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1 Introduction

Over the last few weeks, we have seen lots of things in representation theory—we began
by looking at an onslaught of examples to see explicitly what representations look like, we
discussed character theory and looked at character tables, we talked about representations
from a module-theoretic perspective, and then we saw how we can model the representation
theory of the symmetric group via the combinatorics of Young tableaux. But most of our
discussion has been about the representation theory of finite groups over the complex
numbers. With Maschke’s theorem in mind, it seems natural to ask what happens when
the hypotheses of of this theorem fail. That is, what happens to the representations of a
finite group G if we wish to work over a field of characteristic dividing the order of the
group?

(As a side comment: It seems like a shame that when we have charK
∣∣ |G|, KG is not

a semisimple algebra. But the perspective we should actually take is that it is fantastically
miraculous that KG is semisimple when charK - |G|. For instance, if we were to think
about some analogous statement for groups, it’s ridiculously false! I mean, it’s not even
true that abelian groups are direct sums of simple groups! So we shouldn’t be depressed
about the times when Maschke’s theorem fails. We should just be ecstatic that we have
Maschke’s theorem!)

In the last couple of lectures, we have looked at the specific case of when G = Sn,
the symmetric group. Jeremy talked about how (miraculously!) we can parameterize
representations of Sn over C (or an algebraically closed field of characteristic not dividing
n! = |Sn|) by the partitions of n, which form a transversal for the conjugacy classes of
Sn. We saw how the Specht modules Sλ, for partitions λ of n, form a transversal for
the isomorphism classes of irreducible representations of Sn. In this lecture, we will try to
obtain an analogous transversal for the case when the characteristic of the ground field of
our representation space divides n!, the order of Sn.
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2 Modular Representation Theory: A First Examination

We begin with a brief revision of some previous notions we’ve had in our discussion of
representation theory and which results carry over.

Recall:

Definition 1. A representation of a group G over a field K is a group homomorphism

ρ : G→ GLn(K).

Equivalently, we may think of a representation as a finite-dimensional vector space V
equipped with a linear G-action. Yet another way of thinking of a representation is as a
module over the group algebra KG.

Definition 2. The character χV afforded by a representation (V, ρ) is the corresponding
trace map:

χ : G→ C, χV (g) := tr(ρ(g)).

Note that since the trace of a linear transformation is well defined (i.e. it is independent
of the choice of basis) and since ρ is a group homomorphism, χ is constant on conjugacy
classes of G. As a warning, note that in general, χ is not a homomorphism.

We now introduce some notation that will be fixed for the remainder of this lecture,
unless otherwise noted.

G is a finite group.
F is an algebraically closed field where char(F ) - |G|.
K is an algebraically closed field where char(K)

∣∣ |G|.
p := char(K).
Sn is the symmetric group, the set of permutations on n objects.
We pick n ∈ N ∪ {0} such that char(K) = p ≤ n < char(F ).

Recall, from both Ian’s and Jason’s lectures, that every FG-module can be written
as a direct sum of simple FG-modules. (This is just Maschke’s theorem, or perhaps a
slight generalization of Maschke’s theorem.) This fails, unfortunately, when we consider
KG-modules. An easy yet important example that we showed in the first lecture of this
seminar is that if G is a p-group, the only simple KG-module is the trivial module. (We
actually only proved this for when K = Z/pZ, but the idea is the same for when you prove
this result for any characteristic p field.) From this example, we can see that the elements
that “matter” in determining the simple KG-modules are the ones whose order are prime
to p. These elements are called the p-regular elements of G. (To elaborate on this... We
can, in some sense, “pull out” the p-group part of G (think about Sylow p-groups) and
then study the action of the p-regular elements of G on vector spaces.) This gives us some
intuition as to why you should believe the following fact that I will not prove:
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Theorem 1. The number of isomorphism classes of simple KG-modules is exactly the
number of p-regular conjugacy classes of G.

This is a generalization to the theorem we had from before that the number of isomor-
phism classes of simple FG-modules is exactly the number of conjugacy classes of G. Recall
that this equality allowed us to form a square matrix encoding all the information of the
characters afforded by irreducible representations and their values on the conjugacy classes
of G. Because of Theorem 1, we would expect to be able to construct some analogous
table for the “characters” afforded by simple KG-modules and their values on p-regular
conjugacy classes. But first we must try to make some sense of what we mean by the word
“character.”

We can first try to naively define a character in the same way as we did for CG-modules,
i.e. take the trace map in the respective field. Now consider a p-dimensional vector space
over K and let G act on K trivially. Then the described representation is simply

ρ : G→ GLp(K), g 7→ Idp,

where Idp is the p× p identity matrix. Taking the trace of this in K, we get a function on
G that is identically zero. In fact, we get this same result if the dimension of the vector
space at hand is any multiple of p. Hence if we were to define a character as the trace
function in the ground field of the representation, then not only would the character not
uniquely define a representation (up to isomorphism) as we had for CG-modules, but an
infinite set of KG-modules could share the same character!

We may salvage this description of a character in the following way. Write |G| = pkm
where k ∈ N and p - m. We can construct a ring homomorphism ϕ : Z[ζ]→ K where ζ is a
primitive mth root of unity by sending ζ to a primitive mth root of unity in K. Now, for a
representation ρ : G→ GLn(K), we may restrict this map to the set of p-regular elements
of G, which we will denote by Greg. Let g ∈ Greg. Then ρ(g) ∈ GLn(K) is a matrix of order
l := |〈g〉| in GLn(K) and since char(K) = p - l and K = K, then ρ(g) is diagonalizable.
(This follows from Maschke’s theorem and Schur’s lemma.) Hence all the eigenvalues of
ρ(g) are lth roots of unity and hence also mth roots of unity. We may lift these eigenvalues
to Z[ζ] ⊆ C via the ring homomorphism ϕ and then sum the eigenvalues in C. The resulting
sum is the Brauer character of ρ, and it is a function (in fact, a class function) Greg → C.
It turns out that the Brauer characters of two irreducible representations are equal if and
only if the representations are isomorphic, and hence Brauer characters give us the modular
analogue of ordinary characters. Another fact: Any Brauer character can be written as
a Z-linear combination of irreducible Brauer characters. But unlike the case of ordinary
characters, here, we allow for negative coefficients.

We will leave this discussion for now, and only return to it briefly at the end of the
lecture when we compute the Brauer character table for S3 in characteristic 2 and 3. This
will come after we discuss the behavior of KSn-modules and examine what happens to the
Specht modules, which Jeremy proved were irreducible in characteristic 0.
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3 Modular Representations of Sn

We have seen that the Specht modules Sλ for partitions λ of n form a transversal for the
irreducible representations of Sn over C (or any algebraically closed field of characteristic
0). We used the following proposition to show that these are simple:

Proposition 1 (Submodule Lemma). Let U ⊆ Mλ be a submodule of the permutation
module Mλ. Then either U ⊇ Sλ or U ⊆ (Sλ)⊥, where the orthogonal complement is taken
with respect to the inner product on Mλ defined by 〈{s}, {t}〉 = δ{s},{t} and then extended
linearly to all of Mλ.

(Note: The notation {t} means the λ-tabloid associated to the λ-tableau t, i.e. the
equivalence class of λ-tableaux with respect to the relation that entries in individual rows
may be permuted.)

In characteristic 0, Sλ ∩ (Sλ)⊥ = 0, and hence the above proposition allows us to
conclude that the Specht modules are simple. (Since 〈·, ·〈 is a G-invariant inner product,
then if Sλ is a representation of Sn, then so must (Sλ)⊥. Hence Sλ∩(Sλ)⊥ is a representation
of Sn.) However, in characteristic p, we may have a nontrivial intersection. Here is an
example of when this happens.

Example 1. Take, for instance, n = 5, and consider the partition λ = (3, 2). Then a basis
for Sλ is composed of the standard λ-polytabloids (i.e. et :=

∑
π∈Ct

sgn(π){πt}, where t is
a standard λ-tableau). So we have the following:

e1 =
{

1 2 3
4 5

}
−
{

4 2 3
1 5

}
−
{

1 5 3
4 2

}
+
{

4 5 3
1 2

}
,

e2 =
{

1 2 4
3 5

}
−
{

3 2 4
1 5

}
−
{

1 5 4
3 2

}
+
{

3 5 4
1 2

}
,

e3 =
{

1 2 5
3 4

}
−
{

3 2 5
1 4

}
−
{

1 4 5
3 2

}
+
{

3 4 5
1 2

}
,

e4 =
{

1 3 4
2 5

}
−
{

2 3 4
1 5

}
−
{

1 5 4
2 3

}
+
{

2 5 4
1 3

}
,

e5 =
{

1 3 5
2 4

}
−
{

2 3 5
1 4

}
−
{

1 4 5
2 3

}
+
{

2 4 5
1 3

}
.

Taking all possible inner products, we have

〈e1, e1〉 = 4, 〈e2, e2〉 = 4, 〈e3, e3〉 = 4, 〈e4, e4〉 = 4, 〈e5, e5〉 = 4,
〈e1, e2〉 = 2, 〈e2, e3〉 = 2, 〈e3, e4〉 = 1, 〈e4, e5〉 = 2,
〈e1, e3〉 = 1, 〈e2, e4〉 = 2, 〈e3, e5〉 = 2,
〈e1, e4〉 = 1, 〈e2, e5〉 = 1,
〈e1, e5〉 = 1.
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Now suppose that we have some element α = a1e1+a2e2+· · · a5e5 ∈ Sλ such that 〈α, ei〉 = 0
for all i = 1, . . . , 5. Then α ∈ (Sλ)⊥. Taking all these dot products, we get the following:

〈α, e1〉 = 4a1 + 2a2 + a3 + a4 − a5,

〈α, e2〉 = 2a1 + 4a2 + 2a3 + 2a4 + a5,

〈α, e3〉 = a1 + 2a2 + 4a3 + a4 + 2a5,

〈α, e4〉 = a1 + 2a2 + a3 + 4a4 + 2a5,

〈α, e5〉 = −a1 + a2 + 2a3 + 2a4 + 4a5.

So we would like to solve the following equation:
4 2 1 1 −1
2 4 2 2 1
1 2 4 1 2
1 2 1 4 2
−1 1 2 2 4



a1

a2

a3

a4

a5

 = 0.

Notice that the 5 × 5 matrix is just the Gram matrix (〈ai, aj〉)i,j=1,...5. Now, in C, this
matrix has full rank, which means that the only solution is the trivial solution, which
would force α = 0. So this shows us explicitly that Sλ ∩ (Sλ)⊥ = 0 when Sλ is a CSn-
module. If change the field from C to something of characteristic 3, for instance, then our
Gram matrix becomes: 

1 2 1 1 2
2 1 2 2 1
1 2 1 1 2
1 2 1 1 2
2 1 2 2 1

 .

This has rank 1, which means that the Sλ ∩ (Sλ)⊥, when viewed as a vector space, has
dimension 4, so there are lots of things in this intersection! To give an explicit example,
consider α = e1+e3+e4. Hence we have shown explicitly, in the case of n = 5 and λ = (3, 2)
that the Specht module Sλ is not irreducible.

Let us now return to Proposition 1, the submodule lemma. Let U ( Sλ be a maximal
submodule. By the submodule lemma, we know that U ⊆ (Sλ)⊥, so U ⊆ Sλ ∩ (Sλ)⊥. If
Sλ ∩ (Sλ)⊥ 6= Sλ, then this means that U = Sλ ∩ (Sλ)⊥, and we have proven the following
proposition.

Proposition 2. If Sλ ∩ (Sλ)⊥ 6= Sλ, then Sλ ∩ (Sλ)⊥ is the unique maximal submodule of
Sλ.

Now define
Dλ := Sλ/(Sλ ∩ (Sλ)⊥).
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By the previous proposition, Dλ is simple whenever Sλ∩(Sλ)⊥ 6= Sλ, and it is 0 otherwise.
Now the question is: For which partitions λ of n is Dλ simple? In order to answer this

question, we first define some notation.

Definition 3. Let Pn denote the set of partitions of n. We adopt an alternative notation
for a partition λ ∈ Pn. We write

λ = (nmn , . . . , 1m1),

where mi denotes the number of parts of size i in λ. We say that λ is p-regular if mi < p
for all i = 1, . . . , n. We denote the set of all p-regular partitions of n by Pn,p .

Despite what the terminology may suggest, the p-regular partitions of n do not corre-
spond to the cycle shape of the p-regular conjugacy classes of Sn. Perhaps to justify the
naming, we have the following.

Proposition 3. The number of p-regular conjugacy classes is | Pn,p |.

Proof. Consider the following function:∏
i≥1(1− xpi)∏
i≥1(1− xi)

. (∗)

Cancelling out all multiplicands (1− xpi) for i ≥ 1 in the bottom product, we get

(∗) =
1∏

p-i
i≥1

(1− xi)
=
∏
p-i
i≥1

1
(1− xi)

=
∏
p-i
i≥1

(1 + xi + x2i + · · · ).

The coefficient of the xn term is the number of partitions of n such that no part is divisible
by p. Now, a conjugacy class is p-regular if and only if the cycle decomposition of each
element in that conjugacy class has no cycle of length divisible by p. Phrased in terms
of partitions, we have that λ ∈ Pn corresponds to a p-regular partition if and only if no
part of λ is divisible by p. Hence the coefficient of the xn term is exactly the number of
p-regular conjugacy classes of Sn.

We can manipulate (∗) in a different way. If we first divide 1− xi into 1− xpi, we get

(∗) =
∏
i≥1

(1 + xi + x2i + · · ·+ x(p−1)i),

and then the coefficient of the xn term is the number of partitions with at most p−1 parts
of size i for each i = 1, . . . , n. In other words, the coefficient of the xn term is the number
of p-regular partitions.

Therefore, equating coefficients on both sides, we have that the number of p-regular
conjugacy classes of Sn is equal to the number of p-regular partitions of n.
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We would now like to determine when Sλ ∩ (Sλ)⊥ = Sλ. The main ingredient in the
description of these partitions λ is the following lemma.

Lemma 1. Let λ = (nmn , . . . , 1m1) ∈ Pn .

a. If t and s are λ-tableau, then
n∏
j=1

(mj)!
∣∣ 〈et, es〉.

b. If t is a λ-tableau and t̃ is the λ-tableau obtained by reversing the entries in each row,
then

〈et, et̃〉 =
n∏
j=1

(mj !)j .

Proof. We begin by defining an equivalence relation ∼ on the tableaux of shape λ. If t1
and t2 are λ-tableaux, we say that t1 ∼ t2 if and only if t1 is obtained by permuting rows
of t2. Note that there are

∏n
j=1mj ! elements in each equivalence class.

Here is the key observation to this proof:
Key Observation. If {t1} appears in et, then so must {t2} for all t2 with t2 ∼ t1. Now, the
coefficients of {t1} and {t2} are either the same or are of opposite sign, and whichever case
occurs is dependent only on {t1} and {t2}. In particular, this is independent of the choice
of λ-tableau t.

Now assume that {t1} appears in et and es with the same coefficient (either +1 or −1).
Then by the Key Observation, all

∏n
j=1mj ! elements of the equivalence class of {t1} must

occur with the same coefficient in et and es. By the linearity of the inner product 〈·, ·〉 on
Mλ, the contribution of the equivalence class of {t1} to 〈et, es〉 is

∏n
j=1mj !. Similarly, if

{t1} occurs in et and es with opposite sign, then the contribution is −
∏n
j=1mj !. Hence

〈et, es〉 is the sum of some number of ±
∏n
j=1mj !, so

n∏
j=1

mj !
∣∣ 〈et, es〉,

and this completes the proof of a.
For b, let C ≤ Ct be the subgroup of Ct consisting of all permutations π ∈ Ct such that

for all i ∈ {1, . . . , n}, i and π(i) are in rows of equal length in the λ-tableau t. Then

C ∼=
n∏
j=1

(Smj )j ,

since for each j = 1, . . . , n, we may permute the mj elements in each of the j columns in
the rows of length j. So we have |C| =

∏n
j=1(mj !)j . Now let t̃ be the λ-tableau obtained
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by reversing the entries of each row of the λ-tableau t. If {t1} occurs in et and et̃, then
necessarily {t1} = {πt} for some π ∈ C and the coefficient of {t1} in et and et̃ must be the
same. Thus

〈et, et̃〉 =
n∏
j=1

(mj !)j ,

as desired.

From this, we easily get the following proposition:

Proposition 4. Let λ = (nmn , . . . , 1m1) ∈ Pn. Then Dλ 6= 0 if and only if λ ∈ Pn,p .

Proof. Suppose λ ∈ Pn,p. Then for any λ-tableau t, let t̃ be the λ-tableau obtained from
reversing the entries in each row of t. Then

〈et, et̃〉 =
n∏
j=1

(mj !)j 6= 0,

where the first equality holds from part b of the lemma and the second statement holds since
λ is p-regular and hence p -

∏n
j=1(mj !)j . This means that Sλ 6⊆ (Sλ)⊥ so Sλ ∩ (Sλ)⊥ 6= Sλ

and hence Dλ 6= 0.
Conversely, suppose that λ /∈ Pn,p. Then for all λ-tableaux t and s, we have

〈et, es〉 ≡ 0 (mod
n∏
j=1

(mj)!),

but since λ is not p-regular, this means that mi ≥ p for some i = 1, . . . , n, so p
∣∣ ∏n

j=1(mj)!.
Therefore 〈et, es〉 = 0 in K and Sλ ⊆ (Sλ)⊥. It follows that Dλ = 0, and this completes
the proof.

We in fact have something more. We first state a fact without proof.

Fact. Consider λ ∈ Pn,p, µ ∈ Pn . Let U be aKSn-module ofMµ and let ϕ ∈ HomKSn(Sλ,Mµ/U).
If ϕ 6= 0, then µE λ, where E is the dominance order.

Proposition 5. Let λ, µ ∈ Pn,p. Then Dλ ∼= Dµ if and only if λ = µ.

Proof. It is clear that if λ = µ, then Dλ ∼= Dµ. For the reverse direction, let ψ : Dλ → Dµ

be a KSn-isomorphism. Define ϕ as the composition

ϕ : Sλ � Dλ ψ→ Dµ := Sµ/(Sµ ∩ (Sµ)⊥) ↪→Mµ/(Sµ ∩ (Sµ)⊥).

Note that ϕ 6= 0. By the fact, we have µEλ. Similarly, replacing ψ by ψ−1, we have λEµ.
Hence λ = µ and this proves the proposition.
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From the results we have proven above, we can easily prove the following theorem.

Theorem 2. The KSn-modules Dλ for λ ∈ Pn,p form a transversal for the isomorphism
classes of simple KSn-modules.

Proof. From Proposition 5, we know that theDλ’s are non-isomorphic, and from the remark
following Proposition 2 and Proposition 4, we know that there are | Pn,p | such Dλ’s. But
by Proposition 3 and Theorem 1, we know that | Pn,p | is exactly the number of p-regular
conjugacy classes of Sn and this is exactly the number of isomorphism classes of simple
KSn-modules. Therefore {Dλ : λ ∈ Pn,p} is indeed a complete set of representatives and
we are done.

Even though we have, in some sense, fully described the simple KSn-modules, we have
also, in some sense, done nothing at all. That is, we’ve constructed these objects in an
abstract way, but do we really have an understanding, an intuition, of what is happening?
Perhaps some people do, but I certainly don’t understand this material enough to say I
really know what is going on. As a start, though, we could ask what the dimension of Dλ

is.
We in fact already answered this question in the example illustrating the non-simplicity

of Sλ, λ = (3, 2) in characteristic 3. Recall that in that example, we computed the dimen-
sion of the vector space Sλ ∩ (Sλ)⊥ by looking at the dimension of the kernel of the linear
transformation given by the Gram matrix (〈ei, ej〉)i,j=1,...,k, where e1, . . . , ek is a basis for
Sλ. This actually comes from a general fact:

Proposition 6. Let F be any field and let V be a finite-dimensional F -vector space equipped
with a non-degenerate form 〈·, ·〉 : V × V → F . Let W be a subspace of V with F -basis
{e1, . . . , ek}. Then

dimF (W/W ∩W⊥) = rk((〈ei, ej〉)i,j=1,...,k),

where (〈ei, ej〉)i,j=1,...,k is the Gram matrix of W with respect to the basis {e1, . . . , ek}.

Proof. LetW ∗ := HomF (W,F ) and let {e∗1, . . . , e∗m} be the basis ofW ∗ dual to {e1, . . . , em}.
We define an F -linear map ϕ : W →W ∗, w 7→ ϕw, where ϕw(u) = 〈w, u〉. Then

ϕei =
k∑
j=1

ϕei(ej)e∗j =
k∑
j=1
〈ei, ej〉e∗j .

So the matrix corresponding to ϕ with respect to {e1, . . . , ek} and {e∗1, . . . , e∗k} is exactly
the Gram matrix (〈ei, ej〉)i,j=1,...,k. Since ker(ϕ) = W ∩W⊥, then

dim(W/W ∩W⊥) = dim(=(ϕ)) = rk((〈ei, ej〉)i,j=1,...,k).

(Note that this is just a “high-brow” way of saying exactly why we did what we did in
the example we worked through earlier in this lecture.)

We conclude this lecture with an example.
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4 Ordinary and Brauer Characters of S3

Recall that we have three irreducible representations of S3 in C:

• The trivial representation, T . This is a one-dimensional vector space on which S3

acts trivially.

• The sign representation, S. This is a one-dimensional vector space where π ∈ S3 acts
by multiplication of sgn(π).

• The standard representation, V . This is the two-dimensional vector subspace {(x, y, z) ∈
C3 : x+ y+ z = 0} ⊆ C3 where S3 acts by permuting the coordinates. Decomposing
C3 as a vector space, we have

C3 = {(x, y, z) ∈ C3 : x+ y + z = 0} ⊕ {(x, y, z) ∈ C3 : x = y = z}.

Now, since both summands are G-invariant, then this means that this decomposition
is also a decomposition of the permutation representation C3 as direct sum of repre-
sentations. Now, the character of the permutation representation is just the number
of fixed points, hence for any g ∈ S3, we have Fix(g) = χV (g) + χT (g) = χV (g) + 1.

From the above information, we can fill out the (ordinary) character of S3.

1 (12) (123)
T 1 1 1
S 1 −1 1
V 2 0 −1

We can find out which of these representations is associated to which Specht modules.
It is clear that the trivial representation T is just S(3). Similarly, it is clear that the sign
representation is just S(1,1,1). (We can determine these two by looking at the dimension of
the Specht modules and then looking at the action of S3 on the standard λ-polytabloids.)
This means that S(2,1) is the standard representation. (It may be a helpful exercise to go
through exactly how the description of the Specht module S(2,1) is exactly the same as
our description of the standard representation. You can start by writing down a basis for
S(2,1).)

Now let’s look at the Brauer characters. To get the Brauer characters of S3 in, say,
characteristic 3, we just need to restrict to the 3-regular conjugacy classes and see what
happens. In this case, we get

1 (12)
T 1 1
S 1 −1
V 2 0
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Here, we see that the restriction of χV to Greg, denoted χV |Greg , is just the sum of the
restrictions of χT and χS . Since T and S are both one-dimensional as vector spaces, they
must be irreducible, and hence the Bruaer character table of S3 in characteristic 3 is just

1 (12)
T 1 1
S 1 −1

(We can see that χT |Greg + χS |Greg = χV |Greg .

From our results in the preceding section, one of these must correspond to D(3) and the
other must correspond to D(2,1). (Note that D(1,1,1) = 0 in characteristic 3 since (1, 1, 1) is
not p-regular. We can see this in a more explicit way as well. The Specht module S(1,1,1)

is one-dimensional has basis

e :=

 1
2
3

−
 1

3
2

−
 2

1
3

+

 2
3
1

−
 3

2
1

+

 3
1
2

 ,

and 〈e, e〉 = 6, which is 0 in a field of characteristic 3.) Now, D(3) must be one-dimensional
since it is nonzero and is the quotient of a one-dimensional space, so this means that
S(3) = D(3), so the restriction of χT is the Brauer character of D(3). This means that the
restriction of the sign representation S takes on the Brauer character of D(2,1).

Now let’s look at what happens in characteristic 2. Omitting the conjugacy classes of
S3 that are not 2-regular, we get

1 (123)
T 1 1
S 1 1
V 2 −1

As we can see, the restriction of χT and χS coincide, so what is left of the character table
is just

1 (123)
T 1 1
V 2 −1

We would like to show that the Brauer character χV |Greg is irreducible. Now, we know
that the irreducible representations are D(3) and D(2,1). We also know, by the previous
discussion about the characteristic 3 case, that D(3) is the trivial representation. Now let
us use Proposition 6 to compute the dimension of D(2,1). We start with a basis for the
Specht module S(2,1):

e1 :=
{

1 2
3

}
−
{

3 2
1

}
e2 :=

{
1 3
2

}
−
{

2 3
1

}
.
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We compute the inner products:

〈e1, e1〉 = 2, 〈e1, e2〉 = 〈e2, e1〉 = 1, 〈e2, e2〉 = 2,

and putting this information into our Gram matrix, we get:(
〈e1, e1〉 〈e1, e2〉
〈e2, e1〉 〈e2, e2〉

)
=
(

2 1
1 2

)
≡
(

0 1
1 0

)
(mod 2).

The rightmost matrix has rank 2, and hence D(2,1) has dimension 2 by Proposition 6. Since
S(2,1) also has dimension 2, then this means that D(2,1) ∼= S(2,1), which means that the
restriction of χV is indeed irreducible, and this proves that the above Brauer character
table is indeed the table we want.

5 The Moral of the Story

The previous section illustrated that even for a small group like S3, it takes quite a bit of
work to try to compute the Brauer characters, even though we described earlier what the
irreducibles are. On the other hand, we found that the p-regular partitions give us a way of
parametrizing all of the KSn-modules! So there are several things at work here: On the one
hand, we have seen that when we lose the semisimplicity of the group algebra, we also lose
many of the results we discussed in “classical” representation theory. In this lecture, we
only saw the most basic of modular representation theory, and already it is quite difficult
to really understand what is going on! On the other hand, we have also seen that even
when the group algebra is not semisimple, we can get results that resemble what we had
in the “classical” theory. I think it’s really beautiful how everything is interconnected and
even when you branch away from the representation theory of finite groups either towards
modular representation theory or towards the representation theory of infinite groups, we
still have results that resemble the results we learn in a first course on representation theory.

To conclude, here are some readings related to what we have done in this seminar:

• Linear Representations of Finite Groups, J.P. Serre (This is a really beautiful book.
It starts out quite gently and ends with modular representation theory. He’s also
quite explicit in how he treats representations, so it feels relatively hands-on.)

• Representation Theory: A First Course, W. Fulton and J. Harris (I don’t know this
book, but Jeremy really likes it, and I trust his opinion. In terms of content, there’s
a massive amount of stuff in this book. It might be the most comprehensive book on
this list.)

• Representations and Characters of Groups, G.D. James and M.W. Liebeck (This is
the most gentle book you’ll find on representation theory. It was the first book I
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read on the subject, and it was great. It feeds things to you slowly and explicitly
and there are lots of examples of character tables. It’s great if you want some math
to read before bed and it’s also great if you’re trying to learn things on your own
without much algebra background.)

• Local Representation Theory, J.L. Alperin (This is an incredibly well-written book,
but it is really quite dense and sparse. It also takes a “high-brow” module-theoretic
approach, so it might feel too abstract if you’ve never seen the material before.)

• The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric
Functions, B.E. Sagan (There’s a lot in this book about the combinatorial approach
to studying representation theory of the symmetric group.)

It’s been fun, I love representation theory as much as ever, and I hope that my fellow
counselors have found this to be an interesting seminar!
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