K-stability and Moduli of Fano varieties II

Chenyang Xu (Princeton University)

2025 Summer Research Institute

July 17, 2025

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Degeneration of Fano varieties

Started with a family of Fano varieties over a punctured disk X° → C° = C \ {0}, we would like to investigate the question to find a optimal degeneration X₀.

ъ

イロト イポト イヨト イヨト

• We can always get a klt Fano degeneration X₀. But often non-unique.

Assume X_t are K-semistable,

- Does there always exist a K-semistable degeneration?
- Assuming the existence, is it unique?

Good moduli space

- Higher rank finite generation
- Properness

・ロト ・聞ト ・ヨト ・ヨト

₹ 990

Definition (Filtrations)

• Let
$$R_{\bullet} := \bigoplus_{m} R_{m} = H^{0}(-mK_{X}).$$

• \mathcal{F}^{λ} is a decreasing graded filtration indexed by $\lambda \in \mathbb{R}$.

•
$$\mathcal{F}^{\lambda-\varepsilon}R_m = \mathcal{F}^{\lambda}R_m$$
 for $0 < \varepsilon \ll 1$.

•
$$\mathcal{F}^{\lambda}R_m \cdot \mathcal{F}^{\lambda'}R_{m'} \subseteq \mathcal{F}^{\lambda+\lambda'}R_{m+m'}$$

• There exists
$$e_{-} < e_{+}$$
, $\mathcal{F}^{me_{-}}R_{m} = R_{m}$ and $\mathcal{F}^{me_{+}}R_{m} = 0$.

Gr_𝔅 R_• is a (double) graded ring.

• Define $S_m(\mathcal{F}) := \frac{1}{mN_m} \sum_{\lambda} \lambda \dim \operatorname{Gr}_{\mathcal{F}}^{\lambda} R_m = \frac{1}{mN_m} \sum_i a_i$, where $N_m = \dim(R_m)$ and a_i are all jumping numbers of \mathcal{F} on R_m .

• Example:
$$\mathcal{F}_{E}^{\lambda}R_{m} = \{s \in R_{m} \mid \operatorname{ord}_{E}(s) \geq \lambda\}$$
. So $S_{m}(E) = S_{m}(\mathcal{F}_{E})$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

• Let $V_{\bullet}^t \subset R_{\bullet}$ given by $V_m^t := \mathcal{F}^{tm} R_m$.

•
$$\lim_{m \to \infty} \frac{1}{N_m} \dim \mathcal{F}^{tm} R_m = \frac{\operatorname{vol}(V_{\bullet}^t)}{(-K_X)^n}$$
.

• Taking a derivative, $\lim_{m} dv_{m} = dv_{DH,\mathcal{F}}$ as distributions, where $dv_{m} := \frac{-1}{N_{m}} \frac{\dim \mathcal{F}^{tm} R_{m}}{dt} = \frac{1}{N_{m}} \sum_{i} \delta_{\frac{a_{i}}{m}}$ and $dv_{DH,\mathcal{F}} := \frac{-1}{(-K_{\chi})^{n}} \frac{\operatorname{dvol}(V_{*}^{l})}{dt}$.

• So
$$\lim_m S_m(\mathcal{F}) = \lim_m \int t \, \mathrm{d} v_m \to S(\mathcal{F}) = \int t \, \mathrm{d} v_{\mathrm{DH},\mathcal{F}}.$$

 (Lazarsfeld-Mustaţă 09, Kaveh-Khovanskii 09, Boucksom-Chen 10) The theory of Okounkov body provides a powerful tool to study S(𝒫).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

- Let *I_{m,λ}* = Bs(*F^λR_m* → *R_m*). So *I*^t_• := {*I_{m,mt}*}_m form a multiplicative sequence of graded ideals.
- Define $\mu(\mathcal{F}) = \sup\{t \mid \operatorname{lct}(X; l_{\bullet}^t) \ge 1\}$, where $\operatorname{lct}(X; l_{\bullet}^t) = \inf_E \frac{A_X(E)}{\operatorname{ord}_E(l_{\bullet}^t)}$ and $\operatorname{ord}_E(l_{\bullet}^t) = \lim_m \frac{1}{m} \operatorname{ord}_E(I_{m,mt})$.

Definition-Theorem (Fujita 15, X-Zhuang 20)

 $D(\mathcal{F}) := \mu(\mathcal{F}) - S(\mathcal{F}). X$ is K-semistable iff $D(\mathcal{F}) \ge 0$ for any $\mathcal{F}.$

- One direction is easy: $\mu(\mathcal{F}_v) \leq A(v)$, as $v(I_{\bullet}^t(\mathcal{F}_v)) \geq t$.
- (Fujita 15) We can approximate \mathcal{F} by a sequence of finitely generated ones $\{\mathcal{F}_m\}_m$ from which we get a sequence of test configurations $\{\mathcal{X}_m\}_m$. Moreover, $D(\mathcal{F}_m) \ge Ding(\mathcal{X}_m)$ and $\lim_m D(\mathcal{F}_m) = D(\mathcal{F})$.
- (XZ20) Let v compute $lct(X; I^{\mu(\mathcal{F})}), D(\mathcal{F}) \ge c(A_X(v) S(v)).$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Let f: X → Spec(O) be a family of Fano varieties where O is a DVR with fractional field K. Let E be a divisor over X.

Definition

Let
$$A_m := f_*(mK_X), A_{\bullet} = \bigoplus_m A_m$$
 and $R_m = H^0(-mK_{X_0})$. Define

$$\mathcal{G}_{E}^{\lambda}R_{m} = \operatorname{Im}(\mathcal{F}_{E}^{\lambda}A_{m} \to A_{m} \to R_{m}).$$

• For another family of Fano varieties $f': X' \to \operatorname{Spec}(\mathbb{O})$ with $X_{\mathbb{K}} \cong X'_{\mathbb{K}}$, let $a = A_X(X'_0) - 1 = A_{X,X_0}(X'_0)$ and $a' = A_{X',X'_0}(X_0)$. Consider X'_0 over X to get \mathcal{G} and X_0 over X' to get \mathcal{G}' , Key isomorphism: $\operatorname{Gr}^p_{\mathcal{G}} \mathcal{R}_m \cong \operatorname{Gr}^{(a+a')m-p}_{\mathcal{G}'} \mathcal{R}'_m$. In particular, $S_{X_0}(\mathcal{G}) + S_{X'_0}(\mathcal{G}') = a + a'$.

프 🖌 🛪 프 🛌

- Let $J_m = Bs(\mathcal{F}_{X'_0}^{am}A_m \to A_m)$, so $lct(X, X_0; J_m) \le \frac{1}{m}$. Thus $\mu(\mathcal{G}) \le a$ and similarly, $\mu(\mathcal{G}') \le a'$.
- If X₀ and X'₀ are K-semistable, then a = μ(G)(= S(G)), lct(X, X₀; {J_m}_m) = 1, and X'₀ computes the log canonical threshold.
- This implies $\operatorname{Gr}_{\mathcal{F}_{\chi'_0}} A_{\bullet}$ is finitely generated, which implies $\operatorname{Gr}_{\mathcal{G}} R_{\bullet}$ is finitely generated.
- Let Y = ProjGr_GR_•, then X₀ ^X→ Y ^{X'}→ X'₀ with weight opposite to each other up to a shift, which implies Fut(X) = -Fut(X').
- So Fut(X) = Fut(X') = 0 and Y is K-semistable.

Theorem (Blum-X. 18)

 X_0 and X'_0 degenerates to the same K-semistable Fano variety Y.

イロン 不得 とくほ とくほ とうほ

Let ST₀ = [Spec (O[s, t]/(st − π)) /G_m] (μ: t → μt, s → μ⁻¹s).
 Let o = [(0, 0)/G_m]. Then ST₀ \ {o} = Spec(O) ∪_K Spec(O).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• $\operatorname{ST}_{\mathbb{O}} = [\mathbb{A}^1_s/\mathbb{G}_m] \cup_{t=0} (\operatorname{ST}_{\mathbb{O}} \setminus \{o\}) \cup_{s=0} [\mathbb{A}^1_t/\mathbb{G}_m].$

Alper-Halper-Leistner-Heinloth's Theorem

- A stack M is S-complete iff ST₀ \ {*o*} → M can be uniquely extended to a morphism ST₀ → M. A stack M is Θ-reductive iff [Spec O[*t*] \ {0_k}/G_m] → M can be uniquely extended to a morphism [Spec O[*t*]/G_m] → M.
- (Alper) An Artin stack $\mathfrak{M} \to M$ admits a good moduli space (as an algebraic space) if there is an étale cover $\{U_{\alpha}\}_{\alpha} \to M$ such that $U_{\alpha} \times_{M} \mathfrak{M} \to U_{\alpha}$ is given by $[\operatorname{Spec}(A_{\alpha})/G_{\alpha}] \to \operatorname{Spec}(A_{\alpha}^{G_{\alpha}})$ for a reductive group G_{α} acts on an affine scheme $\operatorname{Spec}(A_{\alpha})$.

Theorem (A-HL-H 18)

If a finite type Artin stack \mathfrak{M} with affine stabilizers and separated diagonal is S-complete and Θ -reductive, then \mathfrak{M} admits a separated good moduli space $\mathfrak{M} \to M$.

Good moduli space

For an Artin stack, admitting a separated good moduli space presents very strong properties on its geometry.

Theorem (Alper-Blum-Halper-Leistner-X. 19)

The stack $\mathfrak{X}_{n,V}^{\mathsf{K}}$ is *S*-complete and Θ -reductive. As a corollary, it admits a separated good moduli space $\mathfrak{X}_{n,V}^{\mathsf{K}} \to X_{n,V}^{\mathsf{K}}$, whose points parametrizes K-polystable Fano varieties.

- Corollary: if X is K-polystable, then Aut(X) is reductive.
- (Zhuang 20) X is K-semistable (resp. K-polystable) over k if and only if it is K-semistable (resp. K-polystable) over k.

ヘロン 人間 とくほ とくほ とう

- Good moduli space
- Higher rank finite generation
- Properness

₹ 990

Theorem (Liu-X.-Zhuang 21, X.-Zhuang 22)

If X is a Fano variety with $\delta(X) < \frac{\dim X+1}{\dim X}$, then any quasi-monomial minimizer v with $\delta(X) = \frac{A_X(v)}{S_X(v)}$ satisfies $\operatorname{Gr}_v R_{\bullet}$ is finitely generated.

 If Gr_vR_• is finitely generated, then in a neighborhood U of v in the minimal rational subspace in QM(Y, E), A_X(·) and S_X(·) are linear on U.

Corollary

There exists a divisor *E*, such that $\delta(X) = \frac{A_X(E)}{S_X(E)}$. So if *X* is K-stable, then there exists $\varepsilon > 0$ such that $A_X(E) > (1 + \varepsilon)S_X(E)$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

- Any minimizer v is an lc place of a Q-complement D, but unlike the divisorial case, this is not enough to guarantee Gr_vR_• is finitely generated.
- Example: consider (\mathbb{P}^2 , *C*) where *C* is the nodal cubic. Let v_t be the valuation given by weight (1, t) $t \in (0, +\infty)$ with respect to the two analytic branches. Then $\operatorname{Gr}_{v_t} k[x_0, x_1, x_2]$ is finitely generated if and only if $t \in \mathbb{Q}$ or $t \in (\frac{7-5\sqrt{3}}{2}, \frac{7+5\sqrt{3}}{2})$.

ヘロン 人間 とくほ とくほ とう

- (J. Peng) Similar pictures hold for all del Pezzo surfaces with irreducible nodal 1-complement.
- We first need to sort out a finer condition that a minimizer satisfies to guarantee the finite generation.

Step 1: Let $(Y, \Gamma) \to X$ be a log resol. such that $v = v_{\alpha} \in QM(Y, \Gamma)$. $G \ge 0$ on X is a birational transform of an ample divisor on Y in general position. Then v is an lc place of (X, D) with $D \ge \varepsilon G$.

Proof.

- Let D_m be an *m*-basis type divisor compatible with both \mathcal{F}_v and \mathcal{F}_G . So $D_m \ge a_m G$ with $\lim_{m\to\infty} a_m \to a > 0$.
- By linear Diophantine approximation, there exist integral approximations of *α*₁,..., *α*_r such that ||*α*_i *p*_i · *α*|| ≤ ε for some integers *p*_i, and *α* contained in the convex cone generated by *α*_i. Each *α*_i corresponds to a divisor Γ_i = *v*<sub>*p*_i*α*_i.
 </sub>
- So for any ε > 0, there is a Q-complement D'_m with D'_m ≥ ^{aδ}/₂ G such that A_{X,D'_m}(Γ_i) < ε.
- By global ACC (HMX 12), this implies, there exists a
 Q-complement D ≥ ^{aδ}/₂ G, such that Γ_i are lc places of (X, D).

◆□ > ◆□ > ◆豆 > ◆豆 > -

- Step 2: Using minimal model program, we can replace $(Y, \Gamma + \Theta)$ by a dlt pair over X such that $-K_Y \Gamma \Theta$ is ample, $\lfloor \Gamma + \Theta \rfloor = \Gamma$ and $v \in QM(Y, \Gamma)$.
- Step 3: QM(Y, Γ) is a simplex and

Theorem (X.-Zhuang 22)

If v and v' belong to the same interior facet of $QM(Y, \Gamma)$, $Gr_v R_{\bullet} \cong Gr_{v'} R_{\bullet}$.

• Let
$$\Gamma = \sum_{i=1}^{r} \Gamma_i$$
. For $\alpha = (\alpha_1, \dots, \alpha_r) \in \mathbb{R}_{\geq 0}^r$, we define a filtration
 $\mathcal{F}_{\alpha}^{\lambda} R_m = \operatorname{Span} \{ s \in R_m \mid \sum_{i=1}^{r} \alpha_i \cdot \operatorname{ord}_{\Gamma_i}(s) \geq \lambda \}.$
Then $\mathcal{F}_{\alpha}^{\lambda} R_m \subseteq \mathcal{F}_{\nu_{\alpha}}^{\lambda} R_m$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

• Moreover, if $\operatorname{Gr}_{\mathcal{F}_{\alpha}} R_{\bullet}$ is integral, then $\mathcal{F}_{\alpha}^{\lambda} = \mathcal{F}_{v_{\alpha}}^{\lambda}$.

• We construct a locally (KSBA) stable \mathbb{G}_m^r -equivariant family $\mathcal{X} \to \mathbb{A}^r$ such that $\mathcal{X}_t \cong \mathcal{X}$ for $t \in \mathbb{G}_m^r$, and $\mathcal{X}_0 \cong \operatorname{Proj}(\operatorname{Gr}_{\mathcal{F}_a} \mathcal{R}_{\bullet})$ $(\forall \alpha \in \mathbb{R}_{>0}^r) \cong \operatorname{Proj}(\operatorname{Gr}_{\Gamma_r} \cdots \operatorname{Gr}_{\Gamma_1} \mathcal{R}_{\bullet})$ (which doesn't depend on the order of Γ_i).

- Aim to show there exist G_m-models φ: (𝒴, Γ𝒴 + Θ𝒴) → 𝑋 → 𝑋^r such that φ has dlt Fano fibers, with Γ𝒴 birational to Γ×𝑋^r.
- For any *i*, over (t₁,..., t_r) ∈ G^{r-1}_m × A¹ with t₁ ··· t_{i-1} t_{i+1} ··· t_r ≠ 0, the family is determined by the degeneration induced by G^{r-1}_m × Γ_i. We need to extend the family over the codimension ≥ 2 strata. It is unique for a flat family of polarized varieties.

- Assume $\mathcal{Y}_{r-1} \to \mathcal{X}_{r-1} \to \mathbb{A}^{r-1}$ exists, with $\mathcal{E}_r \subset \mathcal{Y}_{r-1}$ birational to $\Gamma_r \times \mathbb{A}^{r-1}$. BCHM implies \mathcal{E}_r yields a family $\mathcal{X} \to \mathbb{A}^r = (\mathbb{A}^{r-1} \times \mathbb{A}^1)$ extending $\mathcal{X}_{r-1} \times \mathbb{G}_m \to \mathbb{A}^{r-1} \times \mathbb{G}_m$.
- As \mathcal{E}_r is an lc place of the locally stable family $(\mathcal{X}_{r-1}, \mathcal{D}_{r-1})/\mathbb{A}^{r-1}$, $(\mathcal{X}, \mathcal{D})$ is birationally crepant equivalent to $(\mathcal{X}_{r-1}, \mathcal{D}_{r-1}) \times \mathbb{A}^1$, thus $(\mathcal{X}, \mathcal{D}) \to \mathbb{A}^r$ is a locally stable family.
- We extract Γ× A^r to get 𝒴, and there exists Θ_𝒴 ≥ Θ_{²-1} × A¹ with μ^{*}(𝐾_𝑋 + 𝔅) ≥ 𝐾_𝒴 + Γ_𝒴 + Θ_𝒴, and (𝒴, Γ_𝒴 + Θ_𝒴) is dlt and Fano over A^r.

イロト イポト イヨト イヨト 一臣

- Observation: For any 0 ≤ G ~_Q −K_Y − Γ − Θ such that G does not contain the intersection Z of Γ_i, the degeneration of (Y, Γ + Θ + εG) still yields a locally stable family. We apply this twice:
 - Let $Z_0 = \bigcap_{i=1}^r \Gamma_{\mathcal{Y}_i} \bigcap \phi^{-1}(\mathbf{0})$ with $\mathbf{0} = (0, \dots, 0) \in \mathbb{A}^r$. For any proper closed subset $W \subsetneq Z_0$, pick *G* such that $Z \not\subset G$, but *W* is in the degeneration of *G*. The above implies Z_0 is the unique minimal lc center of $(\mathcal{Y}_r, \Gamma_r + \Theta_r + \sum_{i=1}^r (t_i = 0))$.
 - Pick G = $\frac{1}{2m}(G_+ + G_-)$ for general G₊ ∈ |mL + Γ_i| and G_− ∈ |mL Γ_i| for L = -m(K_Y Γ Θ) and sufficiently divisible *m*. This implies that every component of Γ_Y is Cartier around η(Z₀).

So $(\mathcal{Y}, \Gamma_{\mathcal{Y}} + \Theta_{\mathcal{Y}}) \rightarrow \mathbb{A}^r$ has dlt fibers.

• (Work in progress by Z. Chen) There exists a birational model $Z' \to Z$ and an *r*-dimensional polyhedral convex cone $C \subset \text{Div}(Z')$, such that $\text{Gr}_{\mathcal{F}_{\alpha}} R_{\bullet} \cong \bigoplus_{l \in C} H^{0}(Z', L)$.

イロン 不良 とくほう 不良 とうほ

- Good moduli space
- Higher rank finite generation
- Properness

ヘロト 人間 とくほとくほとう

₹ 990

Theorem (Blum-Halpern-Leistner-Liu-X. 20, B-L-X.-Zhuang 25) $X_{n,V}^{K}$ is proper.

- Both proofs fundamentally depend on the HRFG Theorem.
- Halpern-Leistner's O-stratification: if any unstable object has a unique optimal destabilizing (up to reparametrization) satisfying some natural properties, then the good moduli space of the semistable objects is proper.
- The optimal destabilization arises from minimizing functions defined on all special TC X.
- If a special TC X yields a divisorial valuation *E*, then $\frac{\operatorname{Fut}(X)}{||X||_m} = \delta(E) 1 (|| \cdot ||_m \text{ is the minimum norm defined by Dervan}).$
- However, the minimizer of *E* is not unique. B-HL-L-X constructs a second term to make an alphabetic order $\left(\frac{\operatorname{Fut}(X)}{\|X\|_{m}}, \frac{\operatorname{Fut}(X)}{\|X\|_{2}}\right)$, which yields a Θ -stratification on $\mathfrak{X}_{n,V}^{\operatorname{Fano}}$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Relative stability theory (Blum-Liu-X.-Zhuang 25)

Definition

Let $f: X \to \operatorname{Spec}(\mathbb{O})$ be a family of klt Fano varieties with $\delta(X_0) < \min\{\delta(X_{\overline{K}}), 1\}$. For any divisor *E* over *X*, we define

$$\delta_t(E) := rac{A_{X,(1-t)X_0}(E)}{S(\mathcal{G}_E)} \ ext{and} \ \delta_t(X) := \inf_E \delta_t(E).$$

• If
$$t = 0$$
, then $\delta_0(X) = \delta(X_0)$.

- For $t \in [0, 1]$, there exists a quasi-monomial v computing $\delta_t(X)$.
- v is over the special fiber and satisfies Gr_vA_• is finitely generated. In particular, there is a divisorial minimizer E.
- If 0 < t ≪ 1, after a base change of Spec(O), we can get a family of Fano varieties X' → Spec(O) with X_K = X'_K, such that X'₀ is the birational transform of E.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

• We have $\delta(X_0) \le \delta_0(E) < \delta_t(E) = \delta_t(X) \le \delta(X'_0)$.

- If E_m computes $\min_{D_m} \operatorname{lct}(X, (1-t)X_0; D_m) := \delta_m$ for all *m*-basis type divisors D_m . Let $X' \to \operatorname{Spec}(\mathbb{O})$ with an integral fiber X'_0 birational to E_m .
- Any D_m compatible with ord_{E_m}, its birational base change yields an m-basis type divisor D'_m compatible with ord_{X₀}, and vice versa.
- If $\delta_m \leq 1$, then $(X, (1 t)X_0 + \delta_m D_m)$ is lc implies $(X', X'_0 + \delta_m D'_m)$ is lc (by two-divisor game).
- So $\min_{D'_m} \operatorname{lct}(X', X'_0; D'_m)$ = $\min_{D'_m} \{\operatorname{lct}(X', X'_0; D'_m) \mid D'_m \text{ is compatible with } \operatorname{ord}_{X_0}\} \ge \delta_m$
- In general, we extract E for $g: Y \to X$. Let $\lambda_m := \inf_{D_m} \operatorname{lct}(Y, (1-t)g_*^{-1}X_0 + E; g_*^{-1}D_m)$. The above argument implies for $m \gg 0$, $\delta_m(X'_0) \ge \min\{\lambda_m, \min_{D_m}\operatorname{lct}(X, (1-t)X_0; D_m)\}$.
- We show $\lim_m \lambda_m \ge \delta_t(X)$. Taking a limit $m \to \infty$, $\delta(X'_0) \ge \delta_t(X)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Thank you very much!