ≤
1

2
∥w∥2L2 +

C

B4(1 +B2)4
∥QR⊥Q∥2L2 , (A.2)

from which we deduce that

∥w∥2L2 ≤
C

B4(1 +B2)4
∥Q∥4L4 , (A.3)

after making use of the boundedness of the Riesz transform on L4.
Step 2. H1 bounds for w. We take the L2 inner product of the equation (2.34) obeyed by w with −∆w.

Since ∇ and R⊥ commutes and R⊥∇w ⋅R∇w = 0, we have

∫
T2
∇R ⋅ (QR⊥w) ⋅ ∇wdx = −∫

T2
∇QR⊥w ⋅R∇wdx. (A.4)

Using the interpolation inequality

∥∇Q∥L∞ ≤ C∥Q∥
1
2
L∞∥Q∥

1
2

H3 , (A.5)

we estimate

∥∇w∥2L2 = −
1

1 +B2 ∫T2
∇QR⊥w ⋅R∇wdx + 1

B2(1 +B2)2 ∫T2
∇R ⋅ (QR⊥Q) ⋅ ∇wdx

≤ 1

2
∥∇w∥2L2 +

C

(1 +B2)2
∥∇QR⊥w∥2L2 +

C

B4(1 +B2)4
∥∇R ⋅ (QR⊥Q)∥2L2

≤ 1

2
∥∇w∥2L2 +

C

(1 +B2)2
∥Q∥L∞∥Q∥H3∥w∥2L2 +

C

B4(1 +B2)4
∥Q∥2L2∥Q∥L∞∥Q∥H3 .

(A.6)

Due to the boundedness of w in L2 obtained in (A.3), we infer that

∥∇w∥2L2 ≤
C(∥Q∥5L∞ + ∥Q∥3L∞)

B4(1 +B2)4
∥Q∥H3 . (A.7)

Step 3. H2 bounds for w. We apply ∆ to the w-equation (2.34) and take the L2 inner product with ∆w.
Using the cancellation law R⊥∆w ⋅R∆w = 0, we have

∫
T2

∆R ⋅ (QR⊥w) ⋅∆wdx = −∫
T2
(∆QR⊥w +∇Q ⋅ ∇R⊥w) ⋅R∆wdx. (A.8)
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Consequently, it holds that

∥∆w∥2L2 ≤
1

2
∥∆w∥2L2 +

C

(1 +B2)2
(∥∆Q∥2L4∥R⊥w∥2L4 + ∥∇Q∥2L∞∥∇R⊥w∥2L2) +

C

B4(1 +B2)4
∥QR⊥Q∥2H2

≤ 1

2
∥∆w∥2L2 +

C

(1 +B2)2
(∥Q∥

1
2
L∞∥Q∥

3
2

H3∥w∥L2∥∇w∥L2 + ∥Q∥L∞∥Q∥H3∥∇w∥2L2)

+ C

B4(1 +B2)4
∥Q∥2L∞∥Q∥2H3

≤ 1

2
∥∆w∥2L2 +

C(∥Q∥5L∞ + ∥Q∥3L∞ + ∥Q∥2L∞)
B4(1 +B2)4

∥Q∥2H3 .

(A.9)
where the last two inequalities follow from standard continuous Sobolev embeddings, the boundedness of
the Riesz transform on Sobolev and Lp spaces, the fact that H2 is a Banach Algebra, Gagliardo-Nirenberg
interpolation inequalities, and application of the bound (A.7). Thus, we deduce that

∥∆w∥2L2 ≤
C(∥Q∥5L∞ + ∥Q∥3L∞ + ∥Q∥2L∞)

B4(1 +B2)4
∥Q∥2H3 . (A.10)

Step 4. H3 bounds for w. The cancellation law R⊥∇∆w ⋅R∇∆w = 0 gives rise to

∥∇∆w∥2L2 = −
1

1 +B2 ∫T2
[∇∆(QR⊥w) −QR⊥∇∆w] ⋅R∇∆wdx

+ 1

B2(1 +B2)2 ∫T2
∇∆(QR⊥Q) ⋅R∇∆wdx.

(A.11)

By expanding and simplifying the commutator [∇∆,QR⊥]w, and estimating using Hölder’s inequality and
continuous Sobolev embeddings, we obtain

∥∇∆(QR⊥w) −QR⊥∇∆w∥2L2 ≤ C∥Q∥2H3∥∆w∥2L2 . (A.12)

Hence, we have

∥∇∆w∥2L2 ≤
1

2
∥∇∆w∥2L2 +

C

(1 +B2)2
∥Q∥2H3∥∆w∥2L2 +

1

B4(1 +B2)4
∥Q∥2L∞∥Q∥2H3 , (A.13)

and so

∥∇∆w∥2L2 ≤
C(∥Q∥5L∞ + ∥Q∥3L∞ + ∥Q∥2L∞)

B4(1 +B2)4
∥Q∥4H3 +

C∥Q∥2L∞
B4(1 +B2)4

∥Q∥2H3 . (A.14)

due to (A.10).

APPENDIX B. PROOF OF PROPOSITION 3.1

Proof. For each integer n ≥ 1, we consider the Galerkin approximants

Pnθ =
n

∑
j=1
(θ,ωj)L2ωj (B.1)

where ωj are the eigenfunctions of the negative Laplacian operator with periodic boundary conditions. For
fixed ϵ > 0 and n ≥ 1, we consider the Galerkin approximate system

∂tq
ϵ
n +

1

1 +B2
Pn(uϵn ⋅ ∇qϵn) +

B

(1 +B2)
Pn(JϵR⊥qϵn ⋅ ∇qϵn) +

1

(1 +B2)
Λqϵn − ϵ∆qϵn = 0, (B.2)

uϵn = Pn (JϵT−1Jϵqϵn
[−P (JϵqϵnRJϵqϵn) +BR⊥Jϵqϵn]) , (B.3)

with initial data qϵn(0) = Pnq
ϵ(0) and periodic boundary conditions. The latter is a finite-dimensional system

of autonomous ODEs and has a unique smooth solution on a maximal time interval. Next, we derive a priori
bounds.
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Step 1. L2 bounds. We take the L2 inner product of the equation (B.2) obeyed by qϵn with qϵn. Using
the self-adjointness of the Galerkin projectors Pn, the identity Pnq

ϵ
n = qϵn, and the divergence-free condition

obeyed by both uϵn and R⊥qϵn, the nonlinear terms vanish, namely

(Pn(uϵn ⋅ ∇qϵn), qϵn)L2 = (Pn(JϵR⊥qϵn ⋅ ∇qϵn), qϵn)L2 = 0. (B.4)

This gives rise to the following energy balance
1

2

d

dt
∥qϵn∥2L2 +

1

(1 +B2)
∥Λ

1
2 qϵn∥2L2 + ϵ∥∇qϵn∥2L2 = 0. (B.5)

Integrating in time from 0 to t and using the uniform boundedness of Pn on L2, we infer that

∥qϵn(t)∥2L2 +
2

1 +B2 ∫
t

0
∥Λ

1
2 qϵn(s)∥2L2ds + 2ϵ∫

t

0
∥∇qϵn(s)∥2L2ds = ∥qϵn(0)∥2L2 ≤ ∥qϵ(0)∥2L2 . (B.6)

for all t ≥ 0.
Step 2. Hm bounds for m ≥ 1. We multiply the equation (B.2) obeyed by qϵn by Λ2mqϵn and we integrate

over T2. We obtain the evolution equation
1

2

d

dt
∥Λmqϵn∥2L2 +

1

(1 +B2)
∥Λm+ 1

2 qϵn∥2L2 + ϵ∥Λm+1qϵn∥2L2

= − 1

1 +B2 ∫T2
Λm−1(uϵn ⋅ ∇qϵn)Λm+1qϵndx −

B

(1 +B2) ∫T2
Λm−1(JϵR⊥qϵn ⋅ ∇qϵn)Λm+1qϵndx.

(B.7)

Applications of the Cauchy-Schwarz and Young inequalities give rise to the differential inequality
1

2

d

dt
∥Λmqϵn∥2L2 +

1

(1 +B2)
∥Λm+ 1

2 qϵn∥2L2 +
ϵ

2
∥Λm+1qϵn∥2L2

≤ 1

(1 +B2)2
∥Λm−1(uϵn ⋅ ∇qϵn)∥2L2 +

B2

(1 +B2)2
∥Λm−1(JϵR⊥qϵn ⋅ ∇qϵn)∥2L2 .

(B.8)

By making use of periodic fractional product estimates and standard continuous Sobolev embeddings, we
have

∥Λm−1(uϵn ⋅ ∇qϵn)∥2L2 ≤ C∥Λm−1uϵn∥2L4∥∇qϵn∥2L4 +C∥uϵn∥2L∞∥Λm−1∇qϵn∥2L2

≤ C∥uϵn∥2Hm+1∥Λmqϵn∥2L2

(B.9)

provided that m ≥ 2. We point out that the latter estimate trivially holds when m = 1 by the Hölder and
Sobolev inequalities. By making use of the explicit relation (B.3), the boundedness of Pn on Sobolev spaces,
and the boundedness of the mollifier Jϵ from L2 to Hm+1, and the boundedness of T −1Jϵqϵn

on L2, we estimate

∥uϵn∥2Hm+1 ≤ ϵ−2m−2 ∥T−1Jϵqϵn
[−P (JϵqϵnRJϵqϵn) +BR⊥Jϵqϵn]∥

2

L2

≤ ϵ−2m−2(1 +B2)−2 ∥−P (JϵqϵnRJϵqϵn) +BR⊥Jϵqϵn∥
2

L2

≤ ϵ−2m−2(1 +B2)−2 (∥Jϵqϵn∥2L4∥RJϵqϵn∥2L4 +B2∥R⊥Jϵqϵn∥2L2) .

(B.10)

As Jϵ and R are bounded operators on L4 and L2, and due to the Ladyzhenskaya interpolation inequality,
the latter yields

∥uϵn∥2Hm+1 ≤ Cϵ−2m−2(1 +B2)−2 (∥qϵn∥4L4 +B2∥qϵn∥2L2)
≤ Cϵ−2m−2(1 +B2)−2 (∥qϵn∥2L2∥∇qϵn∥2L2 +B2∥qϵn∥2L2) .

(B.11)

Consequently, we obtain the bound

∥Λm−1(uϵn ⋅ ∇qϵn)∥2L2 ≤ Cϵ−2m−2(1 +B2)−2 (∥∇qϵn∥2L2 +B2) ∥qϵn∥2L2∥Λmqϵn∥2L2 . (B.12)

Similarly, we have
∥Λm−1(JϵR⊥qϵn ⋅ ∇qϵn)∥2L2 ≤ C∥JϵR⊥qϵn∥2Hm+1∥Λmqϵn∥2L2

≤ Cϵ−2m−2∥qϵn∥2L2∥Λmqϵn∥2L2 .
(B.13)
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Putting all these estimates together, the energy inequality (B.8) boils down to
d

dt
∥Λmqϵn∥2L2 +

2

(1 +B2)
∥Λm+ 1

2 qϵn∥2L2 + ϵ∥Λm+1qϵn∥2L2

≤ C

ϵ2m+2(1 +B2)2
[ 1

(1 +B2)2
(∥∇qϵn∥2L2 +B2) +B2] ∥qϵn∥2L2∥Λmqϵn∥2L2 .

(B.14)

Finally, we integrate in time from 0 to t, use the uniform bounds (B.6) derived in Step 1, and deduce that for
any T > 0,

qϵn ∈ L∞(0, T ;Hm(T2)) ∩L2(0, T ;Hm+1(T2)). (B.15)
Step 3. Convergence. The convergence follows from the uniform-in-n boundedness of solutions in the

Lebesgue spaces L∞(0, T ;Hm(T2)) and L2(0, T ;Hm+1(T2)) for all m ∈ N and the Aubin-Lions lemma.
We point out that the uϵn converges to uϵ due to the uniform boundedness of mollifiers on Sobolev spaces
and the Lipschitz estimates (2.39). The proof is standard and we omit the details.

Step 4. Uniqueness. Suppose there are two smooth solutions qϵ1 and qϵ2 with same initial data and with
uϵ1 and uϵ2 determined by qϵ1 and qϵ2 respectively. Denoting the differences by qϵ = qϵ1 − qϵ2 and uϵ = uϵ1 − uϵ2,
we have

∂tq
ϵ + 1

1 +B2
(uϵ1 ⋅ ∇qϵ + uϵ ⋅ ∇qϵ2) +

B

(1 +B2)
(JϵR⊥qϵ1 ⋅ ∇qϵ + JϵR⊥qϵ ⋅ ∇qϵ2)

+ 1

(1 +B2)
Λqϵ − ϵ∆qϵ = 0.

(B.16)

Multiplying the latter by qϵ and integrating over T2 give
1

2

d

dt
∥qϵ∥2L2 +

1

(1 +B2)
∥Λ

1
2 qϵ∥2L2 + ϵ∥∇qϵ∥2L2 +

1

1 +B2 ∫T2
uϵ ⋅ ∇qϵ2qϵdx

+ B

(1 +B2) ∫T2
JϵR

⊥qϵ ⋅ ∇qϵ2qϵdx = 0.
(B.17)

Using the boundedness of the operator T−1Jϵqϵ2
on L2, the Lipschitz estimate (2.39), and continuous Sobolev

embeddings, we estimate ∥uϵ∥L2 as follows,

∥uϵ∥L2 = ∥uϵ1 − uϵ2∥L2

≤∥Jϵ(T −1Jϵqϵ1
− T−1Jϵqϵ2

) [−P (Jϵqϵ1RJϵqϵ1) +BR⊥Jϵqϵ1]∥
L2

+ ∥JϵT −1Jϵqϵ2
[−P (Jϵqϵ1RJϵqϵ + JϵqϵRJϵqϵ2) +BR⊥Jϵqϵ]∥

L2

≤C∥Jϵqϵ∥L∞ ∥−P (Jϵqϵ1RJϵqϵ1) +BR⊥Jϵqϵ1∥L2 +C∥Jϵqϵ1RJϵqϵ + JϵqϵRJϵqϵ2∥L2 +C∥qϵ∥L2

≤C
ϵ2
∥qϵ∥L2 ∥−P (Jϵqϵ1RJϵqϵ1) +BR⊥Jϵqϵ1∥L2 +C(∥qϵ1∥H2 + ∥qϵ2∥H2 + 1)∥qϵ∥L2

≤C
ϵ2
(∥qϵ1∥2L4 + ∥qϵ1∥L2)∥qϵ∥L2 +C(∥qϵ1∥H2 + ∥qϵ2∥H2 + 1)∥qϵ∥L2 .

(B.18)

Therefore, we obtain the bound

∫
T2
uϵ ⋅ ∇qϵ2qϵdx ≤ Cϵ(1 + ∥qϵ1∥4H2 + ∥qϵ2∥2H2)∥qϵ∥2L2 . (B.19)

By making use of the Hölder and Sobolev inequalities, we have

∫
T2
JϵR

⊥qϵ ⋅ ∇qϵ2qϵdx ≤ C∥qϵ2∥H2∥qϵ∥2L2 . (B.20)

Combining the above estimates gives rise to the energy inequality
d

dt
∥qϵ∥2L2 ≤ Cϵ(1 + ∥qϵ1∥4H2 + ∥qϵ2∥2H2)∥qϵ∥2L2 . (B.21)

Consequently, the uniqueness of solutions follows from the Gronwall inequality.
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