K-stability and Moduli of Fano varieties I

Chenyang Xu (Princeton University)

2025 Summer Research Institute

July 16, 2025

イロト イポト イヨト イヨト

- Moduli of varieties
- Definition of K-stability
- K-stability via valuations

<ロト <回 > < 注 > < 注 > 、

Moduli of varieties: history

- Goal: for a class of varieties {X}, construct a space M, such that each object X in the class precisely corresponds to a point in [X] ∈ M.
- Example: dim k linear subspace in \mathbb{C}^n , Grass(k, n).
- Example (Grothendieck): subschemes of \mathbb{P}^n can be parametrized, by the Hilbert scheme.
- Parametrizing isomorphic classes of varieties needs a deeper theory.
- Need an embedding $|L|: X \to \mathbb{P}^N$ (up to PGL(N + 1)), i.e. a polarization L.
- There are natural line bundles $\omega_X^{\otimes m} = (\wedge^{\dim X} T_X)^{\otimes -m} \ (m \in \mathbb{Z}).$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

First phase: Moduli of curves

- There has been a long history for people trying to parametrize varieties, going back to Abel, Jacobi, Riemann, Weierstrass, Teichmuller etc.
- Moduli of curves *C* of higher genus g ($g \ge 2$), i.e. $\omega_C > 0$: \mathcal{M}_g , Mumford's geometric invariant theory (GIT) (65).
- Deligne-Mumford compactification (69): $\overline{\mathcal{M}}_g$, parametrizing compact (possibly reducible) curves *C* with nodal singularities, such that ω_C is ample.

イロト イポト イヨト イヨト

Second phase: Moduli of varieties with $\omega_X > 0$

Moduli theory for X with ample K_X in higher dimensions:

- Include all smooth X with ample K_X .
- Difficulty: characterize the limit.
- Mumford's GIT doesn't work well in higher dimensions, as the GIT limit of |ω_X^{⊗m}|: X → ℙ^{N(m)} might be different for all large m.
- Kollár-Shepherd-Barron(-Alexeev) (KSB or KSBA) theory (88) proposes:

KSB(A) stability = ($\omega_X > 0$) + (mild singularities)

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

• The relative minimal model program yields a limit as such (similar to Deligne-Mumford's construction).

- By late 2010s, the construction was completed.
- It is intertwining with the progress of MMP.
- One foundational notion is local KSB(A) stability (Kollár): right definition of a family of higher dimensional varieties (or pairs) over a general base. It is (far) more subtle than flatness.

ヘロト ヘアト ヘビト ヘビト

Third phase: how about Fano varieties?

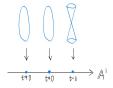
- A (smooth or mildly singular) projective variety X is called Fano if -K_X is ample. They belong to one of the trichotomy of classfying varieties by their sign of K_X.
- $\dim(X) = 2$, there are 10 families of smooth del Pezzo surfaces.
- (Iskovskikh, Mori-Mukai 82) dim(X) = 3, there are 105 families of smooth Fano threefolds.
- (Kollár-Miyaoka-Mori 92) In any fixed dimension, there are only finitely many families of smooth Fano varieties.
- Explicit geometry has been studied for decades from many perspectives: rationality, birational automorphisms, Mori theory, cohomology, derived categories, etc..

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

For Fano varieties, before 2010 very few algebraic geometers thought general moduli theory of Fano varieties is possible!

• A simple example:

$$(x_0^2 + \cdots + x_{n-1}^2 + t \cdot x_n^2 = 0) \subset \mathbb{P}^n \times \mathbb{A}_t^1$$
.



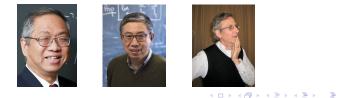
ヘロン 人間 とくほ とくほ とう

Kähler-Einstein Problem

- Kähler-Einstein problem (Kähler 1933, Calabi 1950s): find a Kähler metric ω such that $\text{Ric}(\omega) = \lambda \omega$ for a constant λ .
- $[\operatorname{Ric}(\omega)] = -K_X$. For $\lambda = 0$ or -1, KE metric exists uniquely.
- Yau (80s) had deep reasons to believe the existence of KE metrics is equivalent to some algebraic 'stability' condition.
- Tian (97) proposed a condition called K-stability; and Donaldson (01) observed it was indeed algebraic.

Theorem (Yau-Tian-Donaldson Conjecture)

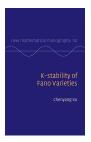
A Fano variety X has a KE metric if and only if X is K-polystable.



K-stability

Solution

K-(semi,polystable)stable Fano varieties provides a subclass of Fano varieties with a good moduli theory, similar to stable vector bundles.



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

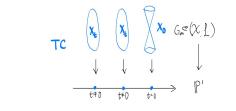
- Moduli of varieties
- Definition of K-stability
- K-stability via valuations

<ロト <回 > < 注 > < 注 > 、

 Fix a klt Fano variety X. Test configuration (TC): (X, L) is *G_m*-equivariant over ℙ¹, with X normal and L a Q-line bundle, such that

$$(\mathcal{X},\mathcal{L})|_{\mathbb{P}^1\setminus\{\mathbf{0}\}}\cong_{\mathbb{G}_m} (X,-K_X) imes(\mathbb{P}^1\setminus\{\mathbf{0}\})$$

with \mathbb{G}_m -trivially acting on the first factor.



э

三 🕨 👘

< ロ > < 同 > < 三 >

• Fut
$$(\mathcal{X},\mathcal{L}) := \frac{1}{(n+1)(-K_X)^n} (n\mathcal{L}^{n+1} + (n+1)\mathcal{L}^n \cdot K_{\mathcal{X}/\mathbb{P}^1}).$$

Definition (Tian 97, Donaldson 01)

- X is *K*-semistable iff $Fut(\mathcal{X}, \mathcal{L}) \ge 0$ for any TC \mathcal{X} .
- X is K-stable iff Fut(X, L) ≥ 0 and "=" holds only if
 X ≃_{Gm} X × P¹ with G_m-acts on the first factor trivially.
- X is K-polystable iff Fut(X, L) ≥ 0 and "=" holds only if X|_{A¹} ≃_{G_m} X × A¹ for a G_m-action on X.

Compare to GIT

- Fix X, \mathcal{X} are unbounded families.
- There exists a line bundle λ (the CM-line bundle) on the Hilbert scheme, such that Fut(X, L) = wt(0, λ), but λ is not ample on Hilbert scheme.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

MMP Perspective

Theorem (C. Li-X. 12)

For any TC \mathcal{X} , we can use MMP techniques to give a sequence of operations, to get a TC $\mathcal{X} \dashrightarrow \mathcal{X}^s$ such that

- ① \mathcal{X}^{s} is special, i.e. $K_{\mathcal{X}^{s}}$ is \mathbb{Q} -Cartier, and \mathcal{X}_{0}^{s} is klt.
- 2 there exists a positive $d \in \mathbb{Z}$, such that $Fut(\mathcal{X}^s) \leq d \cdot Fut(\mathcal{X})$.
 - This implies to test K-(semi,poly)stability it suffices to only consider special TCs.
 - For a special TC \mathcal{X} , $\operatorname{Fut}(\mathcal{X}) = \frac{-1}{(n+1)(-K_{\mathcal{X}})^n} (-K_{\mathcal{X}/\mathbb{P}^1})^{n+1}$.
 - It is still hard to determine all special TCs for X when dim(X) ≥ 2, e.g. X ≅ P².
 - This represents an early evidence that MMP plays a deep role in K-stability theory.
 - It is first among a series of results showing testing K-stability are equivalent on different class of objects, which is indispensable in our understanding of the moduli problem.

Ding stability

- (Berman 12) Let $K_{\mathcal{X}/\mathbb{P}^1} + \mathcal{L} = D$ supporting on \mathcal{X}_0 . Ding $(\mathcal{X}) := \frac{-1}{(n+1)(-K_X)^n} \mathcal{L}^{n+1} + \operatorname{lct}(\mathcal{X}, D; \mathcal{X}_0) - 1$.
- We can define Ding stability notions, replacing Fut(X) by Ding(X).
- For a special TC, $Ding(\mathcal{X}) = Fut(\mathcal{X})$.
- (Fujita 15) To test Ding (semi-poly)stability, it only suffices to test on special TCs.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Ding stability=K-stability

- Moduli of varieties
- Definition of K-stability
- K-stability via valuations

ヘロト 人間 とくほとくほとう

Valuative criterion

- Let \mathcal{X}/\mathbb{A}^1 be a TC. For any component $Y \subset \mathcal{X}_0$ which is not $X \times \{0\}$, then $\operatorname{ord}_Y|_{K(X)}$ is given by $c \cdot \operatorname{ord}_E$ for some $c \in \mathbb{Z}_{>0}$ and E a divisor over X, i.e. E is a divisor on a birational model $\mu \colon Y \to X$.
- $A_X(E) := \operatorname{mult}_E(\omega_{Y/X}) + 1 > 0$ since X it klt.
- S_X(E) is the expected vanishing order, i.e.,

$$S_X(E) := \frac{1}{(-K_X)^n} \int_0^\infty \operatorname{vol}(\mu^*(-K_X) - tE) dt.$$

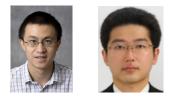
• If \mathcal{X} is (nontrivial) special, with $\operatorname{ord}_{\mathcal{X}_0}|_{\mathcal{K}(\mathcal{X})} = c \cdot \operatorname{ord}_E$, then

$$\operatorname{Fut}(\mathcal{X}) = c(A_X(E) - S_X(E))$$

Theorem (Fujita-Li Criterion 15)

 $\begin{array}{l} \text{K-semistability} \Longleftrightarrow A_X(E) \geq S_X(E) \text{ for all } E;\\ \text{K-stability} \Longleftrightarrow A_X(E) > S_X(E) \text{ for all } E;\\ \text{Uniform K-stability} \Longleftrightarrow \exists \varepsilon > 0, A_X(E) > (1 + \varepsilon)S_X(E) \text{ for all } E. \end{array}$

- This gives a more computable characterization of K-stability.
- To prove "⇒", we will show that it suffices to look at a sequence of divisors *E* arising from TCs.



ヘロン 人間 とくほ とくほ とう

э.

- D_m is an *m*-basis-type divisor, if $D_m = \frac{1}{mN_m} \sum_{i=1}^{N_m} \operatorname{div}(s_i)$, where $\{s_1, \ldots, s_{N_m}\}$ is a basis of $R_m = H^0(-mK_X)$.
- The vanishing order along ord_E yields a filtration on R_m. Define

$$S_m(E) = \max_{D_m} \operatorname{ord}_E(D_m) = \frac{1}{mN_m} \sum_{\lambda} \lambda \dim \operatorname{Gr}_E^{\lambda} R_m.$$

Definition-Theorem (Fujita-Odaka 16, Blum-Jonsson 17)

Define
$$\delta_m(X) = \inf_E \frac{A_X(E)}{S_m(E)}$$
. Then $\delta_m(X) = \min_{D_m} \operatorname{lct}(X, D_m)$, where $\operatorname{lct}(X, D_m) = \sup_t \{t \mid (X, tD_m) \text{ is lc}\}$.

$$\lim_{m \to \infty} \delta_m(X) = \delta(X) := \inf_E \frac{A_X(E)}{S_X(E)}$$

So δ(X) ≥ (resp. >) 1 iff X is K-semistable (resp. uniformly K-stable). In general, δ(X), called the stability threshold, gives a quantitative way to measure how 'stable' X is.

<ロ> (四) (四) (三) (三) (三)

 An effective Q-divisor is an *m*-complement if mD ∈ | − mK_X|, i.e. D ~_Q −K_X and (X, D) is lc. D is a Q-complement if it is an *m*-complement for some positive *m*.

Theorem (Birkar 16)

There exists an $N = N(\dim X)$ such that any klt Fano variety X admits an N-complement.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

• For an lc pair (X, D), E is an lc place of (X, D) if $A_X(E) = \operatorname{ord}_E(D)$, i.e. $A_{X,D}(E) = 0$.

Theorem (Blum-Y. Liu-X. 19)

- (Lc places *E* of \mathbb{Q} -complements) \iff (Nontrivial TCs \mathcal{X} such that $(\mathcal{X}, \mathcal{X}_0)$ is lc with irreducible \mathcal{X}_0).
- ② When $\delta(X) < \frac{\dim(X)+1}{\dim(X)}$, $\delta_m(X) = \frac{A_X(E_m)}{S_m(E_m)}$ where E_m is the an lc place of a Q-complement D_m for $m \gg 0$.
- So There exists $N = N(\dim(X))$ such that an lc place *E* of a \mathbb{Q} -complement is an lc place an *N*-complement.
- In (2), $\delta(X) = \lim_{m \to \infty} \frac{A_X(E_m)}{S(E_m)}$ where E_m are lc places of a fixed *N*-complement *D*.
- **⑤** (Openness of K-semistability) (*b* ∈ *B*) → min{1, $\delta(X_{\overline{b}})$ } is constructible and lower semi-continuous.

K-stability

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

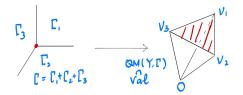
Proof.

- (Two-divisor game) *E* is an lc place of the lc pair (*X*, *D*) for $D \sim_{\mathbb{Q}} -K_X$. Let E_1 be the divisor on $X_{\mathbb{A}^1} := X \times \mathbb{A}^1_t$ for $(\operatorname{ord}_E, \operatorname{ord}_t)$. E_1 is an lc place of $(X_{\mathbb{A}^1}, D_{\mathbb{A}^1} + X \times \{0\})$. By BCHM, we can extract E_1 and contract the divisor $X \times \{0\}$, and get a relative Fano $\mathcal{X} \to \mathbb{A}^1$, which satisfies $(\mathcal{X}, \mathcal{X}_0)$ is log canonical.
- 2 Let *E_m* be the divisor computes δ_m. It is the lc place of (*X*, δ_m*D'_m*) for any *m*-basis type divisor *D'_m* compatible with ord_{*E_m*. *D'_m* can be chosen to be compatible with a general Q-divisor *H* ~_Q −*K_X*. Then *D'_m* = *G_m* + *a_mH* with *a_m* → ¹/_{*n*+1}. So *E_m* is an lc place of (*X*, δ_m*G_m*), as *G_m* ~_Q −(1 − *a_m*)*K_X* with lim_m(1 − *a_m*)δ_m < 1.</p>}
- Essentially after Birkar.

• (2) implies $\delta(X) = \lim_{m \to \infty} \frac{A_X(E_m)}{S(E_m)}$ and (1) implies E_m arising from TC.

イロト 不得 とくほ とくほ とうほ

- If $(Y, \Gamma = \sum \Gamma_i)$ is simple normal crossing, for any component *Z* of $\bigcap_{i=1}^r \Gamma_i$, around the generic point $\eta(Z)$ of *Z*, we can define valuations v_{α} ($\alpha \in \mathbb{R}^r$) such that $v_{\alpha}(f) = \min_{c_{\beta} \neq 0} \langle \alpha, \beta \rangle$, where the expansion of *f* at η is $\sum_{\beta \in \mathbb{N}^r} c_{\beta} Z^{\beta}$ where $\Gamma_i = (z_i = 0)$.
- All such valuations are denoted as QM(Y, Γ), which is naturally identified as the cone over the dual complex D(Y, Γ).
- The set of quasi-monomial valuations consists of QM(Y, Γ) for all (Y, Γ).



ヘロト ヘアト ヘビト ヘビト

- $B = |-NK_X|$. After stratifying, we assume $(\mathcal{X} = X \times B, D_X) \to B$ is a family of lc pairs with a simultaneous (fiberwise) resolution $(\mathcal{Y}, \Gamma_Y) \to (\mathcal{X}, D_X)$. We work on a connected component of *B*.
- Over a fixed point $t \in B$, write $K_Y + \Gamma = \mu^*(K_X + D)$.
- For another t₀ ∈ B with K_{Y0} + Γ₀ = μ^{*}(K_X + D₀), we can canonically identify D(Y, Γ⁼¹) = D(Y₀, Γ₀⁼¹).
- (Invariance of log plurigenera, Hacon-McKernan-X.) For *F*, *F*₀ corresponding to the same point in *D*(*Y*, Γ⁼¹) = *D*(*Y*₀, Γ⁼¹), *S*(*F*) = *S*(*F*₀). Thus we may assume all *E_m* to be over *t* ∈ *B*.
- Applying this argument to a family of Fano varieties X → B, we get (t ∈ B) → min{ dim X+1 / dim X, δ(X_t)} is constructible.
- For {v_m}_m ⊂ D(Y, Γ⁼¹) corresponding to {E_m}_m, a subsequence admits a limit v^{*}.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

A_X and S_X can be continuously extended to QM(Y, Γ). So v* yields a quasi-monomial minimizer of A_X(·)/S_X(·).

Stack of Fano varieties

- (Boundedness, C. Jiang 17) Fix positive lower bounds v_0 and δ_0 , all X with $v_0 \leq (-K_X)^n$ and $\delta_0 < \delta(X)$ are bounded.
- This boundedness can be reduced to Birkar's BAB type results. One can also show the Cartier index of X is bounded (X.-Zhuang 20), and apply Hacon-McKernan-X. Theorem.
- Together with the openness, we have the following: for a fixed volume *V*, there exist $1 = \delta_0 > \delta_1 > \cdots$ which converge to 0, and the stack $\mathfrak{X}_{n,V}^{\text{Fano}}$ of all *n*-dimensional Fano varieties with $(-K_X)^n = V$ can be covered by increasing open substacks

$$\mathfrak{X}_{n,V}^{\mathsf{K}} = \mathfrak{X}_{n,V}^{\delta_0} \subset \mathfrak{X}_{n,V}^{\delta_1} \subset \cdots \subset \mathfrak{X}_{n,V}^{\operatorname{Fano}},$$

where $\mathfrak{X}_{n,V}^{\delta_i}$ parametrizes families of Fano varieties X with $\delta(X) \geq \delta_i$. Moreover, for i > 0, $\mathfrak{X}_{n,V}^{\delta_i} \setminus \mathfrak{X}_{n,V}^{\delta_{i-1}}$ parametrizes Fano varieties X with $\delta(X) = \delta_i$.

<ロ> (四) (四) (三) (三) (三)

Started with a family of Fano varieties over a punctured disk X° → C° = C \ {0}, what is optimal degeneration X₀?

くロト (過) (目) (日)

э

• There exists a klt Fano degeneration X₀, but often non-unique.

Assume X_t are K-semistable,

- Does there always exist a K-semistable degeneration?
- Assuming the existence, is it unique?

We will continue. Thank you very much!