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My research interests are in graph theory, combinatorics, and algorithms. Due to wide appli-
cations to other disciplines in mathematics, computer science, biology, economics, etc, these topics
attracted extensive attention in recent decades. My work includes well-quasi-ordering, graph struc-
ture, graph coloring, extremal graph theory, extremal combinatorics, combinatorial optimization,
domination problems, and applications to algorithms.

In this article, I will briefly describe part of my recent work and discuss some open problems
that I would like to explore in the near future related to the project funded by my NSF grant.

1 Previous work

This section addresses part of my results in the past few years.

1.1 Well-quasi-ordering and structure theorems

A quasi-ordering ⪯ on a set S is a reflexive and transitive relation. It is a well-quasi-ordering if
for every infinite sequence s1, s2, ... in S, there exist i < j such that si ⪯ sj . A graph G is a minor of
a graph H if G can be obtained from a subgraph of H by contracting edges. One of the prominent
and well-known results in graph theory is Robertson and Seymour’s Graph Minors project, which
brought a giant breakthrough in graph theory with 23 papers and was awarded the George Pólya
Prize and the Fulkerson Prize. In the series of papers, they confirm Wagner’s conjecture (now
known as the Graph Minor Theorem): finite graphs are well-quasi-ordered by the minor relation
[41], and prove the existence of a polynomial time algorithm for minor testing, which settles one
of Garey and Johnson’s problems. In addition, in the (currently) last paper of the Graph Minors
series, they prove the same for weak immersions [42]. Furthermore, they develop many structural
theorems that are widely applied in graph theory and theoretical computer science.

The results about well-quasi-ordering graphs are very powerful. If a property Q is closed under a
relation ⪯ that well-quasi-orders graphs, then there exist finitely many graphs H1,H2, ..., Hn (only
depending on Q) such that every graph G satisfies Q if and only if Hi ̸⪯ G for every 1 ≤ i ≤ n. In
particular, every property that is closed under deleting vertices, edges, and contracting edges can
be characterized by finitely many graphs, and hence can be decided in polynomial time. Similarly,
Fellows and Langston [14] used the fact that weak immersion well-quasi-orders graphs to deduce
polynomial time algorithms for many problems that were unknown to be polynomial time solvable,
and gave more efficient algorithms for some other problems.

Unlike the relations of minor and weak immersion, the relation of topological minor does not
well-quasi-order finite graphs in general. For every positive integer k, we say that a graph is a
Robertson chain of length k if it can be obtained by doubling the edges of the path of length k, and
we say that the ends of the Robertson chain are the ends of the original path. Let Gk be the graph
obtained by adding four vertices of degree one to the Robertson chain of length k, where each of
the ends is adjacent to two new vertices. Then there do not exist i ̸= j such that Gi contains Gj as
a topological minor. However, Robertson in the 1980’s conjectured that the Robertson chain is the
only obstruction. More precisely, he conjectured that for every positive integer k, the topological
minor relation well-quasi-orders the graphs that do not contain a topological minor isomorphic to
the Robertson chain of length k.

Robertson’s conjecture immediately implies all known results about well-quasi-ordering graphs
by the topological minor relation, including two conjectures of Vázsonyi: trees and graphs with
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maximum degree at most three are well-quasi-ordered by the topological minor relation, where the
former was independently proved by Kruskal [20] and Tarkowski [43], and the latter was proved by
Robertson and Seymour [42].

I proved Robertson’s conjecture in my thesis [22]. Prior to the announcement of our proof,
Robertson’s conjecture was considered difficult, and very few progress was made in the literature
[8] over decades.

In addition, we [33] are able to characterize all well-quasi-ordered topological ideals. A topolog-
ical ideal is a set of graphs such that any topological minor of a member of the set belongs to this
set. Note that for every topological minor closed property Q, the set of graphs satisfying Q is a
topological ideal. The characterization involves a notion called “Robertson family”, which consists
of the graphs that can be obtained from a Robertson chain by taking 16 different types of small
modifications. We omit the formal definition of the Robertson family.

Theorem 1 ([22, 33]) If k is a positive integer, then graphs with no topological minor isomorphic
to the Robertson chain of length k are well-quasi-ordered by the topological minor relation. Fur-
thermore, a topological ideal is well-quasi-ordered by the topological minor relation if and only if it
contains only finitely many members of the Robertson family.

The proof of Theorem 1 is long and difficult. It will be split into a series of papers [30, 31, 32, 33]
for publication.

Robertson’s conjecture is turned out to be harder than expected even for graphs of bounded
tree-width. We needed a new technique to convert vertex-cuts of the tree-decomposition into edge-
cuts [30], which serves the first essential step toward a proof of Theorem 1. Moreover, building on
our earlier result about a general structural theorem for excluding a fixed graph as a topological
minor [29] which improves results of Grohe, Marx [17], and Dvořák [9], we further developed other
structural theorems for excluding the Robertson chain of a fixed length as a topological minor
[31, 32]. These serve other essential steps toward the proof of Theorem 1 and prove another
Robertson’s conjecture (Theorem 2 mentioned below). Then we [32, 33] applied them to reduce
the problem to graphs in which the topological minor relation is the same as the minor relation or
the weak immersion relation, which reduces Theorem 1 to a result of Robertson and Seymour.

Theorem 2 ([31, 32]) (Informal description) For every positive integer k, every graph with no
topological minor isomorphic to the Robertson chain of length k is “nearly subcubic.”

The notion of being “nearly subcubic” mentioned in Theorem 2 needs a couple of definitions to
be precisely stated, so we only give an informal description here.

1.2 Erdős-Pósa property

In addition to proving well-quasi-ordering results, our structure theorem for excluding a fixed
graph as a topological minor [29] has an application to problems about the Erdős-Pósa property.
A family F of graphs has the Erdős-Pósa property if there exists a function f such that for every
integer k, every graph G either contains k pairwise disjoint subgraphs where each isomorphic to a
member of F , or contains a set of at most f(k) vertices intersecting all subgraphs isomorphic to
members of F .

The Erdős-Pósa property is closely related to operation research. Several problems in graph
theory can be formulated as one of the following two optimization problems: given a family H
of graphs, what is the maximum number of disjoint subgraphs isomorphic to members of H in a
given graph G, and what is the minimum size of a subset of V (G) intersecting all such subgraphs?
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One important and powerful idea in combinatorial optimization is the primal-dual method, which
attempts to show that the solution of each of the above problems is bounded in terms of the other.
This is exactly what the Erdős-Pósa property describes.

For a graph H, denote the sets of graphs containing H as a minor and a topological minor as
M(H) and T (H), respectively. Robertson and Seymour [38] in 1986 proved that M(H) has the
Erdős-Pósa property if and only if H is planar. In the same paper, they asked for the characteri-
zation for the graphs H in which T (H) has the Erdős-Pósa property.

Postle, Wollan and I [28] are able to answer Robertson and Seymour’s question in full by
providing a complete characterization described in Theorem 3. This characterization requires a
number of definitions to be precisely stated, so only an informal description is included here. We
also prove that testing whether T (H) has the Erdős-Pósa property for the input graph H is NP-
hard, which implies that a clean characterization is unlikely to be existed.

Theorem 3 ([28]) (Informal description.) Let H be a graph. Then T (H) has the Erdős-Pósa
property if and only if the following hold.

1. H can be drawn in the plane such that all vertices of degree at least four are incident with the
same face.

2. For every component L of H not properly contained in another component as a topological
minor and for every “partition” of L, the partially ordered set on the parts ordered by the
topological minor relation contains at most two maximal elements, and each part is “symmet-
rically” contained in some maximal part as a topological minor.

3. For every pair of components L1, L2 of H each not properly contained in another component
as a topological minor and for every “partition” of L1 ∪ L2, the partially ordered set on the
parts ordered by the topological minor relation contains at most three maximal elements.

Furthermore, testing whether T (H) has the Erdős-Pósa property for the input graph H is NP-hard.

As mentioned earlier, a family F satisfies the Erdős-Pósa property if and only if the integral
solutions of the packing and covering problems with respect to F are bounded in term of each
other. By the duality theorem of linear programmings, the solutions of the LP-relaxation of these
two problems are always tied to each other. Hence, it was considered whether this still holds if we
only allow the fractional solutions having small denominators.

In particular, Thomas (see [18]) conjecture that the planarity is no longer required to tie the
solutions of the packing problem and the covering problem if we pack minors half-integrally: for
every graph H, M(H) satisfies the corresponding Erdős-Pósa property if we allow the solutions of
the packing problem having denominators 1 or 2.

I [24] prove that it is true for T (H), which easily implies Thomas’ conjecture. One application
of this result is providing a polynomial time approximation scheme for maximizing any graph
parameter that does not increase under taking vertex-deletion on the class of graphs that can
only half-integrally pack a bounded number of apex-minors, generalizing a result of Demaine and
Hajiaghayi [5]. A graph is apex if it can be made planar by deleting at most one vertex.

Theorem 4 ([24]) For every graph H, there exists a function f such that for every graph G and
positive integer k, either there exist k H topological minors in G such that each vertex of G is
contained in at most two of them, or there exists a set of at most f(k) vertices intersecting all H
topological minors in G.
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For every apex-graph H, integer k, and graph parameter α that does not increase under taking
vertex-deletion, there exists a polynomial q and a constant c such that for every ϵ > 0, there exists
an algorithm for finding α with approximation ratio 1 − ϵ running in time O(c1/ϵq(|V (G)|)) on
graphs G that do not half-integrally pack k H-minors.

Based on Theorem 3, Theorem 4 shows that the gap between the Erdős-Pósa properties with
respect to packing and half-integral packing topological minors is huge in the sense that testing the
former is NP-hard but testing the latter is constant time solvable.

The Erdős-Pósa property with respect to the weak immersion containment were also considered.
Due to the nature of packing edge-disjoint paths in immersions, it is more reasonable to consider an
edge-variant of the Erdős-Pósa property. I [23] observe that the characterization for the graphs H
in which the set of graphs containing H as a weak immersion has the edge-variant of the Erdős-Pósa
property can be as complicated as the topological minor case, and prove that the characterization is
much cleaner if we restrict the host graphs to be 4-edge-connected graphs. The 4-edge-connectivity
cannot be replaced by the 3-edge-connectivity.

Theorem 5 ([23]) For every graph H, there exists a function f such that for every positive inte-
ger k, every 4-edge-connected graph either contains k pairwise edge-disjoint subgraphs where each
contains H as a weak immersion, or contains a set of at most f(k) edges intersecting all such
subgraphs.

Theorem 5 shows that the edge-variant of the Erdős-Pósa property for weak immersions can be
ensured by simply assuming the host graphs has edge-connectivity at least 4. However, there is no
constant c to ensure the Erdős-Pósa property for topological minors even if we assume that host
graphs are c-connected [28].

1.3 Cycle lengths and minimum degree

The study of the relationship between the minimum degree of graphs and the lengths of their
cycles is a classical research direction in graph theory. For example, Dirac in the 1950’s proved
that every graph on n vertices with minimum degree at least n/2 contains a cycle with length n.

Thomassen [45] in 1983 proposed the following two conjectures: every graph with minimum
degree at least k + 1 contains cycles of all even lengths modulo k; every 2-connected non-bipartite
graph with minimum degree at least k + 1 contains cycles of all lengths modulo k. The complete
graph on k + 1 vertices shows that the minimum degree conditions in these conjectures are best
possible. Motivated by these conjectures, Ma and I [25] proved several theorems about the minimum
degree conditions for forcing the existence of cycles with certain lengths.

First, we prove the following theorem, which confirms both conjectures of Thomassen mentioned
above in a stronger sense when k is even.

Theorem 6 ([25]) If G is a graph with minimum degree at least k + 1, then G contains ⌊k/2⌋
cycles with consecutive even lengths. Furthermore, if G is 2-connected and non-bipartite, then G
contains ⌊k/2⌋ cycles with consecutive odd lengths.

If we increase the connectivity, we can obtain cycles with consecutive lengths. The following
theorem improves a result of Fan [13], which was originally asked by Bondy and Vince [3].

Theorem 7 ([25]) If G is a 3-connected non-bipartite graph with minimum degree at least k + 1,
then G contains 2⌊k−1

2 ⌋ cycles with consecutive lengths.
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The 3-connectivity in Theorem 7 cannot be dropped since there are infinitely many 2-connected
non-bipartite graphs with arbitrarily large minimum degree but containing no two cycles with
consecutive lengths. Though dropping the 3-connectivity prevents us from obtaining cycles of
consecutive lengths, we can still obtain cycles whose lengths form a long arithmetic progress of
common difference one or two.

Theorem 8 ([25]) If G is a 2-connected non-bipartite graph with minimum degree at least k + 3,
then G contains k cycles whose lengths form an arithmetic progression with common difference one
or two.

Theorem 8 shows that minimum degree k + 3 suffices (in a stronger sense) for the second
Thomassen’s conjecture mentioned above when k is odd. By dropping the 2-connectivity and the
non-bipartiteness, we can prove the following theorem, which shows that minimum degree k + 4 is
sufficient (in a stronger sense) for the first Thomassen’s conjecture mentioned above when k is odd.

Theorem 9 ([25]) If G is a graph with minimum degree at least k + 4, then G contains k cycles
whose lengths form an arithmetic progression with common difference one or two.

The minimum degree conditions in Theorems 8 and 9 are currently best known in the literature
and just small additive constants away from the ones in Thomassen’s conjectures.

1.4 Graph coloring

Graph coloring is one of the most important and broadly studied topics in graph theory. It has
been widely applied to scheduling and partitioning problems.

1.4.1 Variations of Hadwiger’s conjecture

Hadwiger conjectured that every graph with no Kt+1-minor can be partitioned into t parts such
that every component of each subgraph induced by a part contains at most one vertex. It is widely
considered one of the deepest conjectures in graph theory and remains open for the case t ≥ 6. The
celebrated Four Color Theorem is implied by (in fact, equivalent with) the case t = 4.

Variations of Hadwiger’s conjecture for seeking a partition with no large components in each
subgraph induced by a part have been extensively considered. In particular, Alon, Ding, Oporowski
and Vertigan [2] proved that for every integer d, there exists a number c such that every Kt-
minor free graph of maximum degree at most d can be partitioned into four parts such that every
component of each subgraph induced by a part has at most c vertices. Esperet and Joret [11]
improved a special case of the mentioned result of Alon et al. by proving that only three parts are
required for graphs embeddable in a fixed surface and asked whether it can be generalized to every
proper minor-closed family of graphs.

Oum and I [26] provided a positive answer of Esperet and Joret’s question and hence improved
the mentioned result of Alon et al. In fact, our result proves a stronger statement. We show that
the condition of the lack of minors can be replaced by the lack of minors with special properties.

Theorem 10 ([26]) For every graph H and positive integer d, there exists a number c such that
if a graph G of maximum degree at most d has no odd H-minor, then V (G) can be partitioned into
three parts X1, X2, X3 such that every component of G[Xi] contains at most c vertices for every
i = 1, 2, 3.
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Theorem 10 is best possible in the sense that the number three cannot be reduced. Furthermore,
the condition on the maximum degree cannot be dropped if the partition only allows a constant
number of parts.

Another application of Theorem 10 is that as long as graphs of a proper minor closed family can
be partitioned into k subgraphs with bounded maximum degree, such graphs can be partitioned
into 3k subgraphs with bounded component size. It shows that for any proper minor closed family,
the ratio between the minimum number of required parts for partitioning graphs into graphs with
bounded component size and the minimum number of required parts for partitioning graphs into
graphs with bounded maximum degree is at most three, which serves a tight link between two
variants of the chromatic number that attract wide attentions.

1.4.2 Edge-density of minimal non-3-colorable graphs

Intuitively, graphs with fewer edges can be properly colored by a smaller number of colors.
Kostochka and Yancy [19] confirmed this intuition by proving that every non-3-colorable graph

contains a subgraph H with |E(H)| ≥ 5|V (H)|−2
3 . Postle and I [27] improved this bound when the

graphs have no cycle of length less than five.

Theorem 11 ([27]) There exist positive numbers ϵ, c such that every non-3-colorable graph with
no cycle of length less than five contains a subgraph H with |E(H)| ≥ (53 + ϵ)|V (H)|+ c.

Together with Euler’s formula, Theorem 11 immediately implies a result of Thomassen [46] and
a result of Thomas and Walls [44]: every graph with no cycle of length less than five embeddable
in the torus or the Klein bottle is properly 3-colorable. Theorem 11 not only provides a unified
proof of the results of Thomassen, Thomas and Walls, but also shows that the 3-colorability of
those graphs are indeed due to sparsity instead of topological properties.

2 Future work

I would like to address problems related to three cognate graph containment relations (graph
minors, topological minors and immersions) in the next few years. Conjectures in this research area
have been proposed and attracted wide attention for more than 70 years. Though successes were
reported over recent decades, such as results in the Graph Minors series and some of our earlier
results mentioned in the previous section, several such conjectures remain open.

2.1 Nash-Williams’ strong immersion conjecture

Nash-Williams conjectured in the 1960’s that the relations of weak immersion and strong immer-
sion are well-quasi-orderings of finite graphs. In other words, given an infinite sequence G1, G2, ... of
finite graphs, there exist i < j such that Gj admits a weak (and strong, respectively) Gi-immersion.
The conjecture on weak immersion was proved by Robertson and Seymour in the (currently) last
paper of the Graph Minors series via very complicated arguments [42], but the conjecture on strong
immersion, which implies the weak immersion conjecture, is still open. Furthermore, the conjecture
on strong immersion implies that every strong immersion-closed property can be characterized by
finitely many graphs. Note that the class of strong immersion-closed properties strictly contains
the class of weak immersion-closed properties.

Conjecture 12 ([35]) Graphs are well-quasi-ordered by the strong immersion relation.
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The strategy to solve the strong immersion conjecture is similar as the idea that we developed for
attacking Robertson’s conjecture. We shall develop structure theorem for excluding a fixed graph
as a strong immersion. If there exists a sequence of graphs such that no graph contains another as
a strong immersion, then every graph in the sequence does not strongly immerse the first graph,
and hence we can apply our structure theorem. Based on the structure theorem (elaborated in the
next subsection), we expect that such graphs have some tree structure such that each small piece
either has maximum degree smaller than the original graph or can be drawn on a surface with
smaller genus. And then the conjecture follows by induction on the maximum degree and genus.

2.2 Structure theorems for excluding strong immersions and its applications

One important achievement of Robertson and Seymour’s Graph Minors series is developing the
structure theorem for excluding a fixed graph as a minor [40]. Roughly speaking, every graph that
does not contain a fixed graph as a minor has a certain tree structure. This theorem leads to many
algorithmic applications on minor-closed families of graphs, such as the family of planar graphs, and
it is an important step for proving the minor relation well-quasi-orders graphs. In comparison to
the fact that structural theorems about graph minors were widely explored, only few about graph
immersions could be found in the literature. As structural theorems about graph minors lead to
great successes in deriving many algorithmic results, it is reasonable to expect the same for graph
immersions. Based on the our proofs of structure theorems for excluding weak immersions [34] and
topological minors [29], we expect that we can obtain a theorem for excluding a fixed graph as a
strong immersion.

Besides proving well-quasi-ordering problems, the other motivation for investigating structure
theorems for excluding strong immersions is in the topic of algorithms. It is known that minor
testing [39], topological minor testing and weak immersion testing [16] are fixed-parameter tractable.
That is, given a fixed graph H, testing whether an input graph on n vertices contains H as a minor,
topological minor, or weak immersion can be done in time O(f(H)nc), where c does not depend
on H or n. In consequence, due to the results that the minor, topological minor (with some
extra requirement), and weak immersion relations well-quasi-order graphs, every property that is
closed under minors, topological minor (with some extra requirement), or weak immersions can
be decided in polynomial time. However, the existence of polynomial time algorithms for testing
whether a given graph contains a fixed graph as a strong immersion is not known, but was positively
conjectured by Grohe, Kawarabayashi, Marx and Wollan [16]. The information obtained by the
structure of graphs that do not contain a fixed graph as a strong immersion seems essential for
developing such a polynomial time algorithm.

Conjecture 13 ([16]) There exist a function f and a number c such that for every graph H,
whether a graph on n vertices admits a strong H-immersion can be decided in time O(f(H)nc).

2.3 Graph coloring, minimum degree, and immersions

Lescure and Meyniel [21] and Abu-Khzam and Langston [1] independently conjectured a variant
of Hadwiger’s conjecture with respect to graph immersions.

Conjecture 14 ([1, 21]) For every positive integer k, every graph that does not contain Kk as a
weak immersion admits a proper (k − 1)-coloring.

The case k ≤ 7 of Conjecture 14 were confirmed by DeVos, Kawarabayashi, Mohar and Okamura
[7], but the case k ≥ 8 remains open. Motivated by Conjecture 14, a question of minimum degree
conditions for forcing a Kk-immersion was considered.
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Question 15 For each positive integer k, what is the minimum f(k) such that every simple graph
with minimum degree at least f(k) contains Kk as a weak immersion.

Since every graph that does not admit a proper (k− 1)-coloring has a subgraph with minimum
degree at least k−1, Devos, Kawarabayashi, Mohar and Okamura [7] conjectured that f(k) ≤ k−1.
This conjecture is true for k ≤ 7 [7] but false for all k ≥ 8 [4, 6]. Bear this in mind, Dvořák and
Yepremyan [10] asked whether the following conjecture, which still implies Conjecture 14, is true.

Conjecture 16 For every positive integer k, f(k) ≤ k.

Besides applications in graph coloring, Question 15 is of its own interest and attracts attention
recently. Devos, Dvořák, Fox, McDonald, Mohar and Scheide [6] proved that f(k) ≤ 200k; Dvořák
and Yepremyan [10] improved their result to f(k) ≤ 11k+ 7; Gauthier, Le and Wollan [15] further
improved it to f(k) ≤ 7k + 7. My another objective is to prove Conjecture 16 or at least improve
the known results on Question 15 by decreasing the leading coefficient of the bound of f(k).

2.4 Graph partitioning and improper coloring

For a family of graphs F closed under taking subgraphs, the defective chromatic number (and
clustered chromatic number, respectively) of F is the minimum t such that there exists a number N
such that for every graph G in F , there exists a partition of V (G) into t parts such that the subgraph
induced by each part has maximum degree at most N (and has no component containing more
than N + 1 vertices, respectively). These two notions are relaxations of the traditional coloring,
as the chromatic number requires the number N to be zero. Motivated by Hadwiger’s conjecture,
they attract wide attention recently. For example, Edwards, Kang, Kim, Oum and Seymour [12]
proved that the set of Kt-minor-free graphs has defective chromatic number t− 1, and Oum and I
[26] proved that for every graph H, the set of H-minor-free graphs with bounded maximum degree
has clustered chromatic number at most three.

All known lower bounds of the defective chromatic number and clustered chromatic number
of families of graphs come from few types of obstructions. In particular, the graph Gh,N that is
obtained from an (N +1)-nary tree with height h by adding edges between all ancestor-descendant
pairs cannot be partitioned into h−1 parts where each part induces a graph with maximum degree
at most N . Hence the defective chromatic number of {Gh,N : N ≥ 1} is at least h. This family
witnesses a lower bound for defective chromatic number and can be viewed as an analog of complete
graphs which witness a lower bound for chromatic number. Note that Kh is the maximal graph
with h vertices, and {Gh,N : N ≥ 1} consists of the maximal graphs with connected tree-depth h.
Ossona de Mendez, Oum and Wood [37] proposed the following analog of Hadwiger’s conjecture.

Conjecture 17 ([37]) For every graph H, the defective chromatic number of the family of graphs
with no H-minor equals the connected tree-depth of H minus 1.

Norin, Scott, Seymour and Wood [36] constructed a family with clustered chromatic number
larger than the connected tree-depth of H, and conjectured that the clustered chromatic number
of this family is the worst among all H minor free graphs.

Conjecture 18 ([36]) For every graph H, the clustered chromatic number of the family of graphs
with no H-minor is at most twice of the connected tree-depth of H minus 2.
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In addition, recall that Hadwiger’s conjecture is true if we allow defective coloring [12], and the
number of colors can be reduced to three for clustered coloring if we further assume graphs having
bounded maximum degree, no matter how large the complete graph we exclude is [25]. As Hajós’
conjecture is also true if we allow defective coloring [12], one might consider whether there exists
a constant C such that every Kt-topological minor free graph with bounded maximum degree has
clustered chromatic number at most C. However, it is not true, as the clustered chromatic number
of the family of graphs with maximum degree at most t − 2 is Ω(t). As graphs with maximum
degree at most t − 2 are the most obvious examples of graphs with no Kt-topological minor, it is
natural to conjecture the following.

Conjecture 19 For every sufficiently large integer t, if f(t) is the clustered chromatic number of
the family of graphs with maximum degree at most t − 2, then for every integer k, the family of
Kt-topological minor free graphs with maximum degree at most k has clustered chromatic number
at most f(t).
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torica 34 (2014), 323–329.

[20] J. B. Kruskal, Well-quasi-ordering, the tree theorem, and Vaszonyi’s conjecture, Trans. Amer.
Math. Soc. 95 (1960), 210–225.

[21] F. Lescure and H. Meyniel, On a problem upon configurations contained in graphs with given
chromatic number, Graph Theory in Memory of G.A. Dirac, Ann. Discrete Math. 41 (1988)
325–331.

[22] C.-H. Liu, Graph Structures and Well-Quasi-Ordering, PhD Dissertation, Georgia Institute of
Technology, 2014. https://smartech.gatech.edu/handle/1853/52262.

[23] C.-H. Liu, Packing and covering immersions in 4-edge-connected graphs, submitted,
arXiv:1505.00867.

[24] C.-H. Liu, Packing topological minors half-integrally, submitted, arXiv:1707.07221.

[25] C.-H. Liu and J. Ma, Cycle lengths and minimum degree of graphs, J. Combin. Theory, Ser.
B, doi:10.1016/j.jctb.2017.08.002.

[26] C.-H. Liu and S. Oum, Partitioning H-minor free graphs into three subgraphs with no large
components, J. Combin. Theory, Ser B, doi:10.1016/j.jctb.2017.08.003.

[27] C.-H. Liu and L. Postle, On the minimum edge-density of 4-critical graphs of girth five, J.
Graph Theory, doi:10.1002/jgt.22133.

[28] C.-H. Liu, L. Postle and P. Wollan, The Erdős-Pósa property for topological minors,
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