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These are lecture notes that I typed up for Dr. Susanne Danz’s course on Representation
Theory of Finite Groups. It was offered as an extra units Part C course at Oxford during Hilary
Term of the 2010-2011 academic year. Some books that may be used as supplementary texts are
the following:

• The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Func-
tions (Sagan, B. E.)

• The Representation Theory of Symmetric Groups (James, G., Kerber, A.)

• Young Tableaux (Fulton, W.)

• Representation Theory: A First Course (Fulton, W., Harris, J.)

• Enumerative Combinatorics (Stanley, R.)

Here is an overview of the course (quoted from the course page):

The representation theory of symmetric groups is a special case of the representation
theory of finite groups. Whilst the theory over characteristic zero is well understood,
this is not so over fields of prime characteristic. The course will be algebraic and
combinatorial in flavour, and it will follow the approach taken by G. James. One main
aim is to construct and parametrise the simple modules of the symmetric groups over
an arbitrary field. Combinatorial highlights include combinatorial algorithms such
as the Robinson-Schensted-Knuth correspondence. The final part of the course will
discuss some finite-dimensional representations of the general linear group GLn(C),
and connections with representations of symmetric groups. In particular we introduce
tensor products, and symmetric and exterior powers.

Here is a synopsis of the course (also quoted from the course page):

Counting standard tableaux of fixed shape: Young diagrams and tableaux, standard-
tableaux, Young-Frobenius formula, hook formula. Robinson-Schensted-Knuth al-
gorithm and correspondence. Construction of fundamental modules for symmetric
groups: Action of symmetric groups on tableaux, tabloids and polytabloids; permuta-
tion modules on cosets of Young subgroups. Specht modules, and their standard bases.
Examples and applications. Simplicity of Specht modules in characteristic zero and
classification of simple Sn-modules over characteristic zero. Characters of symmet-
ric groups, Murnaghan-Nakayama rule. Submodule Theorem, construction of simple
Sn-modules over a field of prime characteristic. Decomposition matrices. Examples
and applications. Some finite-dimensional GLn(C)-modules, in particular the natural
module, its tensor powers, and its symmetric and exterior powers. Connections with
representations of Sn over C.

I should note that these notes are not polished and hence might be riddled with errors. If you
notice any typos or errors, please do contact me at charchan@stanford.edu.
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Chapter 0

Background and Motivation

We begin with a revision of basic representation theory.

Definition 0.1. Let G be a finite group and F a field.

(a) FG := {
∑
g∈G αgg : αg ∈ F} is called the group algebra of G over F .

(b) An FG-module M is a finite dimensional F -vector space endowed with a map FG×M →M
with the properties:

(i) (ab)m = a(bm) for a, b ∈ FG,m ∈M.

(ii) (a+ b)m = am+ bm for a, b ∈ FG,m ∈M.

(iii) a(m+ n) = am+ an for a ∈ FG,m, n ∈M.

(iv) 1m = m for m ∈M.

(c) An FG-module M is called simple if M 6= 0, and M and 0 are the only submodules of M .

Remark 0.2. By Jordan-Holder, every FG-module has a filtration with quotients being simple
modules. Simple FG-modules are thus the “building blocks” of all FG-modules.

Aim. Our aim over the course of this term will be to construct explicitly a transversal for iso-
morphism classes of simple FSn-modules where Sn is the symmetric group of degree n and F
is a characteristic 0 field. In the case that char(F ) = p > 0, we still get a parametrisation for
the isomorphism classes of simple FSn-modules. However, in spite of all this, there is still no
known effective way of constructing these modules. (This is the fundamental open problem in
representation theory.) For Sn, there is a tie to combinatorics, which is the reason we get such
nice results. Hence our study here will have a bit of a combinatorial flavour.

Remark 0.3. We will use the language of modules, but recall that this is equivalent to matrix
representations.

A matrix representation of G over F is a group homomorphism ∆ : G → GLn(F ) for some
n ∈ N. Given ∆, the F -vector space Fn (with standard basis e1, . . . , en) becomes an FG-module
via g · x := ∆(g)x for g ∈ G, x ∈ Fn.

Conversely, if M is an FG-module with basis b1, . . . , bn, we get a matrix representation of G
over F by defining ∆ : G→ GLn(F ), g 7→ ∆(g), where the matrix ∆(g) is defined as ∆(g)ij = αij ,
gbj =

∑n
i=1 αijbi.

A matrix representation of G over F is irreducible if the corresponding FG-module is simple.

Remark 0.4. We say that g, h ∈ G are G-conjugate if there is some x ∈ G such that g = xhx−1.
We write g =G h. This defines an equivalence relation that splits G into equivalence classes called
conjugacy classes. The set of all conjugacy classes will be denoted CL(G).

Let p be a prime. We say that g ∈ G is p-regular if p - |〈g〉|. Otherwise, g is called p-singular.
The set of p-regular conjugacy classes of G is denoted by CLp(G).
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Theorem 0.5. Let F be an algebraically closed field.

(a) If char(F ) - |G| then the number of isomorphism classes of simple FG-modules is |CL(G)|.

(b) If char(F )
∣∣ |G| then the number of isomorphism classes of simple FG-modules is |CLp(G)|.

Remark 0.6. We will see that in the case of Sn, the assumption that G is algebraically closed is
unnecessary.

Now that we have revised some preliminary concepts, we can proceed to the content of this
course. We start by discussing some group-theoretic properties of the symmetric group Sn.
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Chapter 1

The Symmetric Group

Remark 1.1. Here are some basics of the symmetric group.

(a) The set of all bijections {1, . . . , n} → {1, . . . , n} with composition of maps forms a finite
group. We call this group the symmetric group of degree n and it is denoted by Sn.

(b) σ ∈ Sn can be represented by
(

1 · · · n
σ(1) · · · σ(n)

)
. We will take the convention of com-

posing permutations from right to left (this is most natural as we will think of functions as

acting from the left) and so taking π, σ ∈ Sn, we have π · σ =
(

1 · · · n
π(σ(1)) · · · π(σ(n))

)
.

(c) Every σ ∈ Sn can be written as the product of disjoint cycles. We call these k-cycles. A
2-cycle is also called a transposition.

Definition 1.2. Take σ ∈ Sn with σ = σ1 · · ·σk, where σ1, . . . , σk are disjoint cycles of lengths
λ1, . . . , λk. We may assume that λ1 ≥ · · · ≥ λk. Then λ(σ) := (λ1, . . . , λk) is called the cycle type
of σ.

Remark 1.3. Any permutation can be written as a product of transpositions. This can cer-
tainly be done in many, many ways, but no matter how it is done, the parity of the number of
transpositions is invariant. In this way, we get a group homomorphism:

sgn : Sn → {1,−1},

σ 7→

{
1 if σ is the product of an even number of transpositions
−1 otherwise.

The kernel of this map is the alternating group An.

Definition 1.4. A composition on n is a sequence λ = (λ1, . . . , λk) of non-negative integers such
that λ1 + · · ·+ λk = n. We identify λ with (λ1, . . . , λk, 0). The integers λ1, . . . , λk are called parts
of λ. The set of all compositions of n is Cn .

A partition of n is a composition λ = (λ1, . . . , λk) ∈ Cn such that λ1 ≥ · · · ≥ λk ≥ 0. The
number of nonzero parts of λ is called the length l(λ) of λ; the set of partitions of n is denoted by
Pn. Setting ai := |{j = 1, . . . , k : λj = i}|, we write λ = (nan , . . . , 1a1).

For p ∈ N, λ ∈ Pn, we say λ is p-regular if ai < p for all i = 1, . . . , n. Otherwise, λ is p-singular.
The set of p-regular partitions of n is denoted Pn,p .
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Example 1.5. Consider S4, the symmetric group of degree 4. We have the following table:

Pn Pn,3 Pn,2
(4) (4) (4)
(3, 1) (3, 1) (3, 1)
(22) (22)
(2, 12) (2, 12)
(14)

Proposition 1.6. Permutations σ, π ∈ Sn are conjugate if and only if λ(σ) = λ(π).

Definition 1.7. For λ = (λ1, . . . , λk) ∈ Pn with λk 6= 0, let Cλ := {σ ∈ Sn : λ(σ) = λ}. These
are precisely the Sn-conjugacy classes. Note that Cλ is p-regular if and only if p 6= λi for all i.

Proposition 1.8. Let p be a prime. Then a) |CL(Sn)| = | Pn |, and b) |CLp(Sn)| = | Pn,p |.

Proof. a) follows from Proposition 1.8. For b), take x ∈ R with |x| < 1, and consider the formal
power series

P (x) =

∏
i≥1(1− xip)∏
i≥1(1− xi)

. (1.1)

On one hand, if we cancel all the factors of (1− xjp) in (1.1), we get

P (x) =
∏
p-i

1
(1− xi)

=
∏
p-i

(1 + xi + x2i + · · · ).

The coefficient of xn is the number of expansions n = a11 + a22 + · · · + ann where ai ∈ N0 for
each i = 1, . . . , n and where p - ai if ai 6= 0. This is exactly the number of partitions of p whose
parts are coprime to p, i.e. |CLp(Sn)|.

On the other hand, if for every j ≥ 1 we divide 1− xjp by 1− xj , we are left with

P (x) =
∏
j≥1

(1 + xj + · · ·+ x(p−1)j).

Then the coefficient of xn is the number of expansions n = a11 + · · · + ann where ai < p. This
equals | Pn,p |.

We conclude from these two interpretations of the coefficient of the nth degree term of P (x)
that we indeed have |CLp(Sn)| = | Pn,p |, as desired.

We now state a corollary of theorem 1.1 and proposition 1.2.

Corollary 1.9. Let F be an algebraically closed field of characteristic p ≥ 0.

(a) If p - n! then the number of isomorphism classes of simple FSn-modules is | Pn |.

(b) If p
∣∣n! then the number of isomorphism classes of simple FSn-modules is | Pn,p |.
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Chapter 2

Young Diagrams, Tableaux, and
Tabloids

Now we will begin discussion of some combinatorial topics that will later aid in our study of
representations of the symmetric group. We will discuss Young diagrams, Young tableaux, and
Young tabloids, all of which are named after Alfred Young. Here, we take n ∈ N.

Definition 2.1. Let λ = (λ1, . . . , λk) ∈ Pn.

(a) The Young Diagram [λ] is [λ] := {(i, j) ∈ N × N : 1 ≤ i ≤ k, j = 1, . . . , λi}. If (i, j) ∈ [λ]
then (i, j) is called a node (or box ) of [λ]. For instance, if λ = (42, 3, 2, 12), we would write

[λ] =

(b) A (Young) tableau of type λ (a λ-tableau) is a bijection t : [λ]→ {1, . . . , n}. We write

t =

t(1, 1) · · · · · · · · · t(1, λ1)
t(2, 1) · · · · · · t(1, λ2)
...

... . .
.

t(k, 1) · · · t(k, λk)

.

(c) A Young tableau is called standard if the entries increase along rows, and down columns.
The number of all standard λ-tableaux is denoted fλ.

Example 2.2. Take n = 6 and λ = (3, 2, 1). Then

[λ] =

And here are some examples of (3, 2, 1)-tableaux:

t1 =
1 2 3
4 5
6

, t2 =
5 2 3
1 4
6

.

Here, t1 is a standard tableau and t2 is a non-standard tableau.
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Exercise. Here is an exercise for if you are (extremely) bored. Write down all (3, 2, 1)-
tableaux. How many are there? How many λ-tableaux are there for λ = (n)? λ = (1n)?

(d) The symmetric group Sn acts on the set of all λ-tableaux in the most natural way possible—
entry-wise. Take λ = (λ1, . . . , λk) ∈ Pn, and take a λ-tableaux

t =

x11 · · · · · · x1,λ1

...
... . .

.

xk,1 · · · xk,λk

.

Then for σ ∈ Sn, we define the action of σ on t (we act on the left) to be:

σ · t =

σ(x11) · · · · · · σ(x1,λ1)
...

... . .
.

σ(xk,1) · · · σ(xk,λk)
.

Definition 2.3. Let λ ∈ Pn, and let t be a λ-tableau. The row stabilizer of t is

Rt := {σ ∈ Sn : σ fixes every row of t}.

The column stabilizer of t is

Ct := {σ ∈ Sn : σ fixes every column of t}.

Remark 2.4. Both Rt and Ct are subgroups of Sn.

Example 2.5. Let λ = (2, 3) ∈ P5 and let t =
2 3 5
1 4 . Then Rt = S({2, 3, 5}) × S({1, 4})

and Ct = S({2, 1})×S({3, 4}).

Definition 2.6. Let λ = (λ1, . . . , λk) ∈ Pn . The corresponding standard Young subgroup of Sn

is defined as

Sλ := S({1, . . . , λn})×S({λ1+1, . . . , λ1+λ2})×· · ·×S({λ1+· · ·+λk−1+1, . . . , λ1+· · ·+λk−1+λk})

A Young subgroup of type λ is a subgroup of Sn conjugate to Sλ.

Remark 2.7. Let λ ∈ Pn .

(a) A subgroup Y ≤ Sn is a Young subgroup if and only if there are, for some k ∈ N, pairwise
disjoint subsets A1, . . . , Ak of {1, . . . , n} such that Ai 6= ∅, tki=1Ai = {1, . . . , n} and Y =
S(An)× · · · ×S(Ak).

(b) Denote by λ′ the partition of n whose Young diagram is obtained by transposing [λ]. We
call λ′ the conjugate partition of λ. That is, for every λ-tableau r, Rt is a Young subgroup
of type λ, and Ct is a Young subgroup of type λ′.

Lemma 2.8. Let λ ∈ Pn, t a λ-tableau. Then πRtπ
−1 = Rπt and πCtπ−1 = Cπt for all π ∈ Sn.

Proof. This is just an easy verification. Denote the rows of t by A1, . . . , Ak and let σ ∈ Sn. Then

σ ∈ Rt ⇐⇒ σ(Ai) = Ai, i = 1, . . . , k

⇐⇒ [πσπ−1](π(Ai)) = π(Ai), i = 1, . . . , k

⇐⇒ πσπ−1 ∈ Rπt.

So πσπ−1 = Rπt. Similarly, πCtπ−1 = Cπt.

8



Remark 2.9. Let λ ∈ Pn. Define a relation “∼” on the set of tableaux:

t ∼ t̄⇐⇒ there exists σ ∈ Rt such that σ · t = t̄.

This defines an equivalence relation: It is certainly reflexive. To check it is symmetric, see that
t ∼ t̄ means σt = t̄ and so t = σ−1t̄, and hence σ−1 = σσ−1σ−1 ∈ σRtσ−1 = Rσt = Rt̄. The check
for transitivity is left as an exercise.

Definition 2.10. Let λ ∈ Pn and let t be a λ-tableau. We define {t} as the equivalence class of
t under “∼.” We call {t} a λ-tabloid. We write {t} as t with lines between rows. We call {t} a
standard λ-tabloid if it contains a standard λ-tableau.

Example 2.11. Consider λ = (3, 2) ∈ P5 .

(a) If t =
2 3 5
1 4 , then {t} =

2 3 5
1 4

=
3 2 5
4 1

. Here, {t} is not a standard λ-tabloid.

(b) If t =
3 1 5
4 2 , then {t} =

3 1 5
4 2

=
1 3 5
2 4

. Here, {t} is a standard λ-tabloid.

Definition 2.12. Let λ, µ ∈ Pn .

(a) We say λ dominates µ, and write µ E λ if
∑j
i=1 µj ≤

∑j
i=1 λi for all j = 1, 2, . . . . If µ E λ

and µ 6= λ, then we write µC λ.

(b) We write µ < λ if, for the smallest i ∈ N with λi 6= µ, we have µi < λ. If µ < λ or µ = λ
then we write µ ≤ λ.

Remark 2.13. (a) The dominance order “E” is a partial order on Pn. The lexicographic order
“≤” is a total order on Pn. Moreover “≤” contains “E” as relations. (That is to say E⇒≤.)
The converse is not true. For example, (32) < (4, 12), but (32) and (4, 12) are not comparable
by “E.”

(b) For λ, µ ∈ P, we have µE λ⇐⇒ λ′ E µ′.

Lemma 2.14 (Basic Combinatorial Lemma (BCL)). Let λ, µ ∈ Pn, t1 a λ-tableau, and t2 a µ-
tableau. Suppose that for every i ∈ N, the entries in the ith row of t2 belong to mutually different
columns of t1. Then µE λ. If λ = µ then there exists σ ∈ Rt2 , π ∈ Ct1 such that σt2 = πt1.

We first give an example of this lemma.

Example 2.15. (a) Take λ = (4, 3, 1), µ = (3, 22, 1). Let t1 be a λ-tableau and t2 be a µ-tableau
as below:

t1 =
1 5 3 6
4 2 7
8

, t2 =

1 2 3
4 5
6 7
8

.

Then by the BCL, µC λ.

(b) Take λ = µ = (3, 22, 1). And consider the following λ-tableaux t1 and t2:

t1 =

1 2 3
4 5
6 7
8

, t2 =

6 3 2
1 4
8 7
5

.

Then we can take σ = (23)(45) ∈ Rt2 , π ∈ Ct1 such that σt2 = πt1.

Now we prove the BCL.
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Proof of BCL. Place the µ1 entries from the first row of t2 into different columns of [λ]. So [λ]
must have at least µ1 columns, i.e. µ1 ≤ λ1. Next, we put the µ2 entries from the second row of
t2 into different columns of [λ] with the first µ1 numbers already filled in. Every column of the
resulting diagram has at most 2 entries. This forces µ1 + µ2 ≤ λ1 + λ2. Inductively, we get µE λ.

If λ = µ, then we choose σ ∈ Rt2 to rearrange the entries in t2 such that x is in column i of
σt2 if and only if x is in column i of t1. Then we choose π ∈ σt,n such that y belongs to the jth
row of πt1 if and only if y is in the jth row of σt2.

This is actually a really obvious statement. There’s really nothing to the proof at all. It basically
says: Do what you can. QED.
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Chapter 3

Permutation Modules and Specht
Modules

We now discuss permutation modules and define Specht modules. Let F be any field and let G
be a finite group.

Remark 3.1. (a) Let Ω be a finite G-set (so G acts from the left). The corresponding FG-
module FΩ is the F -vector space with basis Ω. We call Ω the “natural” F -basis of FΩ.

(b) If Ω and Ω′ are G-sets, then Ω× Ω′ is also, with diagonal action

(c) For any FG-modules M and N , we have HomFG(M,N), the F -space of F -linear maps
M → N commuting with the FG-action.

Lemma 3.2. Assume Ω and Ω′ are finite G-sets. Let ϕ : FΩ → FΩ′ be an F -linear map with
corresponding matrix (aω′,ω)ω′∈Ω′,ω∈Ω. Then

(a) ϕ ∈ HomFG(FΩ, FΩ′) if and only if for all g ∈ G,ω ∈ Ω, ω′ ∈ Ω′, we have aω′,ω = agω′,gω.

(b) HomFG(FΩ, FΩ′) has an F -basis labelled by the G-orbits on Ω′ ×Ω. That is, if θ is such a
G-orbit, then bθ = (aω′,ω) with

aω′,ω =

{
1, (ω′, ω) ∈ θ
0, otherwise.

Proof. Let g ∈ G, and let ω ∈ Ω. On one hand, we have

ϕ(g · ω) =
∑
ω′∈Ω′

aω′,gωω
′,

and on the other hand, we have

gϕ(ω) = g
∑
ω′∈Ω′

aω′,ωω
′ =

∑
ω∈Ω′

aω′,ωgω
′ =

∑
ω′∈Ω′

ag−1ω′,ωω
′.

Hence we have ϕ(gω) = gϕ(ω) if and only if aω′,gω = ag−1ω′,ω for all ω′ ∈ Ω′, ω ∈ Ω.

Example 3.3. If Ω = Ω′ is the set of 2-element subsets of {1, . . . , n}, G = Sn, n ≥ 4, then there
are 3 orbits on Ω× Ω′:

θ1 := {({a, b}, {c, d}) : {a, b} = {c, d}},
θ2 := {({a, b}, {c, d}) : |{a, b} ∩ {c, d}| = 1},
θ3 := {({a, b}, {c, d}) : |{a, b} ∩ {c, d}| = 0}.
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Now we will look at Young permutation modules.
Let F be a field, λ ∈ Pn, and let Ωλ be the set of λ-tabloids. For π ∈ Sn and {t} ∈ Ωλ, we

define π{t} := {πt}. The next lemma shows that this is an Sn-action, and thus turns Ωλ into an
Sn-set.

Lemma 3.4. Let λ ∈ Pn, t1 and t2 λ-tableaux, π ∈ Sn. If {t1} = {t2} then π{t1} = π{t2}.

Proof. If {t1} = {t2} then for some σ ∈ Rt we have t2 = σt1. Thus

πt2 = πσπ−1πt1 ∈ πRt1π−1 = Rπt1 .

We conclude that {πt2} = {πt1}.

Definition 3.5. Let λ ∈ Pn. Then the permutation FSn-module FΩλ is called a Young permu-
tation module and it is denoted by Mλ.

Just clarifying: After picking λ ∈ Pn, we have an action of Sn on Ωλ, the set of λ-tabloids.
Pairing this action with the vector space attached to the permutation FSn-module FΩ gives us
the Young permutation module Mλ.

Proposition 3.6. Let λ ∈ Pn, λ = (λ1, . . . , λk). Then Mλ is a cyclic FSn-module, generated by
any tabloid {t} ∈ Ωλ. Moreover dimF (Mλ) = n!

λ1!···λk! .

Proof. Problem Sheet 1.

Example 3.7. (a) If λ = (n), then Mλ ∼= F , the trivial FSn-module.

(b) If λ = (1n), then Mλ ∼= FSn, the regular FSn-module.

(c) M (n−1,1) is isomorphic to the natural permutation FSn-module.

(d) For 0 < k < n, M (n−k,k) ∼= FΩ{k}, where Ω{k} is the set of all k-element subsets of
{1, . . . , n}.

Definition 3.8. Let λ ∈ Pn, and let t be a λ-tableau with column stabilizer Ct. Set

κt :=
∑
π∈Ct

sgn(π)π ∈ FSn

et := κt · {t} ∈Mλ.

We call et a λ-polytabloid. If λ is a standard tableau, then we call et a standard λ-polytabloid.

Remark 3.9. Note that the polytabloid et depends on the choice of λ-tableau t and not only on

the tabloid {t}. To illustrate this, take, for instance, λ = (2, 1). Let t =
1 2
3 . Then we have

Ct = S({1, 3}) and so

et =
1 2
3

− 3 2
1

.

Now take t′ =
2 1
3 . We have Ct = S({2, 3}) and hence

et′ =
1 2
3

− 3 1
2

.

In particular, we have et 6= et′ in spite of the fact that {t} = {t1}.
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Lemma 3.10. Let λ ∈ Pn and let t be a λ-tableau with columns C1, . . . , Cs. Then

κt = κC1 · · ·κCs where κCi :=
∑

π∈S(Ci)

sgn(π)π, i = 1, . . . , s.

Proof. We know that C1 = S(C1) × · · · ×S(Cs). So arguing with induction on s, it is sufficient
to show that for any two subgroups H,K ≤ Sn with disjoint support, we have∑

σ∈HK
sgn(σ)σ =

∑
π∈H

sgn(π)π ·
∑
ρ∈K

sgn(ρ)ρ.

This is true since every σ ∈ HK has a unique factorization σ = πρ = ρπ for some π ∈ H, ρ ∈ K.
Also, sgn(σ) = sgn(π) sgn(ρ). The result follows.

Lemma 3.11. Let λ ∈ Pn and let t be a λ-tableau. Then

(a) κπt = πκtπ
−1 for π ∈ Sn.

(b) κt · π = π · κt = sgn(π) · κt for π ∈ Ct.

(c) eπt = πet for π ∈ Sn.

Proof. For a, we already know Cπt = πCtπ
−1 for all π ∈ Sn. So

κπt =
∑
σ∈Cπt

sgn(σ)σ =
∑
σ∈Ct

sgn(πσπ−1)πσπ−1 = π

(∑
σ∈Ct

sgn(σ)σ

)
π−1 = πκtπ

−1.

For b, if π ∈ Ct then

πκ1 = π
∑
σ∈Ct

sgn(σ)σ =
∑
σ∈Ct

sgn(π) sgn(πσ)πσ = sgn(π)κt,

and similarly, we obtain that κtπ = sgn(π)κ1, and this proves b.
For c, we use a, and so for all π ∈ Sn, we have

πet = πκt{t} = κπtπ{t} = κπt{πt} = eπt.

This completes the proof.

Definition 3.12. Let λ = (λ1, . . . , λk) ∈ Pn and let t be the following λ-tableau:

t =

1 2 · · · · · · · · · λ1

λ1 + 1 λ1 + 2 · · · · · · λ1 + λ2

...
... . .

.

λ1 + · · ·+ λk−1 + 1 λ1 + · · ·+ λk−1 + 2 · · · λ1 + · · ·+ λk

.

The Specht FSn-module is the submodule of Mλ generated by et. We denote it by Sλ := SλF .

This is all fine and dandy, but I still have no idea what this means! We have a Young permutation
module, and then we have et = κt · {t} =

(∑
π∈Ct sgn(π)π

)
· {t} generating a submodule of the

Young permutation module. Oh, and Ct is the column stabilizer.

Remark 3.13. If s is any λ-tableau then s = πt for some π ∈ Sn. Thus πet = es. So Sλ =
FSn · et = FSn · es. Hence Sλ is a cyclic FSn-module generated by any λ-polytabloid.

The λ-polytabloids are a spanning set for Sλ. We will see later that the standard λ-polytabloids
form an F -basis of Sλ.

Note that thus far, we have made no assumptions about the field F . That is, our discussion is
invariant under the choice of F . However, the structure of the module Sλ is extremely dependent
on the choice of F .
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We continue from the introduction of Specht modules from last lecture by giving some examples
and then beginning our discussion of properties of Specht modules. We take λ ∈ Pn, and t a λ-
tableau. Let Sλ := FSn · et ⊆Mλ.

Example 3.14. (a) If λ = (n), then Sλ = Mλ ∼= F.

(b) If λ = (1n), then t =
1
...
n

, the unique standard λ-tableau, and Ct = Sn, κt =
∑
π∈Sn

sgn(π)π.

If σ ∈ Sn, then σet = σκt{t} = sgn(σ)et. So Sλ is a one-dimensional FSn-module, with Sn

acting by multiplication with sgn.

(c) The characterization for Sλ where λ = (n− 1, 1) is on Sheet 2.

14



Chapter 4

Properties of Specht Modules

Now we proceed to talk about properties of Specht modules. We take n ∈ N and F to be some
field.

Theorem 4.1. Let λ, µ ∈ Pn. Let t be a λ-tableau.

(a) If κt ·Mµ 6= 0 then µE λ.

(b) As F -vector spaces, κt ·Mλ = Fet.

Proof. If κt ·Mλ 6= 0 then for some µ-tabloid {t̄}, we have κt · {t̄} 6= 0. We proceed by proving
the following claim that will allow us to apply the Basic Combinatorial Lemma (BCL).
Claim. For every i ∈ N, the numbers in row i of t̄ belong to different columns of t.

It is clear that this holds when λ = (n) or µ = (1n). Hence we may assume that this is not the
case. Let a, b be numbers in the same row of {t̄}. Then

(1− (ab)){t̄} = {t̄} − (ab){t̄} = 0. (4.1)

Suppose (for a contradiction) that a, b are in the same column of {t̄} so that (a, b) ∈ Ct. Let
{π1, . . . , πn} be a transversal for the left cosets Ct/〈(a, b)〉. So Ct = tmi=1π · 〈(a, b)〉 and

κt =
m∑
i=1

(sgn(πi)πi + sgn(πi(ab))πi(ab))

=
m∑
i=1

sgn(πi)πi − sgn(πi)πi(ab)

=
m∑
i=1

sgn(πi)πi(1− (ab)) =: x ∈ FSn.

By (4.1), this implies κt{t̄} = x(1− (ab)){t̄} = 0, which is a contradiction. This proves the claim,
and applying the BCL, we have µE λ, proving a.

For b, assume λ = µ. By the proof of a, we can apply the BCL. So there are some σ ∈ Rt, π ∈ Ct
such that σt̄ = πt. Thus {t̄} = π{t}, and κt{t̄} = κt{πt} = sgn(π)κt · {t} = sgn(π)et. Hence
κt ·Mλ ⊆ Fet, and since Fet is a one-dimensional F -vector space and κt ·Mλ 6= 0, then we must
have equality.

Corollary 4.2. Let λ, µ ∈ Pn . Let ϕ ∈ HomFSn
(Mλ,Mµ)\{0}.

(a) If Sλ 6⊆ ker(ϕ), then µE λ.

(b) If λ = µ, then ϕ
∣∣
Sλ

is multiplication by some α ∈ F.
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Proof. For a, assume that Sλ 6⊆ ker(ϕ) and let u ∈ Sλ be such that ϕ(u) 6= 0. We can write
u =

∑
t αtet where t varies over all λ-tableaux and αt ∈ F. Since

ϕ(et) = ϕ(κt · {t}) = κtϕ({t}) ∈ κt ·Mµ,

we get 0 6= ϕ(u) =
∑
t αtϕ(et) ∈

∑
t κtM

µ. Hence there is some λ-tableau t with κtM
µ 6= 0. By

the previous theorem, we have µE λ.
For b, let λ = µ. If t is a λ-tableau, then by b of the previous theorem, we have κtMλ = Fe1.

Since ϕ(e1) ∈ κtMλ, there is some α ∈ Fn with ϕ(et) = αet. We know Sλ = FSn · et, hence we
can conclude that ϕ(u) = αu for all u ∈ Sλ, as desired.

Theorem 4.3 (Maschke). Let G be a finite group such that char(F ) - |G|. Then every FG-module
M is semisimple. (i.e. If M1 is a submodule of M then there is a submodule M2 of M such that
M = M1 ⊕M2.)

Theorem 4.4. Suppose char(F ) - |Sn| = n! and let λ, µ ∈ Pn.

(a) Sλ ∼= Sµ ⇐⇒ λ = µ.

(b) Sλ is a simple module.

(c) dim(HomFSn
(Sλ,Mλ)) = 1 = dim(EndFSn

(Sλ)).

Proof. For a, the (⇐) direction is clear. For (⇒), suppose ϕ : Sλ → Sµ is an FSn-isomorphism.
By 4.3, there is a submodule Tλ of Mλ such that Mλ = Sλ ⊕ Tλ. (Call this equation (∗).) Let
πλ : Mλ � Sλ be the canonical projection and let ιµ : Sµ ↪→ Mµ be the inclusion map. Then
ψ := ι)µ ◦ ϕ ◦ πλ : Mλ → Mµ is in HomFSn(Mλ,Mµ) with Sλ 6⊆ ker(ψ). Thus µ E λ, by the
corollary. Similarly, λE µ, so indeed λ = µ.

For b, assume that Sλ is not simple. Then there are proper non-zero submodules U1, U2 of Sλ

such that Sλ = U1⊕U2. As above, we have Mλ = U1⊕U2⊕Tλ. We define an FSn-homomorphism
ϕ : Mλ →Mλ, u 7→ ι1(π1(u)) where ι1 : U1 ↪→Mλ and π1 : Mλ � U1 are the canonical injection
and projection maps, respectively.

For c, let ϕ ∈ HomFSn(Sλ,Mλ)\{0}. With the notation as in a, ϕ extends to a homomorphism
ϕ̂ ∈ HomFSn

(Mλ,Mλ)\{0}: ϕ̂ = ϕ ◦ πλ. Moreover ϕ̂
∣∣
Sλ

= ϕ. Thus by b of the corollary, there
exists some α ∈ F such that ϕ = α− ιλ, where ιλ is the inclusion map Sλ ↪→Mλ. So

dim(HomFSn
(Sλ,Mλ)) = 1 = dim(EndFSn

(Sλ)).

Corollary 4.5. Let F be an (algebraically closed) field with char(F ) - |Sn|. Then {SλF : λ ∈ Pn}
is a transversal for the isomorphism classes of simple FSn-modules.

Proof. This follows from the preceding theorem and the first corollary of Lecture 2.

Note that the above statement is true without the hypothesis that F is algebraically closed.
However, the corollary used the fact that F was algebraically closed, which is why the corollary
is stated as it is.

Remark 4.6. The assumption on char(F ) is essential in the last theorem here as well as in the
corollary above. If char(F )

∣∣ |Sn| then Sλ is, in general, no longer simple. If char(F ) = 2, then
Sλ can even be decomposable. Moreover, in char(F ) = 2, then it does happen that Sµ ∼= Sλ for
λ 6= µ. (This last phenomenon only happens when char(F ) = 2.)

Theorem 4.7 (Wedderburn). Let G be a finite group, and let F be a group of char(F ) - |G|. Let
{s1, . . . , sn} be a transversal for the isomorphism classes of simple FG-modules. Then

|G| =
n∑
i=1

(dim(si))2.
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Definition 4.8. Let λ ∈ Pn, and let {t1} and {t2} be λ-tabloids. We write {t1} < {t2} if there
is some i ∈ N such that

• for every i < j, j belongs to the same row of {t1} and {t2}

• i occurs in {t1} in a higher row than it does in {t2}.

Example 4.9. Let λ = (3, 2). Then we have

3 4 5
1 2

<
2 4 5
1 3

<
1 4 5
2 3

To see the first inequality, set i = 3. To see the second inequality, set i = 2.

Remark 4.10. • This gives a total order on Ωλ, the set of λ-tabloids.

• Whenever t is a λ-tableau such that the entries in t increase down columns,

et = {t} ± {t1} ± · · · ± {tm},

for some m ≥ 1 and {ti} < {t} for all i = 1, . . . ,m. Justification: {ti} = πi{t} for some
πi ∈ Ct. Let a ∈ {1, . . . , n} be such that πi(b) = b for b > a and π(a) 6= a. Then a must in
{ti} lie in a higher row than in {t}.

Theorem 4.11. Let λ ∈ Pn, then the set of all standard λ-polytabloids form an F -basis of Sλ.
In particular, dim(Sλ) = fλ.

Remark 4.12. We will only prove the assertion in the case where F is algebraically closed and
charF - |Sn|, but this works in general.

Proof. We first prove linear independence. Suppose for a contradiction that
∑
αtet = 0 (call this

equation (∗)), αt ∈ F , not all zero, where the sum runs over all standard λ-talbeaux t. Let {t̄}
be maximal with respect to “<” such that t̄ is standard and αt̄ 6= 0. By the above remark, the
coefficient of {t̄} in (∗) is αt̄. But the λ-tabloids are an F -basis of Mλ, and hence αt̄ = 0. This is
a contradiction and hence we have linear independence.

Now we prove that this set is indeed a generating set. Since we assumed that F is alge-
braically closed and char(F ) - |Sn|, then Wedderburn’s theorem together with the earlier state-
ment (corollary) that the Specht modules form a transversal for the isomorphism classes of simple
FSn-modules, we have

n! = |Sn| =
∑
λPn

(dim(Sλ))2.

From the linear independence, we know that dim(Sλ) ≥ fλ. What remains to be shown is that

n! =
∑
λ∈Pn

(fλ)2.

This will be done later as we now take a break from combinatorics to go into some more repre-
sentation theory.

Remark 4.13. One can show, using the “Garnis relations,” that every λ-polytabloid is a Z-linear
combination of standard λ-polytabloids. With this we get directly that the latter are a basis of
Sλ. (Reference: James’ book, The Representation Theory of Symmetric Groups.)

Theorem 4.14. Let F be a field of char(F ) - |Sn| and let λ ∈ Pn. Then

Mλ ∼= Sλ ⊕
⊕
λCµ

Sµmλµ, mλµ ∈ N0
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Proof. Since char(F ) - |Sn|, Mλ is semisimple by Maschke’s theorem. So we can write

Mλ ∼=
⊕
µ∈Pn

mλµS
µ for some mλµ ∈ N0.

If mλµ 6= 0 then HomFSn
(Sµ,Mλ) 6= 0. Let 0 6= ϕ ∈ HomFSn

(Sµ,Mλ). We write Mµ = Sµ⊕Tµ
for some FSn-module Tµ. Let φµ : Mµ → Sµ be the canonical projection. Then ϕ ◦ πµ : Mµ →
Mλ is an FSn-homomorphism by Sµ 6⊆ ker(ϕ ◦ πµ). This forces λE µ, by Corollary 4.2a. By the
proelbm sheet, mλµ = dim(Hom(Sµ,Mλ)), so that mλλ = 1 by Theorem 4.4c.

Remark 4.15. • The multiplicities mλµ are called Kostka numbers (and they have an ana-
logue in characteristic p).

• If G ⊇ H are finite groups, then every FG-module M can be viewed as an FH-module. We
induce it by ResGH(M).

Theorem 4.16 (Branching Rule). Let F be any field, and let λ ∈ Pn . Then ResSn

Sn−1
(Sλ) has a

filtration of FSn−1-modules

ResSn

Sn−1
(Sλ) =: Vm ⊃ Vm−1 ⊃ · · · ⊃ V1 ⊃ V0 = {0},

where Vi/Vi−1
∼= Sλ(i), and {λ(1), . . . , λ(m)} is the set of partitions of n−1 whose Young diagrams

are obtained by removing a node from [λ], and λ(j) C λ(i) whenever j < i. In particular, if
char(F ) - |Sn| then ResSn

Sn−1
(Sλ) ∼=

⊕m
i=1 S

λ(i).

Proof. Let r1 < · · · < rm be natural numbers such that we can remove a node from the end of ri
of [λ]. The resulting partitions of n − 1 shall be λ(1), . . . , λ(m). By construction, λ(j) C λ(i) for
j < i. We define, for every i = 1, . . . ,m, and FSn−1-homomorphism θi ∈ HomFSn−1(Mλ,Mλ(i))
via

θi({t}) :=

{
0, n is not in the rith row of t
{t̄}, if n is in the rith row of t,

where {t̄} is {t} with n removed. If t is a standard tableau then

θi(et) =

{
et̄, n in the rith row of t
0, n in the rjth row of t for some j < i.

For i = 1, . . . ,m, we define Vi as the F -span of those λ-polytabloids et where n occurs in row
r1, r2, . . . , or ri of t. Then Vi−1 ⊆ ker(θi), and (θi(Vi) = Sλ(i), since θi(Vi) contains all standard
λ(i)-polytabloids. We thus get a series of FSn−1-modules

ResSn

Sn−1
(Sλ) = Vm ⊃ Vm ∩ ker(θm) ⊇ Vm−1 ⊃ Vm−1 ∩ ker(θm−1) ⊇ · · · ⊇ V1 ⊃ V1 ∩ ker(θ1) ⊇ 0.

(We need to check that the Vi are actually FSn−1-modules, which we will do at the beginning of
next lecture.) We have dim(Vi/Vi ∩ ker(θi)) = dim(θi(Vi)) = dim(Sλ(i)). On the other hand,

dim(Sλ) = fλ =
m∑
i=1

fλ(i) =
m∑
i=1

dim(Sλ(i)),

where the first equality holds from Theorem 4.11 and the second equality holds from Problem
Sheet 1. So we must have Vi = Vi+1 ∩ ker(θi+1) for i = 0, . . . ,m − 1 (there is no room for more
modules by the counting argument of what dim(Sλ) is), and we get the desired filtration.

We begin by finishing the proof of the branching rule. We prove that if Vj is spanned by
standard λ-polytabloids et with n in one of the rows r1, . . . , rj of t, then V is an FSn−1-module
(where j is some integer between 1 and n).
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If σ ∈ Sn−1, then σet = eσt =
∑
αses, where αs ∈ t̄ and the sum runs over standard λ-

tableaux s. Let {s} be maximal with respect to the order “¡” such that αs 6= 0. Then {s} occurs
in eσt with coefficient αs. Every tabloid in es has s in the same or higher row than {s}. Every
tabloid in et, and thus in eσt, has n in one of the rows r1, . . . rj . So es ∈ Vj . Moreover, es ∈ Vj
whenever αs 6= 0. (In this case, {s′} < {s} so n occurs in s′ in the same or a higher row than in
s.)

I don’t understand the above proof at all.
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Chapter 5

Character Tables

Now we will discuss character tables.

Remark 5.1. This is a recap from representation theory (previous course). Let G be a finite
group and let F be any field.

(a) Let ∆ : G→ GLn(F ) be a matrix representation of G over F . Then the character of ∆ is

χ∆ : G→ F, g 7→ tr(∆(g)).

This is well-defined; i.e. it does not depend on the choice of basis. Equivalent representations
have the same character. Also, χ∆ is constant on G-conjugacy classes, and as such it is called
a F -valued class function.

(b) If F = C, then every representation of G is uniquely determined by its character (up to
equivalence).

(c) The character of the irreducible representations of G over C are called (ordinary) irreducible
characters of G; they form a C-basis of the C-span of C-valued class functions. In particular,
every ordinary character of G can be written as a unique C-linear combination of irreducible
ones. (There is a correspondence between irreducible characters and the composition factors
of the respective representation.) We denote the set of ordinary irreducible characters of G
by Irr(G).

(d) Recall that, for any character χ of G, we have χ(1) = deg(∆), where ∆ is any corresponding
matrix representation.

(e) If M is a CG-module then we denote by χM the character of any matrix representation of
G afforded by M .

Example 5.2. (a) The trivial matrix representation G→ GL(1,C) corresponding to the trivial
character 1G : G→ C, g 7→ 1.

(b) Let Ω be a finite G-set, and let ∆Ω be the permutation representation with respect to the
natural basis Ω. The character of ∆Ω is the permutation character ρΩ. Then, for g ∈ G,
ρΩ(g) = |fixed points|. With this, the orbit-counting formula from group theory can be
rewritten.

First, recall the character inner product. If χ1, χ2 are character of G, then

(χ1|χ2) = (χ1|χ2)G =
1
|G|

∑
g∈G

χ1(g)χ2(g) =
1
|G|

∑
g∈G

χ1(g)χ−1
2 (g).

Then
(ρΩ|1G)G =

1
|G|

∑
g∈G
|FixΩ(g)| = |{G-orbits on Ω}|.
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Definition 5.3. Let G be a finite group, and let {g1, . . . , gl} be a transversal for the G-conjugacy
classes. Let also Irr(G) = {χ1, . . . , χl}. The (ordinary) character table of G is the l × l matrix
with (i, j)-entry χi(gj) for i, j = 1, . . . , l.

Remark 5.4. Here are some conventional notations that we too will use. Suppose G = Sn.
Then, for λ ∈ Pn, we denote by χλ the character of §λC. For µ ∈ Pn, we denote by ωµ ∈ Sn an
element of cycle type µ. We label the rows of the character table of Sn in lexicographic order,
and the columns in reverse lexicographic order. For λ ∈ Pn, let ρλ be the permutation character
corresponding to Mλ

C .

Proposition 5.5. Let λ ∈ Pn. Then, for every σ ∈ Sn, we have χλ(σ) ∈ Z. Moreover, χλ can be
written as a Z-linear combination of permutation characters ρµ with λE µ. (The coefficients that
appear on the linear combination are exactly corresponds to the composition multiplicity.)

Proof. We argue with reverse induction on the dominance order. For λ = (n), we have χλ = 1,
which satisfies the assertions. Now let λ ∈ Pn be arbitrary. By Theorem 4.14, we can write

Mλ ∼= Sλ ⊕
⊕
λCµ

mλµS
µ, mλµ ∈ N0.

This implies ρλ = χλ +
∑
λCµmλµχµ. As we have seen in Example 5.2, for σ ∈ Sn, ρλ(σ) =

|FixΩλ(σ)| ∈ Z, where Ωλ is the set of λ-tabloids. By induction, also
∑
λCµmλµχµ(σ) ∈ Z, thus

χλ(σ) ∈ Z. By induction, we also know that
∑
mλµχµ ∈ Z〈ρµ : λCµ〉 (the Z-span of 〈ρµ : λCµ〉).

Hence χλ ∈ Z〈ρµ : λE µ〉.

Example 5.6. (a) Character table of S3. We have 3 irreducible characters:

χ(3) = 1S3 , χ(2,1), χ(13) = sgn .

We know from Sheet 2 that ρ(2,1) = χ(2,1) +χ(3). A transversal for the S3-conjugacy classes
is {1, (12), (123)}. We get

ρ(2,1)(1) = 3, ρ(2,1)((12)) = 1, ρ(2,1)((123)) = 0.

Hence the character table for S3 is

1 (12) (123)
(3) 1 1 1

(1, 2) 2 0 −1
(13) 1 −1 1

We continue with Example 5.6 from the previous lecture.

Example 5.7. (b) We construct the character table of S4. Recall from Sheets 2 and 3:

M (3,1) ∼= S(3,1) ⊕ S(4)

M (22) ∼= S(22) ⊕ S(3,1) ⊕ S(4)

M (4) ∼= S(4)

Hence we have
ρ(3,1) = χ(3,1) + χ(4), ρ(22) = χ(22) + χ(3,1) + χ(4).

And we then have
1 (12) (12)(34) (123) (1234)

ρ(3,1) 4 2 0 1 0
ρ(22) 6 2 2 0 0
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and hence
1 (12) (12)(34) (123) (1234)

(4) 1 1 1 1 1
(3, 1) 3 1 −1 0 −1
(22) 2 0 2 −1 0

(2, 12) 3 −1 −1 0 1
(14) 1 −1 1 1 −1

(We use the fact from Problem Sheet 4 that sgn ·χ(3,1) is again an irreducible character and
so (sgn ·χ(3,1))(g) = sgn(g) · χ(3,1)(g).)

Definition 5.8. Let λ = (λ1, . . . , λk) ∈ Pn, and let λ′ be the transposed (conjugate) partition.

(a) The (i, j)-hook of [λ] consists of the (i, j)-node of [λ], together with the λi-j nodes to the
right of it (arm of the hook) and the (λ′)j-i nodes below it (leg of the hook).

(b) The length of the (i, j)-hook is hj(λ) := λi +λ′j − i− j+ 1. Replacing every node (i, j) ∈ [λ]
by hij(λ), we get the hook diagram of λ.

(c) A rim hook (skew hook) of [λ] is a connected part of the rim of [λ], which can be removed
to leave the diagram of a partition.

Example 5.9. Set λ = (42, 3, 2, 1) ∈ P14 . Then

[λ] =
hook diagram−→

8 6 4 2
7 5 3 1
5 3 1
3 1
1

There are also some examples of rim hooks that I don’t know how to type.

Lemma 5.10. Let λ ∈ Pn. There is a bijection between the sets of hooks of [λ] and rim hooks of
[λ].

Proof. This is easy. Viewing the rim hook as starting from the bottom and going up, the rim
hook that starts in the jth column and ends in the ith row (this uniquely defines a rim hook)
corresponds to the (i, j)-hook.

Remark 5.11. By the lemma, we can speak of the leg length of a rim hook h as the leg length
of the corresponding ordinary hook. Notation: LL(h).

Definition 5.12. Let λ ∈ Pn. A removal sequence of [λ] is a sequence

S = (λ(1), λ(2), . . . , λ(m+1))

of partitions λ(1), . . . , λ(m+1) such that

[λ(m+1)] ⊆ [λ(m)] ⊆ · · · ⊆ [λ(1)]

and hi := [λ(i)] \ [λ(i+1)] is a rim hook of [λ(i)] for i = 1, . . . ,m. For i = 1, . . . ,m, let µi be the
length of hi. The composition µ = (µ1, . . . , µm) is called the type of S. Let also LL(S) = {0, 1}
such that

∏M
i=1(−1)LL(hi) = (−1)LL(S).

Theorem 5.13 (Munaghan-Nakayama Rule). Let λ, µ ∈ Pn and let ωµ ∈ Sn be a permutation
of cycle type µ. Then

χλ(ωµ) =
∑
S

(−1)LL(S),

where S varies over all removal sequences of [λ] of type µ. The empty sum is interpreted as 0.
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Example 5.14. There were some examples worked out here. See written notes.

Here are some ideas about the proof of Munaghan-Nakayama. It is a very technical proof, so
it will not be done rigorously.

We can break the proof down into two steps:

1. Reduction to the case where µ = (n), i.e. ωµ = (1, . . . , n).

2. One has to show

χλ(ωµ) =

{
(−1)r, if λ = (n− r, 1r), 0 ≤ r ≤ n− 1
0, otherwise.

For the second task, we argue with reverse induction on the dominance order “E.” For λ = (n)
or λ = (n− 1, 1), the statement is true. Now let λ be arbitrary and suppose the statement holds
for all λCµ. By Theorem 4.14, ρλ = χλ+

∑
λCνmλνχν . Since ωµ has no fixed points on {1, . . . , n},

ωλ(ωµ) = 0. By induction, we have

χλ(ωµ) = −
∑
λCν

mλνχν(ωµ) = −
∑

λC(n−s,1s)=ν

mλνχν(ωµ).

The ωλν can be computed via Young’s rule. That is, mλ,(n−s,1s) = number of ways to fill [(n−s, 1s)]
with λ11′s, λ22′s, etc. in such a way that the entries in this “general tableau” strictly increase
down columns and do not increase along rows =

(
r
s

)
. If λ = (n − r, 1r), m(n−r,1r),(n−s,1s) =

(
r
s

)
.

In this case, the statement reads

−
r−1∑
s=0

mλ,(n−s,1s)(−1)s = −
r−1∑
s=1

(
r

s

)
(−1)s =

r−1∑
s=1

(
r

s

)
(−1)s+1 = (−1)r.

We need to do more work to finish this, but this gives the general feel of the proof.
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Chapter 6

Induced Modules and the
Branching Rule Revisited

Today we will discuss induced modules and then we will be able to formulate a branching rule for
Specht modules, which relates the induction from a Specht FSn−1-module up to Sn to a direct
sum of particular Specht FSn−1-modules.

We begin in a very general setting. Let F be any field, H ≤ G finite groups. If M is an
FG-module, then we can view it as and FH-module ResGH(M). If N is an FH-module, we can
construct an FG-module IndGH(N) via induction.

Remark 6.1. Let ∆ : H → GL(n, F ) be a matrix representation. We construct IndGH(∆) = Γ :
G→ GL(n|G : H|, F ). Let T = {t1, . . . , tl} be a transversal for the left cosets of G/H. For g ∈ G,
we define

Γ(g) :=


∆(t−1

1 gt1) ∆(t−1
1 gt2) · · · ∆(t−1

1 gtl)
∆(t−1

2 gt1) ∆(t−1
2 gt2) · · · ∆(t−1

2 gtl)
...

...
. . .

...
∆(t−1

l gt1) ∆(t−1
l gt2) · · · ∆(t−1

l gtl)


with ∆(t−1

i gtj) = 0 if t−1
i gtj 6∈ H.

Theorem 6.2. With the above:

(a) IndGH(∆) is a matrix representation of G.

(b) It is independent of T : if {s1, . . . , sl} is another transversal for G/H, the respective repre-
sentation Γ′ is equivalent to Γ.

(c) If ∆ and ∆′ are equivalent representations of H, then IndGH(∆) and IndGH(∆′) are equivalent.

Proof. Let g ∈ G. Let j ∈ {1, · · · , l}. Then there is a unique ti ∈ T such that gtj ∈ tiH and
t−1
k gtj 6∈ H for k 6= i (i.e. each column has exactly one 1 and zeros elsewhere). If t−1

i gtj ∈
H, t−1

i gtk ∈ H, then ti = tk (i.e. each row has exactly one 1 and zeros elsewhere). So in each
row and column, we have exactly one nonzero block. Now we show multiplicativeness. That is, if
g, h ∈ G, we have to check that Γ(gh) = Γ(g)Γ(h); i.e.

i∑
k=1

∆(t−1
i gtk)∆(t−1

k htj) = ∆(t−1
i ghtj) for all i, j.

Fixing i, j, and setting ak = t−1
i gtk, bk = t−1

k htj , and akbk = c, for k = 1, · · · , l, we have two
cases. If ∆(c) = 0, then we have c ∈ H and so for every k = 1, . . . , l, either ak 6∈ H or bk 6∈ H,
and hence

∑j
k=1 ∆(ak)∆(bk) = 0. If ∆(c) 6= 0, then c ∈ H and there is a unique m ∈ {1, . . . , l}
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such that am ∈ H. Thus bm ∈ H. We get ∆(t−1
i gtm)∆(t−1

m htj) = ∆(t−1
i ghtj). It follow easily

that Γ(1) is the identity matrix. This proves a.
Let {s1, . . . , sl} be a transversal for G/H. For each i = {1, . . . , l}, there is a unique hi ∈ H

such that ti = sihi. Set

X :=

 ∆(h1) 0
. . .

0 ∆(hl)

 =⇒ X−1Γ′X = Γ.

This proves b.
Finally, if ∆′ = Y −1∆Y for some Y ∈ GL(n, F ), then

IndGH(∆′) = Ỹ −1 IndGH(∆)Ỹ where Ỹ =

 Y 0
. . .

0 Y

.

Example 6.3. We give some examples on permutation representations.

(a) Let G = S3 and let H := 〈(23)〉. Let ∆ : H → GL(1, F ) be the trivial representation and
let {t1, t2, t3} = {1, (12), (13)} be a transversal for G/H. Then

IndGH(∆)((12)) =

 ∆(12) ∆(1) ∆(132)
∆(1) ∆(12) ∆(13)

∆(123) ∆(13) ∆(23)

 =

 0 1 0
1 0 0
0 0 1


Computing similarly, we have

IndGH((123)) =

 0 0 1
1 0 0
0 0 1

 .

Thus IndGH(∆) is a permutation representation of G afforded by the permutation module
F{H, (12)H, (13)H}.

(b) For any finite groups H ≤ G and any transversal {t1, . . . , tl} for G/H, the induction IndGH(1)
of the trivial representation is the permutation representation of G afforded by the permu-
tation module {t1H, . . . , tlH}.

Remark 6.4. We discuss induced characters. With the notation of Remark 6.1, the character of
the induced representation IndGH(∆) is IndGH(χ∆) =: ψ if χ∆ is the character of the representation
∆. Then

ψ(g) =
l∑
i=1

χ∆(t−1
i gti),

with χ∆(t−1
i gti) = 0 whenever t−1

i gti 6∈ H.
If char(F ) - |H| (for instance, if F = C), we can rewrite this: for h ∈ H, i = 1, . . . , l,

χ∆(t−1
i gti) = χ∆(h−1t−1

i gtih). So

ψ(g) =
1
|H|

l∑
i=1

∑
h∈H

χ∆(h−1t−1
i gtih) =

1
|H|

∑
x∈G

χ∆(x−1gx).

Theorem 6.5 (Frobenius Reciprocity). Let H ≤ G be finite groups. Let χ be a complex character
of H. Let ψ be a complex character of G. Then

(IndGH(χ)|ψ)G = (χ|ResGH(ψ))H .
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Proof.

(IndGH(χ)|ψ)G =
1
|G|

∑
g∈G

IndGH(χ)(g)ψ(g−1 =
1
|G|

1
|H|

∑
g∈G

∑
x∈G

χ(xgx−1ψ(g−1)

=
1
|G|

1
|H|

∑
x∈G

∑
y∈G

χ(y)ψ(xy−1x−1) =
1
|G|

1
|H|

∑
x∈G

∑
y∈G

χ(y)ψ(y−1)

=
1
|H|

∑
y∈G

χ(y)ψ(y−1) =
1
|H|

∑
y∈H

χ(y)χ(y−1) = (χ|ResGH(ψ))H .

Definition 6.6. If H ≤ G are finite groups, and if N is an FH-module with corresponding
representation ∆, then we define IndGH(N) as the FG-module affording IndGH(∆). Note: If N1

∼= N2

as FH-modules, then IndGH(N1) ∼= IndGH(N2).

Corollary 6.7. Let H ≤ G be a finite group. Let M be a simple CG-module. Let N be a
simple CH-module. Then the composition multiplicity of N in ResGH(M) equals the composition
multiplicity of M in IndGH(N).

Theorem 6.8 (Branching Rule for Specht modules). Let λ ∈ Pn. Then

IndSn+1
Sn

(SλC) ∼=
k⊕
i=1

S
ν(i)
C ,

where {ν(1), . . . , ν(k)} are the partitions of n + 1 whose Young diagrams are obtained by some
node to [λ] such that ν(j)C ν(i) if i < j.

Proof. This follows from Corollary 6.7, Theorem 4.16, and the fact that x is an addable node of
[λ] if and only if x is a removable node of [λ] ∪ {x}.

This lecture (as well as the next one) is just a lot of technicalities in a combinatorial sense. So
get ready for an onslaught of products and sums and indexing notation.
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Chapter 7

The Hook Formula

Take n ∈ N. Recall that, for λ = (λ1, . . . , λk) ∈ Pn, we have

fλ =
∑
i≥1

fλ\i,

where λ\i = (λ1, . . . , λi−1, λi+1, . . . , λn). If λ\i is not a partition, then we set fλ\i = 0.

Remark 7.1. (a) Let k ∈ N. Let l1, . . . , lk ∈ Z. We set

∆k(l1, . . . , lk) =
∏

1≤i<j≤n

(li − lj).

This is the Vandermonde determinant; i.e.,

∆k(l1, . . . , lk) = det


1 1 · · · 1
lk lk−1 · · · l1
l2k l2k−1 · · · l21
...

...
. . .

...

lk−1
k lk−1

k−1 · · · lk−1
1


Given any composition (λ1, . . . , λk) = λ ∈ Cn, we set lj := lj(λ) = λi + k − j and also

f
λ

:=
n!∆k(l1, . . . , lk)

l1! · · · lk!
.

Note that we can put zeros at the end of λ without changing f
λ
.

(b) Suppose λ = (λ1, . . . , λk) ∈ Pn . If, for i ≤ k, λ\i is not a partition, then λi = λi+1. Hence

λi(λ\i) = (λi − 1) + k − i = λi+1 + k − (i+ 1) = li+1(λ\i).

So ∆k(l1(λ\i), . . . , lk(λ\i) = 0 and thus f
λ\i

= 0.

Recall the Young-Frobenius formula: For λ ∈ Pn, λ = (λ1, . . . , λk), lj := λj + k − j, we have

fλ =
n!∆k(l1, . . . , lk)

l1! · · · lk!
.

Recall also the hook formula:
fλ =

n!∏
(i,j)∈[λ] hij

.

We begin with a lemma.
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Lemma 7.2. Let λ = (λ1, . . . , λk) ∈ Pn, and let s ≥ k. For j = 1, . . . , s, we set lj := λj + s− j.
Then

λi∏
j=1

(1− thij )
s∏

j=i+1

(1− tli−lj ) =
λi+s−i∏
j=1

(1− tj).

Now we have a theorem.

Theorem 7.3. Let λ = (λ1, . . . , λk) ∈ Pn and s ≥ k. For j = 1, . . . , s, let lj := λj + s− j. Then

(a)
∏
s∈[λ](1− thx) =

Qs
i=1

Qli
j=1(1−tj)Q

i<j(1−t
li−lj )

, and

(b)
∏
x∈[λ] hx =

Qs
i=1 li!Q

i<j(li−lj)
.
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Chapter 8

The RSK Correspondence

Now we begin a new chapter. We discuss the Robinson-Schensted-Knuth correspondence, wherein
we will construct a bijection between the symmetric group Sn and the set of all pairs of standard
λ-tableaux. As a consequence we will get

n! =
∑
λ∈Pn

(fλ)2,

and this will complete the proof that the Specht modules form a basis for FSn-modules.
We continue discussing the Robinson-Schensted-Knuth (RSK) Algorithm. Last time, we de-

scribed the insertion map

ins : Sn →
∑
λ∈Pn

{(P,Q) : P,Q standard λ-tableau}.

Now we prove a lemma that tells us that this insertion map does what we want it to do.

Lemma 8.1. With the notation as in Algorithm 8.1, T ← b is again a “generalised” standard
tableau.

Theorem 8.2. Let σ ∈ Sn, and let (P,Q) = ins(σ). Then there is some λ ∈ Pn such that P and
Q are standard λ-tableau.

Remark 8.3. One could show that, for σ ∈ Sn and ins(σ) = (P,Q), one has ins(σ−1) = (Q,P ).
A reference for this is Sagan, Theorem 3.6.6. In particular, this shows that |σ| ≤ 2 if and only if
P = Q and thus |{σ ∈ Sn : |σ ≤ 2}| ≤

∑
λ∈Pn f

λ.

Now we construct the inverse algorithm to the insertion algorithm.

Algorithm 8.4 (The deletion algorithm).

This is quite technical so we give an example.

Example 8.5.

We now verify that the deletion algorithm gives us what we want.

Theorem 8.6. Let λ ≤ n, µ ∈ Pk, and let T be a standard µ-tableau (with entries in {1, . . . , n}).
Let x ∈ [µ] be a removable node such that T − x = (T−, v). Then T− is again standard.

I find that with these sorts of proofs, it’s often much easier to explain it to someone in words
(in person, with a blackboard) or just think about it independently rather than write out all the
details. See, the thing is, I think that writing things down can get notationally cumbersome, which
is something you don’t have to deal with when you just think about it.

There is a correction that needs to be pointed out on Sheet 6: In question 2, the parts of the
partition should be consecutive odd numbers and consecutive even numbers.

Now we continue discussing deletion in the RSK algorithm. (This will be the last bit of our
work in combinatorics.)
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Theorem 8.7. The deletion and insertion algorithms are inverse to each other.

(a) Let k ≤ n, µ ∈ Pk, let x ∈ [µ] be a removable note, and let T be a standard µ-tableau with
entries in {1, . . . , n}. Then if T − x = (T−, v), then T− ← v = T.

(b) Let k < n, µ ∈ Pk, a1, . . . , ak, b ∈ {1, . . . , n} pairwise distinct, and let T = T (a1, . . . , ak)
be a standard µ-tableau. Let T+ := T ← b be of shape µ+ ∈ Pk+1, and let x ∈ [µ+] be the
removable node such that [µ+]\{x} = [µ]. Then T+ − x = (T, b).

Proof. We again induct on the rows of the relevant tableau.

Algorithm 8.8. The inverse algorithm.

Theorem 8.9. Let σ ∈ Sn, λ ∈ Pn, P,Q standard λ-tableau. Then Del(Ins(σ)) = σ and
Ins(Del(σ)) = σ. Thus we have a bijection

Sn
−→←−

⋃
λ∈Pn

{(P,Q) : P,Q standard λ-tableaux}.

Corollary 8.10. For λ ∈ Pn, let fλ be the number of standard λ-tableaux. Then n! =
∑
λ∈Pn(fλ)2.

This completes also the proof that the Specht modules are a basis for FSn-modules.

Example 8.11. Let n = 7, λ = (32, 1). Let

P =
1 4 6
2 5 7
3

, Q =
1 2 3
4 5 6
7

, λ =

As an exercise, write out all the steps of the RSK-algorithm to get the permutation that corre-
sponds to this pair of standard tableaux.

There are other uses of the RSK algorithm: Littlewood-Richardson, construction of Specht
modules. There is a more direct way of seeing that the Specht modules are a basis of FSn

modules. These are the Garnier relations.
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Chapter 9

Modular Representation Theory

Now (finally!) we discuss modular representation theory. Our aim will be to get a parametrisation
for the isomorphism classes of simple FSn-modules, where F is a field of characteristic p > 0. We
first discuss some things for an arbitrary field.

Definition 9.1. Let G be a finite group, and let Ω = {ω1, . . . , ωd} be a finite G-set. We define
an F -bilinear form on the permutation module FΩ:

〈·|·〉 : FΩ× FΩ→ F, (ωi, ωj) 7→ δij , i, j = 1, . . . , d.

For every F -subspace U of FΩ, we have the orthogonal space:

U⊥ = {x ∈ FΩ : 〈χ|u〉 = 0 for all u ∈ U}.

Remark 9.2. The F -bilinear form 〈·|·〉 is

• symmetric: 〈x|y〉 = 〈y|x〉 for all x, y ∈ FΩ.

• G-invariant: 〈gx|gy〉 = 〈x|y〉 for all x, y ∈ FΩ.

• non-degenerate: If 〈x|y〉 = 0 for all y ∈ FΩ, then x = 0.

If U is an FG-submodule of FΩ, then U⊥ is an FG-module, since 〈·|·〉 is G-invariant.

Lemma 9.3. Let λ ∈ Pn, x, y ∈Mλ, t a λ-tableau. Then

〈κtx|y〉 = 〈x|κty〉,

for x, y ∈Mλ, where κt =
∑
π∈Ct sgn(π)π.

Proof. We compute directly:

〈κtx|y〉 = 〈
∑
π∈Ct

sgn(π)πx|y〉 =
∑
π∈Ct

sgn(π)〈x|π−1y〉 = 〈x|
∑
π∈Ct

sgn(π)πy〉 = 〈x|κty〉.

Theorem 9.4. Let λ ∈ P and let U be an FSn-submodule of Mλ. Then Sλ ⊆ U or U ⊆ (Sλ)⊥.

Note that this statement is trivial when p > n or when charF = 0 since in these situations, Sλ is
simple and then the result is obvious. Hence this is only meaningful in the case when p < n, i.e.
when p

∣∣ |Sn| = n!.
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Proof. Let u ∈ U and let t be a λ-tableau. By Theorem 4.1b (check the numbering here), there
exists an α ∈ F such that κtu = αet. If we can choose u and t in such a way that α 6= 0, then

et = α−1κtu ∈ U,

and thus Sλ ⊆ U. If κu = 0 for all u ∈ U and all λ-tableaux t, then for every such t,

0 = 〈κtu|{t}〉 = 〈u|κt{t}〉 = 〈u|et〉.

Hence U ⊆ (Sλ)⊥. This completes the proof.

Definition 9.5. Let λ ∈ Pn. We define an FSn-module:

Dλ := Sλ/(Sλ ∩ (Sλ)⊥).

Theorem 9.6. Let λ ∈ Pn . If Sλ 6= Sλ ∩ (Sλ)⊥, then Sλ ∩ (Sλ)⊥ is the unique maximal FSn-
submodule of Sλ, and Dλ is a simple FSn-module.

Proof. Let U be some maximal submodule of Sλ. By Theorem 9.4, U ⊆ Sλ ∩ (Sλ)⊥. So if
Sλ ∩ (Sλ)⊥ 6= Sλ, then U = Sλ ∩ (Sλ)⊥, and U is the unique maximal submodule of Sλ.

Hence we have shown that for any λ ∈ Pn, either Dλ = 0 or Dλ is simple.

Lemma 9.7. Let λ = (nmn , . . . , 1m1) ∈ Pn . Then

(a) If t and t̃ are λ-tableaux, then
n∏
j=1

(mj)!
∣∣ 〈et | et̃〉.

(b) If t̃ is the tableau obtained by reversing the entries in the entire row of t, then

〈et | et̃〉 =
n∏
j=1

(mj !)j .

Proof. We say that λ-tabloids {t1} and {t2} are equivalent it {t2} is obtained from {t1} by per-
muting rows.

(a) Since, for j = 1, . . . , n, the partition λ has mj rows of length j, each equivalent class of λ-
tabloids has cardinality

∏n
j=1mj !. If {t1} occurs in et, then so does every equivalent tabloid

{t2}; furthermore, either {t1} and {t2} have the same or opposite coefficient, and whichever
case occurs is only dependent on {t1} and {t2} (not on t).

Now let t and t̃be two such λ-tableaux, and suppose that {t1} occurs in et and et̃ with
the same coefficient. Call this coefficient α ∈ {1,−1}. Then all

∏n
j=1(mj)! elements of

the equivalence class of {t1} must occur with the same coefficient α in et and et̃. Since
〈{t2}, {t2}〉 = 1 = 〈−{t2},−{t2}〉, then using the linearity of the inner product, we have
that the contribution of the equivalence class of {t1} to 〈et, et̃〉 is

∏n
j=1(mj)!. Similarly, if

{t1} occurs in et and et̃ with opposite sign, then the contribution is −
∏n
j=1(mj)!. This

proves (a).

(b) Let C ≤ Ct be the subgroup of Ct consisting of all permutations π ∈ Ct such that for all
i ∈ {1, . . . , n}, i and π(i) are in rows of equal lengths in t. Then

C ∼=
n∏
j=1

(Smj )
j ,

so that |C| =
∏n
j=1(mj !)j . If {t1} occurs in both et and et̃, then {t1} = {πt} for some π ∈ C

and it occurs with the same coefficient. Thus 〈et, et̃〉 =
∏n
j=1(mj !)j , as desired.
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Corollary 9.8. Let λ ∈ Pn. Then Dλ 6= 0 if and only if λ ∈ Pn,p.

Proof. Assume λ 6∈ Pn,p. Then letting λ = (nmn , . . . , 1m1), we have mj ≥ p for some j, so
p
∣∣ ∏n

j=1mj !. Then by Lemma 9.7(a), 〈et, et̃〉 = 0 for every λ-tableau t̃. But then this means
Sλ ⊆ (Sλ)⊥ and so Sλ ∩ (Sλ)⊥ = Sλ. By definition, this means Dλ = 0.

Conversely, assume that λ ∈ Pn,p, let t be a λ-tableau, and let t̃ be the tableau obtained
by reversing the entires in every row of t. If λ = (nmn , . . . , 1m1) then mj < p for every j (by
definition). So by Lemma 9.7(b), we have

〈et, et̃〉 =
n∏
j=1

(mj !)j 6= 0.

Therefore et 6∈ (Sλ)⊥ and therefore by Theorem 9.6, Dλ 6= 0 and is simple.

Proposition 9.9. Consider λ ∈ Pn,p, µ ∈ Pn. Let U be an FSn-submodule of Mµ and let
ϕ ∈ HomFSn

(Sλ,Mµ/U). Then

(a) ϕ 6= 0 =⇒ µE λ.

(b) If µ = λ, then there is some α ∈ F such that ϕ(s) = αs+ U for all s ∈ Sλ. In particular, if
ϕ 6= 0, then Sλ 6⊆ U.

Proof. Write λ = (nmn , . . . , 1m1) with 0 ≤ mj ≤ p− 1 for all j. Let t and t̃ as in Lemma 9.7(b).
By Theorem 4.1(b), κtet̃ ∈ κtMλ = Fet, so κtet̃ = βet for some β ∈ F. Moreover,

β = 〈βet, {t}〉 = 〈κtet̃, {t}〉 = 〈et̃, κt{t}〉 = 〈et̃, et〉 =
n∏
j=1

(mj !)j 6= 0.

To prove (a), let 0 6= ϕ ∈ HomFSn
(Sλ,Mµ/U). Then form some x ∈ Mµ, we have 0 6=

βϕ(et) = κtϕ(et̃) = κt(x + U). Thus κtMµ 6⊆ U. In particular, κtMµ 6= 0. By Theorem 4.1(a),
this implies µE λ.

For (b), let µ = λ. By Theorem 4.1 and the above considerations, for some α′ ∈ F, we have
βϕ(et) = κtx+ U = α′et + U, and so ϕ(s) = αs+ U for s ∈ Sλ for α = α′/β.

Theorem 9.10. Let λ, µ ∈ Pn,p . Then Dλ ∼= Dµ if and only if λ = µ.

Proof. Suppose ψ : Dλ → Dµ is an FSn-isomorphism. Then we get a homomorphism

ϕ : Sλ � Dλ ψ→ Dµ = Sµ/(Sµ ∩ (Sµ)⊥) ↪→Mµ/(Sµ ∩ (Sµ)⊥)

where ϕ is nonzero and ϕ ∈ HomFSn
(Sλ,Mµ/(Sµ ∩ (Sµ)⊥). Thus µ E λ by Proposition 9.9.

Applying the same argument to ψ−1 in place of ψ, we get λEµ. Therefore we must have λ = µ.

We have finally proved all the ingredients needed for the following theorem.

Theorem 9.11. Let F be a(n algebraically closed) field of characteristic p > 0. Then {Dλ : λ ∈
Pn,p} is a transversal for the isomorphism classes of simple FSn-modules.

Proof. By Theorem 9.6, Corollary 9.8, Theorem 9.10, Corollary 1.9.
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Chapter 10

Properties of the Modules Dλ

10.1 Changing the Field

Remark 10.1. Let G be a finite group and F a field, and let E ⊇ F be an extension field of F .
Given a matrix representation ∆ : G → GL(n, F ), we can get a matrix representation of G over
E via

∆E : G ∆→ GL(n, F ) ↪→ GL(n,E).

If M is an FG-module affording ∆, we denote by ME the EG-module affording ∆E . By construc-
tion, dimF (M) = dimE(ME).

Definition 10.2. Let D be a simple FG-module. If DE is simple for every extension field E of
F , then D is called absolutely simple. If every simple FG-module is absolutely simple, then F is
called a splitting field for G.

Example 10.3. (a) F = F is a splitting field for every finite field.

(b) If char(F ) - n! then every Specht FSn-module is absolutely simple.

(c) Dλ
F is absolutely simple if char(F ) = p

∣∣n! and λ ∈ Pn,p . (This needs proof)

(d) In Question 3 on Sheet 3, we saw a simple F2A4-module that is not absolutely simple.

Proposition 10.4. Let F be a field, V a finite-dimensional F -vector space equipped with a non-
degenerate bilinear form 〈·, ·〉 : V × V → F. Let W be a subspace of V with F -basis {e1, . . . , em}.
Then

dimF (W/W ∩W⊥) = rk((〈ei, ej〉)i,j=1,...,m),

where (〈ei, ej〉)i,j is the Gram matrix of W with respect to the basis {e1, . . . , em}.

Proof. Let W ∗ := HomF (W,F ) and let {e∗1, . . . , e∗m} be the basis of W ∗ dual to {e1, . . . , em}. We
define an F -linear map ϕ : W →W ∗, w 7→ ϕw, where ϕw(u) = 〈w, u〉. Then

ϕei =
m∑
j=1

ϕei(ej)e∗j =
m∑
j=1

〈ei, ej〉e∗j .

So the matrix corresponding to ϕ with respect to {e1, . . . , em} and {e∗1, . . . , e∗m} is exactly the
Gram matrix (〈ei, ej〉)i,j . Since ker(ϕ) = W ∩W⊥, then

dim(W/W ∩W⊥) = dim(Im(ϕ)) = rk((〈ei, ej〉)i,j).
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Corollary 10.5. Let λ ∈ Pn and F be any field. Assume that Dλ
F 6= 0. Then

dimF (Dλ
F ) = rk(Gram matrix of SλF with respect to the standard basis).

Moreover,
dimF (Dλ

F ) = dimE(Dλ
E),

where E is any field with charE = charF.

Proof. The first assertion follows from Proposition 10.4. Recall that the standard λ-polytabloids
form an F -basis of SλF . Also, if t is a standard λ-tableau, then every tabloid occuring in et has
coefficient 1 or −1. Therefore

〈et, es〉 ∈

{
Fp, char(F ) = p

Q, char(F ) = 0,

where t and s are standard λ-tableaux. In particular, the rank of the Gram matrix depends only
on the characteristic of F . This completes the proof.

Theorem 10.6. Let F be a field of positive characteristic p and let λ ∈ Pn,p . Then (Dλ
F )E ∼= Dλ

E

for every extension field E of F . In particular, every simple FSn-module is absolutely simple.

Proof Outline. We have SλE ∼= (SλF )E since every λ-polytabloid is a Z-linear combination of stan-
dard λ-polytabloids. So SλF affords a matrix representation ∆ : Sn → GL(F ). Also, Dλ

F and
Dλ
E are the unique simple quotient modules of SλF and SλE , respectively. Note that any quotient

of (Dλ
F )E is a quotient module of (SλF )E ∼= SλE . If (Dλ

F )E were not simple, then Dλ
E would be a

(proper, nonzero) quotient module of (DF )E . But comparing dimensions using Corollary 10.5, we
have

dimE(Dλ
E) = dimF (Dλ

F ) = dimE((Dλ
F )E).

So (Dλ
F )E must be simple and by uniqueness, we have (Dλ

F )E ∼= Dλ
E .

Example 10.7. We give a small example to illustrate that the rank of the Gram matrix is highly
dependent on the characteristic of the field. Consider λ = (3, 2). We identify λ-tabloids with the
sets containing their 2nd-row entries. We have λ-polytabloids

e1 = {45}+ {12} − {15} − {24},
e2 = {35}+ {12} − {15} − {23},
e3 = {34}+ {12} − {14} − {23},
e4 = {25}+ {13} − {15} − {23},
e5 = {24}+ {13} − {14} − {23},

and so the Gram matrix of the Specht module S(32) with respect to the above basis of λ-
polytabloids is 

4 2 1 1 −1
2 4 2 2 1
1 2 4 1 2
1 2 1 4 2
−1 1 2 2 4

 .

In characteristic 2, this matrix reduces to the rank 4 matrix
0 0 1 1 1
0 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0

 .
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In characteristic 3, it reduces to the rank 1 matrix
1 −1 1 1 −1
−1 1 −1 −1 1
1 −1 1 1 −1
1 −1 1 1 −1
−1 1 −1 −1 1

 .

One can check easily that in characteristic 5, we get a rank 5 matrix, and similarly compute the
rank of the Gram matrix in larger characteristics.

10.2 Self-duality

Remark 10.8. Let F be a field an V a finite dimensional F -vector space. Let V ∗ = HomF (V, F )
denote the dual vector space. We set

W ◦ := {f ∈ V ∗ : f(w) = 0, for all w ∈W}.

Proposition 10.9. Let V be an n-dimensional F -vector space with a non-degenerate symmetric
bilinear form 〈·, ·〉 : V × V → F . Let U and W be F -subspaces of V . Then we have the following
facts.

(a) The F -lienar map ϕ : V → V ∗, v 7→ (u 7→ 〈u,w〉) is an F -vector space homomorphism with
ϕ(W⊥) = W ◦.

(b) dim(W ) + dim(W⊥) = dim(V ) and (W⊥)⊥ = W.

(c) If U ⊆W then W⊥ ⊆ U⊥ and dim(W/U) = dim(U⊥/W⊥).

(d) U⊥ +W⊥ = (U ∩W )⊥ and (U +W )⊥ = U⊥ ∩W⊥.

Lemma 10.10. Let G be a finite group and M and FG-module. Then M∗ = HomF (M,F )
becomes an FG-module via

(g · ϕ)(x) = ϕ(g−1x),

for all ϕ ∈M∗, g ∈ G, x ∈M.

Definition 10.11. In the above situation, we say that M is self-dual if M ∼= M∗ as FG-modules.

Proposition 10.12. Let G be a finite group and let M be an FG-module with a non-degenerate,
symmetric, G-invariant F -bilinear form 〈·, ·〉 : M ×M → F. Let U ⊆ V ⊆ M be FG-modules.
Then as FG-modules,

V/U ∼= (U⊥/V ⊥)∗

Proof. We define
ϕ : V → (U⊥/V ⊥)∗, v 7→ (ϕv : x+ V ⊥ 7→ 〈v, x〉).

It is easy to check that ϕ is well-defined: if x, x′ ∈ U⊥ are such that x + V ⊥ = x′ + V ⊥, then
〈v, x〉 = 〈v, x′〉 for all v ∈ V . Since 〈·, ·〉 is F -bilinear, then ϕ and ϕv (for any v ∈ V ) are F -linear.
We have

kerϕ = {v ∈ V : 〈v, x〉 = 0 for all x ∈ U⊥} = V ∩ (U⊥)⊥ = V ∩ U = U,

and thus
dim(Im(ϕ)) = dim(V/U) = dim(U⊥/V ⊥) = dim((U⊥/V ⊥)∗).

From the above, we can conclude that ϕ is an F -vector space isomorphism. But we claim that
it is in fact an FG-isomorphism, and so the finish the proof we need to show that ϕ is a FG-
homomorphism.

Let g ∈ G. For v ∈ V and x ∈ U⊥, we have

ϕgv(x+ V ⊥) = 〈gv, x〉 = 〈v, g−1x〉 = ϕv(g−1x+ V ⊥) = (g · ϕv)(x+ V ⊥).

So ϕgv = g · ϕv and ϕ is indeed an FG-homomorphism.
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Theorem 10.13. In the notation of Proposition 10.12, V/(V ∩ V ⊥) is a self-dual FG-module.

Proof. Using Propositions 10.12 and 10.9, we have the following chain of isomorphisms:

V/(V ∩ V ⊥) ∼= (V + V ⊥)/V ⊥ ∼= ((V ⊥)⊥/(V + V ⊥)⊥)∗ ∼= (V/V ⊥ ∩ V )∗.

Corollary 10.14. Let F be a field. Then every simple FSn-module is self-dual.

Proof. If char(F ) - n!, then every simple FSn-module D is isomorphic to Sλ for some λ ∈ Pn;
moreover, Sλ ∩ (Sλ)⊥ = 0. Thus

D ∼= Sλ ∼= Sλ/(Sλ ∩ (Sλ)⊥)

is self-dual by Theorem 10.13. If char(F )
∣∣n!, then D ∼= Sλ/Sλ ∩ (Sλ)⊥ for some λ ∈ Pn,p .

Theorem 10.13 gives the desired result.

37



Chapter 11

Specht Modules in Positive
Characteristic

Lemma 11.1. Let λ, µ ∈ Pn. Let ϕ ∈ HomQSn
(Mλ

Q ,M
µ
Q) be such that ϕ({t}) is a Z-linear

combination of µ-tabloids for every λ-tabloid {t}. Let p be a prime. Identifying ϕ with its matrix
and reducing entries modulo p, we get ϕ ∈ HomFpSn(Mλ

Fp ,M
µ
Fp). Then

ker(ϕ) = (SλQ)⊥ =⇒ (SλFp)⊥ ⊆ ker(ϕ).

Proof. The idea of the proof is to construct a Q-basis of (SλQ)⊥ such that every basis element is a
Z-linear combination of tabloids, and after reduction modulo p, we get an Fp-basis of (S⊥Fp)⊥.

Let {f1, . . . , fk} be any Q-basis of (SλQ)⊥, and extend it to a Q-basis of Mλ
Q {f1, . . . , fm}, where

{fk+1, . . . , fm} is the standard basis of SλQ. We set

N := (nij) with nij := 〈fi, {tj}〉 for i, j = 1, . . . ,m,

where {t1}, . . . , {tm} are the λ-tabloids. We may suppose that N has entries in Z and that the
first k rows are linearly independent modulo p. (We do this by Gaussian elimination to get the
first k rows to be of the form (0, . . . , 0, ∗, . . .), where ∗ is a p′ element of Z and the number of
0s corresponds to the row.) Reducing all entries modulo p, we get m vectors (not necessarily
linearly independent) in Mλ

Fp whose last m − k vectors form the standard basis of Mλ
Fp and

whose first k are linearly independent and contained in (SλFp)⊥. Comparing dimensions, we have
dim((SλFp)⊥) = dim(Mλ

Fp) − dim(SλFp), and this forces the reduction of {f1, . . . , fk} to indeed be
a basis B of (SλFp)⊥. We have ϕ(b) = 0 for b ∈ B, and hence ϕ((SλFp)⊥) = 0. This proves the
lemma.

Theorem 11.2. Let λ ∈ Pn . For any field F , we have

(Sλ
′

F )∗ ∼= SλF ⊗ sgn

as FSn-modules where sgn is the signature representation.

Proof. Let t be a λ-tableau, and let t′ be the λ′-tableau obtained by transposing t. We first
consider the case when F = Q. We set

κt′ :=
∑
π∈Ct′

sgn(π)π, ρt′ :=
∑
σRt′

σ

and define a Q-linear map

ϕ : Mλ′

Q � SλQ ⊗ sgn, {πt′} 7→ πρt′ ⊗ {t}, where π ∈ Sn.
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Note that

ϕ({πt′}) =
∑
σ∈Rt′

πσ · {t} =
∑

σ∈Rt′=Ct

sgn(π) sgn(σ)πσ{t} = sgn(π)πκt{t} = sgn(π)κπt{πt}.

Now, ϕ is injective and also surjective. Moreover,

ϕ(κt′{t′}) =
∑

π∈Ct′=Rt

sgn(π)ϕ({πt′}) = ρtκt{t}.

Since 〈·, ·〉 is Sn-invariant,

〈ρtκt{t}, {t}〉 = 〈κt{t}, ρt{t}〉 = 〈κt{t}, |Rt| · {t}〉 = |Rt| ∈ Q\{0}.

Thus Sλ
′

Q 6⊆ ker(ϕ). By the submodule theorem, ker(ϕ) ⊆ (Sλ
′

Q )⊥.We can conclude after comparing
dimensions that ker(ϕ) = (Sλ

′

Q )∗. So we get

SλQ ⊗ sgn ∼= Mλ′

Q /(Sλ
′

Q )⊥ ∼= (Sλ
′

Q )∗.

Therefore Lemma 11.1 is applicable to this ϕ and the assertion holds for F = Fp. For arbitrary
F , we can argue by extension of scalars.
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