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1. Introduction

My research lies in the interface of geometry, analysis and mathematical physics. A funda-
mental theme in differential geometry is to understand curvature conditions. Together with my
collaborators, I have resolved a number of questions on the global and local geometric and topo-
logical affects of scalar curvature. A central technique in my research is the study of geometric
variational problems. My most significant contributions can be organized as follows.

(A) Scalar curvature is a coarse measure of local bending, making its effects on global topology
of a manifold rather delicate. In the last sixty years, there has been dramatic progress on
understanding global topological obstructions of manifolds with positive scalar curvature.
However, a list of fundamental conjectures have been open.

Recently, O. Chodosh and I proved the long-standing “K(π, 1) conjecture” in dimension
4 and 5. This conjecture was proposed by R. Schoen and S.T. Yau [39] in 1987 and inde-
pendently by M. Gromov [15] in 1986. Our new observations apply to other previously open
problems. For example, in 1988, R. Schoen and S.T. Yau studied the structure of locally con-
formally flat manifolds with nonnegative scalar curvature, and established a Liouvelle type
theorem for such manifolds with certain technical assumptions. In the same paper [9], O.
Chodosh and I completed this Liouvelle type theorem for all locally conformally flat manifolds
with nonnegative scalar curvature.

(B) In 2013, M. Gromov [16] proposed a geometric comparison theory for manifolds with positive
scalar curvature using polyhedrons, aiming to study local geometry and the convergence of
metrics with positive scalar curvature. This echoes the classical triangle comparison principle
for sectional curvature lower bounds. Gromov illustrated the simplest case where comparison
models are cubes in Euclidean spaces, and proposed, in a dihedral rigidity conjecture, that it
should hold for general Euclidean polyhedrons and have a rigidity phenomenon.

In a sequence of work [30, 29, 31], I proved this conjecture for a large collection of polytopes,
and extended the theory to allow negative scalar curvature lower bounds. These results
localize the positive mass theorem and the Min-Oo rigidity theorem for scalar curvature
lower bounds, and are deeply related to quasi-local mass in general relativity.

(C) Initiated by N. Hitchin, there have been extensive investigations of the modulic space of
metrics with positive scalar curvature on a smooth closed manifold over the past forth years.
Homotopy groups of such a moduli space are differential invariances of the manifold, and
are studied by different mathematical areas such as the Ricci flow and K-theory. However,
analogous questions for manifolds with boundary are not so well understood.

A. Carlotto and I [4] gave a complete topological characterization of 3-manifolds with
boundary admitting metrics with positive scalar curvature and mean convex (or minimal)
boundary. We also proved that the moduli space of such metrics, if non-empty, must be
path-connected. Our theorems have applications to the moduli space of initial data sets in
general relativity, where a blackhole is present.

(D) Minimal surfaces and soap bubbles are classical topics in calculus of variation, and have been
a central tool in my research. For applications in scalar curvature problems, and as interestion
problems of their own right, the existence and regularity properties of minimal surfaces in
certain singular ambient spaces have caught my attentions.

Joint with N. Edelen, I [12] developed new techniques in geometric measure theory and
obtained existence and regularity theorems for free boundary minimal surfaces in locally
polyhedral domains. Our results extend classical results of W. Allard, M. Grüter and J. Jost
in the smooth setting.
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2. Topological properties of manifolds with positive scalar curvature

Scalar curvature is the simplest local invariant of a Riemannian metric. The condition of
positive scalar curvature (PSC) on a Riemannian metric depicts both rigidity and flexibility
phenomena: on one hand, it is known that the PSC condition places topological restrictions
on the underlining manifold; on the other hand, the PSC condition is preserved under certain
surgeries, giving the moduli space of such metrics a rich structure.

2.1. The K(π, 1) conjecture and structure of locally conformally flat manifolds with
positive scalar curvature. It has been a fundamental question what topological restrictions a
manifold has, if it admits a metric with positive scalar curvature. There have been two classical
approaches towards this problem: the historically earliest approach was via the Dirac operator
and the index theorems, which was initiated by A. Lichnerowicz and developed by M. Gromov
and B. Lawson; the second approach was invented by R. Schoen and S.T. Yau via minimal
surfaces1. Despite the huge success achieved by both approaches (e.g. the solution to Geroch
conjecture), the following conjecture, proposed by R. Schoen and S.T. Yau [39] and independently
(in a slightly different form) by M. Gromov [15], has been open:

Conjecture 1. Any closed aspherical manifold of dimension at least 4 does not admit a Rie-
mannian metric with positive scalar curvature.

Conjecture 1 is not only a challenge for the existing approaches, but is also deeply related to
the Novikov conjecture on topological invariance of certain polynomials of Pontryagin classes (see
[17, p. 25]). Contributions from M. Gromov, L. Guth, G. Yu, R. Schoen, S.T. Yau, and others
have provided pieces to the puzzle. In particular, R. Schoen and S.T. Yau [39] gave an outline of
Conjecture 1 in dimension 4. However, many essential parts of their outline have been missing
since then.

Recently, O. Chodosh and I proved Conjecture 1 in dimensions 4 and 52:

Theorem 2 ([9]). Any closed aspherical manifold of dimension 4 or 5 does not admit a Rie-
mannian metric with positive scalar curvature.

Our approach broadly follows from the Schoen-Yau outline, but with several essential new
observations. The most important new observation is to study certain soap bubbles (called µ-
bubbles after M. Gromov) in such a manifold. This enables us to attack other previously open
problems:

Theorem 3 ([9]). Let n ≤ 7 and X be an arbitrary n-manifold without boundary. Then Tn#X
does not admit a complete Riemannian metric with positive scalar curvature.

When X is compact, Theorem 3 was proved by R. Schoen and S.T. Yau [38] and independently
by M. Gromov and B. Lawson [14] (when X is spin). However, the extra generality with non-
compactness in Theorem 3 is the key to understanding the structure of locally conformally flat
manifolds with nonnegative scalar curvature, due to [37]. In fact, when combined with the
reduction procedure of R. Schoen and S.T. Yau [37] 3, we have the following Liouvelle type
result:

Corollary 4 ([9]). Suppose (Mn, g) is a complete Riemannian manifold with Rg ≥ 0. If Φ :
M → Sn is a conformal map, then Φ is injective and ∂Φ(M) has zero Newtonian capacity.

In [37], R. Schoen and S.T. Yau proved this result under additional assumptions on the ge-
ometry or the dimension of M (e.g. n ≥ 7). We remark here that when n = 3, M. Lesourd, R.
Under and S.T. Yau also claimed this result in a forthcoming paper.

1In dimension 3, D. Stern [40] recently has an intriguing new approach via the Bochner formula.
2On the same day O. Chodosh and I posted our updated paper, M. Gromov independently posted a paper on

Conjecture 1 in dimension 5. Both papers extend ideas (in quite similar ways) in the earlier arXiv version of [9],
where we proved the conjecture in dimension 4.

3This reduction procedure is also carefully carried out in a forthcoming paper of M. Lesourd, R. Unger and S.T.
Yau.
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Our long-term goal in this direction is to study Conjecture 1 in higher dimensions, as well as to
apply our new techniques to study global structure of complete Riemannian manifolds with pos-
itive scalar curvature. Other directions include understanding analogous problems for manifolds
with boundary (where, according to M. Gromov [17], surprisingly new difficulties occur).

2.2. Moduli space structure for manifolds with boundary. Assuming a manifoldM admits
a Riemannian metric with positive scalar curvature, a follow-up question is then what is the
moduli spaceM of metrics with positive scalar curvature. Topological invariances of this moduli
space provide invariances of the differential structure of the underline manifold. On a closed
manifold, these questions have been extensively studied (cf. [26, 41, 13, 28, 19, 34]). For manifolds
M with boundary, the analogous curvature assumptions are the scalar curvature is positive in M ,
and mean curvature is positive (or zero) on ∂M . In a join work with A. Carlotto, we provided a
complete characterization of 3-manifolds admitting a metric with R > 0 and H > 0. Moreover,
we showed

Theorem 5 ([4]). If M3 is orientable with ∂M 6= ∅, then the moduli space of metrics

M = {g ∈Met(M) : Rg > 0 in M,Hg > 0 on ∂M}/D,
here D is the boundary preserving diffeomorphism groups, is path-connected whenever non-empty.

Our approach is an extension of previous fundamental contributions due to M. Gromov and
B. Lawson, G. Perelman and F. Codá Marques. Our deformation approach is robust enough to
prove path-connectedness of the space analogously defined by R ≥ 0 and Hg ≡ 0, which has
applications to the moduli space of asymptotically flat initial data sets with boundary, modelling
blackhole solutions to the Einstein equation in general relativity (this was recently carried out by
M. Lesourd and S. Hirsch [25]).

M. Gromov shared with us his speculation that analogous moduli spaces for manifolds with
dimension at least 5 should not be path-connected. This would require a careful equivariant
analysis on previously mentioned classical results. Other directions include investigating different
curvature conditions, e.g. positive isotropic curvature on 4-manifolds with boundary, where a first
intriguing question is to understand the compatible curvature conditions on the boundary.

3. Local geometry and convergence under scalar curvature lower bounds

3.1. Geometric comparison theorems for scalar curvature lower bounds. A fundamental
question in differential geometry is to understand local geometry under curvature conditions,
define weak notions of such conditions on spaces with low regularity, and study of convergence
of such spaces. Usually this is done via geometric comparison theorems. For sectional curvature
lower bounds, such question has been systematically treated by Alexandrov [1]. Similar questions
for Ricci lower bounds have attracted a wide wealth of research in recent years; see, e.g. [5, 6,
7, 10, 8] and [33, 42, 43, 44]. The case of scalar curvature, however, is not as well developed,
possibly due to a lack of satisfactory comparison theory.

In 2013, M. Gromov [16] suggested a geometric comparison theory for manifolds with positive
scalar curvature using polyhedrons, and proposed a relevant dihedral rigidity conjecture:

Conjecture 6 (The dihedral rigidity conjecture). Let M be a convex polyhedron in Rn and g0
is the induced Euclidean metric on M . Suppose g is a Riemannian metric on M , such that (M, g)
has nonnegative scalar curvature and weakly mean convex faces, and along the intersection of
any two adjacent faces, the dihedral angle of (M, g) is not larger than the (constant) dihedral
angle of (M, g0). Then (M, g) is isometric to a flat Euclidean polyhedron.

The simplest case of this conjecture is when M = [0, 1]n, a cube in Euclidean space. By
reducing the question to the Geroch conjecture, M. Gromov was able to provide a proof (or a
sketch of proof) of the following result without rigidity statement:

Theorem 7 ([16]). Let M = [0, 1]n be a cube, and g be a Riemannian metric on M . Then (M, g)
cannot simultaneously satisfy:
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(1) The scalar curvature of g is positive;
(2) Each face of M is strictly mean convex with respect to the outward normal vector field;
(3) Everywhere the dihedral angle between two faces of M is acute.

The crucial observation is that conditions (2) and (3) above may be interpreted as C0 properties
of the metric g. Thus, M. Gromov proposed a possible of definition of ‘R ≥ 0’ for C0 metrics:

R(g) ≥ 0⇔ there exists no cube M

with mean convex faces and everywhere acute dihedral angle. (3.1)

The strategy of M. Gromov relies on the fact that a cube is the fundamental domain of the Zn

action on Rn, and reduces the problem to Geroch conjecture. In a sequence of papers [30, 29], I
investigated Conjecture 6 with a different approach, via minimal surfaces with free boundary or
capillary boundaries. This new observation enables me to prove Conjecture 6 for a large collection
of polyhedrons. For example, I proved:

Theorem 8 ([30, 29]). Conjecture 6 holds when M is any 3-dimensional simplex, or M is any
n-dimensional prism with 3 ≤ n ≤ 7.

Here a prism is a polyhedron in the form of P 2× [0, 1]n−2, and P 2 ⊂ R2 is a polygon with non-
obtuse interior angles. Theorem 8 is also connected with mass and quasi-local mass in Riemannian
generality. Indeed, if Conjecture 6 holds for a single polyhedron M in Rn, then the positive mass
theorem for asymptotically flat n-manifolds holds.

Recently, I have been able to extend Theorem 8 to allow negative scalar curvature lower bounds,
where the model comparison objects are parabolic prisms in the hyperbolic space. Denote by Hn

the hyperbolic space with sectional curvature −1. A simple case of the result is:

Theorem 9 ([31]). Let n ≤ 7, M = [0, 1]n be a parabolic rectangle in Hn, gH be the hyperbolic
metric on M . Denote the face ∂M ∩ {x1 = 1} by FT , the face ∂M ∩ {x1 = 0} by FB. Assume g
is a Riemannian metric on M such that:

(1) R(g) ≥ −n(n− 1) in M ;
(2) H(g) ≥ n− 1 on FT , H(g) ≥ −(n− 1) on FB, and H(g) ≥ 0 on ∂M \ (FT ∪ FB);
(3) the dihedral angles between adjacent faces of M are everywhere not larger than π/2.

Then (M, g) is isometric to a parabolic rectangle in Hn.

By applying the obvious scaling, Theorem 9 suggested a possible definition of ‘R ≥ −k’ (k > 0)
for C0 metrics, analogous to (3.1). Incidentally, Theorem 9 can be applied to prove the following
convergence result:

Corollary 10 ([16],[31]). Let Mn, n ≤ 7, be a smooth manifold. Suppose gk a sequence of C2

Riemannian metrics with R(gk) ≥ κ, κ ≤ 0, and that gk converges to g in C0. Then R(g) ≥ κ.

We emphasize that Corollary 10 was first proven by M. Gromov in [16], but its proof of the
case κ ≤ 0 was, according to M. Gromov, “artificial” (see [16, p. 15]). On the other hand, the
proof using Theorem 9 is intrinsic. We also note here that Corollary 10 was also proven by R.
Bamler with the Ricci flow.

A natural follow-up question to investigate is the extension of Conjecture 6 to allow positive
scalar curvature lower bounds. Given the counter example to Min-Oo conjecture by S. Brendle, F.
Codá Marques and A. Neves [3]), this extension is likely to involve delicate analysis on spherical
polyhedrons. More speculatively, one might hope to extend Theorem 8 to allow more general
Euclidean polytopes, by triangulating a general polyhedron in a smart way and applying Theorem
8 on each piese.

3.2. Singular limit spaces of metrics with positive scalar curvature. The comparison
theory above motivates the following natural question: given a smooth manifold, how can a
sequence of metrics gk with R(gk) > 0 degenerate? This question, in this form of generality,
seems entirely out of reach. As a first step towards understanding general degenerations, it is
necessary to first investigate the following:
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Question 11. Given a submanifold S ⊂ M , what metrics g are limits of smooth metrics with
positive scalar curvature, such that sing(g) = S and R(g) > 0 in M \ S?

It turns out that the answer to this question depends heavily on the codimension of S. In early
2000s, the case codim(S) = 1 were investigated by J. Corvino [11], H. Bray [2], P. Miao [35],
among others, where a satisfying answer was obtained. In this case, Question 11 is has found
wide applications in other questions related to scalar curvature, e.g. the Riemannian Penrose
inequality. On the other hand, the case of codim(S) ≥ 2 was previously unknown.

In a joint work with C. Mantoulidis, we studied Question 11 when codim(S) ≥ 2:

Theorem 12 ([32]). Let Sn−k ⊂Mn be a smooth submanifold, g is a smooth Riemannian metric
in M \ S with R(g) > 0. If:

(1) k = 2 and g is a edge-cone metric with cone angle not larger than 2π along S;
(2) or n = 3, k = 3 and g is in L∞ across S.

Then g is the limit in C∞loc(M \S) of a sequence of smooth Riemannian metrics on M with positive
scalar curvature.

We also proved a positive mass theorem for metrics with these type of singularities.
Statement (2) (for all n ≥ 3 and 3 ≤ k ≤ n) was conjectured by R. Schoen, as a converse to

the classical surgery result due to M. Gromov and B. Lawson [13], and by R. Schoen and S.T.
Yau [36]. When n = 4, there has been some recent partial progress by D. Kazaras [27].

The long-term goal in this direction is to understand statement (2) of Theorem 12 for n ≥ 3,
even assuming that g has small L∞ norm near S. Also, C. Mantoulidis and I have speculated
that our desingularization of g makes it an explicit example of the limit of smooth metrics in the
pointed intrinsically flat sense, a notion of convergence proposed by C. Sormani and S. Wenger,
and is believed to be the right notion of convergence under scalar curvature lower bounds. We
also conjecture that a generic such metric g is not the Gromov-Hausdorff limit of any smooth
metrics. These are follow-up questions to study.

4. Regularity of minimal surfaces in singular domains

Minimal surfaces have been one of the central topics in calculus of variation, and have intimate
links with scalar curvature, as illustrated by R. Schoen and S.T. Yau. In lots of the scalar
curvature problems above, one needs to study manifolds with boundary, where free-boundary
minimal surfaces naturally occur.

Given a Riemannian manifold Ω with non-empty boundary, free-boundary minimal surfaces
are arise variationally as critical points of area or capillary type functions among surfaces in Ω
whose boundaries lie in ∂Ω but are otherwise free to vary. The existence and regularity of free-
boundary minimal surfaces has been a classical topic investigated by R. Courant, H. Lewy, S.
Hildebrandt, J. Nitsche, M. Gruter, J. Jost, J. Taylor, M. Struwe, among others. Such questions
are particularly interesting and challenging when Ω is locally modelled on a polyhedral cone4.
When Ω is locally modelled on a wedge region in R3, classical works by S. Hildebrandt and J.
Nitsche [20] and by S. Hildebrandt and F. Sauvigny [21, 22, 23, 24] illustrated how such a surface
may be non-regular at its free boundary.

In a joint work with N. Edelen, we developed a regularity theory for free-boundary minimal
surfaces in domains which are locally modelled on polyhedral cones, extending classical results
due to M. Gruter and J. Jost [18]. Our results begins with an Allard type theorem, which implies:

Theorem 13. Let Ωn+1 = Ω0×R be a polyhedral cone domain in Rn+1 and Ω0 is convex. Then
there exists ε > 0 depending on Ω0, such that, if M is a stationary integral n-varifold in B1(0)
which is ε-varifold close to [Ω0 × {0}], then sptM ∩B1/2(0) is C1,α graphical over Ω0 × {0}.

4Historically, the very first problem of free-boundary minimal surfaces was proposed by Gergonne and solved
by Schwartz in the 19th century, where Ω is a cube in R3.
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When n = 2, M is assumed to be a minimal graph and Ω0 is a wedge, Theorem 13 was proven
by S. Hildebrandt and F. Sauvigny [23]. We remark that convexity of Ω0 is essential here: there
are explicit counterexamples otherwise. Also, by analyzing the linearlized problem, we anticipate
that C1,α is the best regularity one can hope for. We then imply this and obtain the following
partial regularity result for area-minimizing currents:

Theorem 14. Let Ωn+1 be a locally convex polyhedral C2 domain in a C3 Riemannian mani-
fold. Suppose T is a free-boundary area-minimizing integral n-current in Ω. Then dim(sing T ∩
int(Ω)) ≤ n− 7, and

(1) dim(sing T ∩ ∂Ω) ≤ n− 2, for general Ω;
(2) dim(sing T ∩ ∂Ω) ≤ n− 7, if the dihedral angles of Ω are everywhere = π/2.

We anticipate that statement (1) in Theorem 14 is sharp. Theorem 14 is instrumental in my
work [29, 31], and is essential to the suggested argument by M. Gromov in [16] in his proposed
polyhedron comparison theory for scalar curvature.

Our approaches into these results completely bypass the reflection principle, which has been
fundamental to lots of boundary regularity results. Thus, we anticipate that they can be apply to
regularity questions in other boundary value problems, e.g. the capillary problem. We also have
strong evidence that statement (2) of Theorem 14 holds for general polyhedral domain, where
the dihedral angles are everywhere ≤ π/2. We will investigate these questions in future.
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