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1 The inequality of Moser and TrudingerFor a smooth domain 
 � Rn, letW �;q0 (
) denote the losure of funtions of ompat supportin 
 with derivatives of order � in Lq under the norm jjujj�;q;
 = (R
Pj�j�� jD�ujqdx)1=q.The lassial Sobolev embedding theorem states that W �;q0 (
) � Lp(
) where 1p = �n � 1qfor �q < n and p > 1. In the limiting ase when �q = n, one an easily see that theorresponding inlusion annot hold. For example, when � = 1; q = n = 2, one may take
 to be the unit ball B in R2, and let u(x) = log(1 + log 1jxj), then one heks easily that ubelongs to W 1;20 (B) but it does not belong to L1(B). Trudinger pointed out that funtionsin W �;n�0 are in the exponential lass (i.e. in the Orliz spae).Theorem 1. (Trudinger [53℄, 1967) There exist onstants �; C depending only on the di-mension n, so that for funtions u 2 W 1;n0 (
) satisfying the normalization R
 jrujndx � 1,we have Z
 exp(�juj nn�1 )dx � Cj
j: (1.1)For appliation to the presribed Gauss urvature equation, one requires a partiularvalue for the best onstant �0. In onnetion with his work on the Gauss urvature equation,Moser sharpened the above result of Trudinger:Theorem 2. (Moser [37℄, 1971) There exists sharp onstant �0 = �0(n) = n! 1n�1n�1 andC = C(n) so that for u 2 W 1;n0 (
) satisfying R
 jrujn dx � 1, the inequality (1.1) holds forall � � �0(n). The onstant �0 is sharp in the sense that for all � > �0 there is a sequeneof funtions uk 2 W 1;n0 (
) satisfying R
 jrukjndx � 1, but the integrals R
 exp(�jukj nn�1 )dxgrow without bound.Subsequently, Carleson and Chang [8℄ found that, ontrary to the situation for Sobolevinequality, there is an extremal funtion realizing the equality when � = �0(n) and 
 is theunit ball in Eulidean spae. This fat remains true for simply onneted domains in theplane was shown by Fl�uher ([28℄), and for some domains in the n-sphere by Soong ([48℄).Sine the argument of Moser was based on the symmetrization proedure, the nature ofthe onstant �0 is expeted to be related to the isoperimetri onstant. This is made expliitin the artiles ([19℄, [21℄) in the former it was shown that the onstant �0 is determined byertain isoperimetri onstant assoiated to two dimensional pieewise smooth domains andin the latter for two dimensional orbitfolds.2 Presribing Gaussian urvature for surfaesThe problem to haraterize the Gauss urvature funtion on the 2-sphere is ommonlyattributed to Nirenberg. Sine the 2-sphere has a unique onformal struture, this problem



an be interpreted as to �nd a onformal metri with a presribed urvature funtion. LetS2 denote the unit sphere in R3 with the standard metri g0 of onstant Gauss urvatureone. Consider onformal metri gw = e2wg0 whose Gaussian urvature Kw is given by thefollowing equation: ��w + 1 = Kwe2w: (2.1)Here and later on �w and rw, et are taken with respet to the bakground metri g0. Inaddition to the obvious sign requirement imposed by the Gauss-Bonnet theorem, there is anobstrution disovered by Kazdan and Warner ([34℄)ZS2 rKw � rx e2wdA0 = 0 (2.2)where x is any of the ambient oordinate funtion. Moser realized that the impliit integra-bility ondition is satis�ed if the onformal fator has antipodal symmetry and that in fatthere is no further integrability ondition in that ase:Theorem 3. (Moser [38℄, 1971) Let K be a funtion with antipodal symmetry and positivesomewhere on the 2-sphere. Then there is a smooth funtion w also with antipodal symmetryfor whih the equation (2.1) holds for K = Kw.Moser studied the variational funtionalJ [w℄ = 14� ZS2(jrwj2 + 2w)dA0 � logf 14� ZS2 Ke2wdA0g (2.3)and proved, in the same paper, a version of the inequality (1.1) for funtions on the 2-sphere:Theorem 4. (Moser [38℄) Let w be a smooth funtion on the 2-sphere satisfying the nor-malizing onditions: RS2 jrwj2dA0 � 1 and �w = 0 where �w denotes the mean value of w,then ZS2 e�w2dA0 � C (2.4)where � � 4� and C is a �xed onstant. If w has antipodal symmetry then the inequalityholds for � � 8�.The general inequality (2.4) with � = 4� shows the funtional J [w℄ is bounded frombelow. However due to the ation of the Mobius group, a minimizing sequene in general willnot satisfy the Palais-Smale property. But within the lass of funtions satisfying antipodalsymmetry, the inequality (2.4) hold with the better value � = 8�, hene there is ompatnessin a minimizing sequene. Thus the funtional J ahieves a minimum within the lass offuntions with antipodal symmetry.



The inequality of Moser shows that there is a lower bound for the funtional J [w℄, Onofri([40℄) determined the best lower bound, in his study of the volume element in string theoryintegrals, using an estimate of Aubin ([2℄):J [w℄ = 14� ZS2(jrwj2 + 2w)dA0 � logf 14� ZS2 e2wdA0g � 0 (2.5)and equality holds preisely for onformal fators w of the form e2wg0 = T �g0 where T is aMobius transformation of the 2-sphere. This inequality was also obtained independently byHong [33℄.A fasinating impliation of Moser's inequality is assoiated with the fat that J [w℄ forK = 1 omputes the logarithm of the regularized determinant of the Laplaian as de�nedby Ray-Singer ([46℄) see also ([45℄):J [w℄ = �16 log(det�gwdet�g0 ): (2.6)Independently of Onofri, Osgood-Philips-Sarnak ([41℄, [42℄) arrived at the same sharp in-equality in their study of the log-determinant of the Laplaian. This inequlity also playsan important role in their proof of the C1 ompatness of isospetral metris on ompatsurfaes. The reader is also referred to the leture notes ([9℄) for onnetions between Moser-Onofri inequality and other isospetral problems in onformal geometry.Returning to the solvability question of the Nirenberg problem, we devised a degree ount([18℄, [19℄, [10℄) assoiated to the funtion K and the Mobius group on the 2-sphere, thatis motivated by the Kazdan-Warner ondition. This degree atually omputes the Leray-Shauder degree of the equation as a nonlinear Fredholm equation. In the speial ase thatK is a Morse funtion satisfying the ondition �K(x) 6= 0 at the ritial points x of K, thisdegree an be expressed as: XrK(q)=0;�K(q)<0(�1)ind(q) � 1: (2.7)The latter degree ount is also obtained later by Chang-Liu [17℄ and Han [32℄.More reently, there is an extensive study of a generalization of the equation (2.1) toompat Riemann surfaes. Sine Moser's argument is readily appliable to a ompatsurfae (M; g0), a lower bound for similiarly de�ned funtional J on (M; g0) ontinues tohold in that situation. The Chern-Simons-Higgs equation in the Abelian ase is the studyof the equation on M : �w = �e2w(e2w � 1) + 2� NXi=1 Æpi: (2.8)The mean �eld equation is the study of the equation :�w + �( he2wR he2w � 1) = 0; (2.9)



where � is a real parameter that is allowed to vary.There is ative development on these equations by several group of researhers inludingCa�arelli-Y.Yang ([7℄), Ding-Jost-Li-Wang ([23℄), Tarantello ([51℄), Struwe and Tarantello([49℄), C.-C. Chen and C.S. Lin ([22℄); and most reently by Y. Yang ([56℄) on systems ofsuh equations.In higher dimensional K�ahler geometry, the Moser-Trudinger inequality also plays a rolein the study of K�ahler Einstein metris. The reader is referred to the artiles of Siu ([47℄),Ding-Tian ([24℄) and Tian ([52℄).3 Fully nonlinear equations in onformal geometry indimension fourIn dimensions greater than two, the natural urvature invariants in onformal geometry arethe Weyl tensor W , and the Weyl-Shouten tensor A = R � R2(n�1)g that our in thedeomposition of the urvature tensor.Rm =W � 1n� 2A ̂g (3.1)Sine the Weyl tensor W transform by saling under onformal hange gw = e2wg, only theWeyl-Shouten tensor depends on the derivatives of the onformal fator. It is thus naturalto onsider �k(Ag) the k-th symmetri funtion of the eigenvalues of the Weyl-Shoutentensor Ag as urvature invariants of the onformal metris. As a di�erential invariant of theonformal fator w, �k(Agw) is a fully nonlinear expression involving the Hessian and thegradient of the onformal fator w. We have abbreviating Aw for Agw :Aw = f�2r2w + 2dw 
 dw � jrwj22 g+ Ag: (3.2)The equation �k(Aw) = 1 (3.3)is a fully nonlinear version of the Yamabe equation. When k 6= n2 and the manifold (M; g)is loally onformally at, Vialovsky ([54℄) showed that the equation (3.3) is the Eulerequation of the variational funtional R �k(Agw)dVgw . In the exeptional ase k = n=2, theintegral R �k(Ag)dVg is a onformal invariant. For a symmetri n�nmatrix A, we say A 2 �+kif �k(A) > 0 and A may be joined to the identity matrix by a path onsisting entirely ofmatries At suh that �k(At) > 0. We say g 2 �+k if the orresponding Weyl-Shouten tensorAg(x) 2 �+k for every point x 2 M . For k = 1 the Yamabe equation for presribing salarurvature �4(n� 1)n� 2 �u+R0u = Rg0un+2n�2 (3.4)



is a semilinear one in the onformal fator u where g = u 4n�2 g0; hene the ondition forg 2 �+1 is the same as requiring the operator L = �4(n�1)n�2 � + R0 be a positive operator.The riteria for existene of a onformal metri g 2 �+k is not as easy for k > 1 sine theequation is a fully nonlinear one. However when n = 4; k = 2 the invariane of the integralR �2(Ag)dVg is a reetion of the Chern-Gauss-Bonnet formula8�2�(M) = ZM(�2 + 14 jW j2)dV: (3.5)In dimension 4, we also reall that�2(Ag) = 12(jTraeAgj2 � jAgj2) = R224 � jEj22 ; (3.6)where E denotes the traeless Rii tensor.In this ase it is possible to �nd a riteria:Theorem 5. ([11℄) For a losed 4-manifold (M; g) satisfying the following onformally in-variant onditions:(i) L is a positive operator, and(ii) R �2(Ag)dVg > 0;then there exists a onformal metri gw 2 �+2 .Remark: In dimension four, the ondition g 2 �+2 implies that R > 0 and an easy ompu-tation shows that Rii is positive everywhere. Thus suh manifolds have �nite fundamentalgroup. In addition, the Chern-Gauss-Bonnet formula and the signature formula shows thatthis lass of 4-manifolds satisfy the same onditions as that of an Einstein manifold withpositive salar urvatures. Thus it is the natural lass of 4-manifolds in whih to seek anEinstein metri.The existene result depends on the solution of a family of fourth order equations in-volving the Paneitz operator ([43℄). In the following we briey outline this onnetion. Indimension four, the Paneitz operatorP = �2 + div(2R3 g � 2R)r (3.7)enjoys onformal ovariane:under onformal hange of metri gw = e2wg0Pgw = e�4wPg0: (3.8)The Paneitz operator omputes a fourth order urvature alled the Q-urvature:P0w + 2Q0 = 2Qgwe4w (3.9)where Q = �112 �R + 12�2: (3.10)



In an elegant paper [31℄, Gursky showed that the positivity of the operator is a onse-quene of the assumptions (i) and (ii) of Theorem 5, and of equal signi�ane, suh manifoldssatisfy the ondition ZM �2(Ag)dVg � 16�2; (3.11)and equality holds if and only if M is onformally di�eomorphi to S4. In an earlier artile[20℄, we showed that for suh a 4-manifold M , the Q-urvature may be presribed to be aonstant by a onformal metri. The main ingredient in that existene theory is the gen-eralized Moser-Trudinger inequality of D. Adams ([1℄; on manifolds [26℄): For any boundeddomain 
 in R4, there is a onstant C = C(n) so that for a funtion w 2 C20 (
) satisfyingthe normalization R j�wj2 � 1; we haveZ
 e32�2w2dx � Cj
j: (3.12)A orresponding inequality an be shown to hold for a funtion w on a losed 4-manifoldwhose Paneitz operator is positive, RM wdV = 0 and the normalization RM Pw � wdV � 1:This then is the starting point of a ontinuity argument in whih we solve the family ofequations �2(Ag) = Æ4�R� jW j2 (3.13)where  is hosen so that R �2(Ag)dVg = � R jW j2gdVg: The bulk of the analysis onsist inestimating the solution as Æ tends to zero, showing essentially that in the equation (3.13) theterm Æ4�R is small in the weak sense. The proof ends by applying the Yamabe ow to themetris gÆ whih satis�es (3.13) to show that for suÆiently small Æ the smoothing providedby the Yamabe ow yields a metri g 2 �+2 .The equation (3.3) beomes meaningful for 4-manifolds whih admits a metri g 2 �+2 .In the artile [12℄, we provide apriori estimates for solutions of the equation�2(Ag) = f (3.14)where f is a given positive smooth funtion. Then we use the following 1-parameter familyof equations �2(Agt) = tf + (1� t) (3.15)to deform the original metri to one with onstant �2(Ag).In terms of geometri appliation, this irle of ideas may be applied to haraterize anumber of interesting onformal lasses in terms of the the relative size of the onformalinvariant R �2(Ag)dVg ompared with the Euler number.



Theorem 6. ([14℄) Suppose (M4; g) is a losed 4-manifold whose onformal Laplaian ispositive. If ZM �2(Ag)dVg > 14 ZM jW j2gdVg; (3.16)then M is di�eomorphi to a quotient of the standard 4-sphere.If M is not di�eomorphi to the standard 4-sphere andZM �2(Ag)dVg = 14 ZM jW j2gdVg; (3.17)then M is onformally equivalent to a quotient of CP 2 or S1 � S3.This �rst part of Theorem 6 applies the existene argument to �nd a onformal metrig0 whih satis�es the pointwise inequality�2(A0g) > 14 jW 0j2: (3.18)The di�eomorphism assertion follows from Margerin's ([36℄) preise onvergene result forthe Rii ow: suh a metri will evolve under the Rii ow to one with onstant urvature.Therefore suh a manifold is di�eomorphi to a quotient of the standard 4-sphere.For the seond part of the assertion, we argue that if suh a manifold is not di�eomorphito the 4-sphere, then the onformal struture realizes the minimum of the quantity R jW j2dV ,and hene its Bah tensor vanishes. There are two possibilities depending on whether theEuler number is zero or not. In the �rst ase, an earlier result of Gursky ([30℄) shows themetri is onformal to that of the spae S1 � S3. In the seond ase, we solve the equation�2(A0g) = 14 jW 0j2 + � (3.19)and let � tends to zero. We obtain in the limit a C1;1 metri whih satis�es the equation onthe open set 
 = fxjW (x) 6= 0g: �2(A0g) = 14 jW 0j2: (3.20)Then a long Lagrange multiplier omputation, inspired in part by the orresponding om-putation of Margerin, shows that the urvature tensor of the limit metri agrees with thatof the Fubini-Study metri on the open set where W 6= 0. Therefore jW 0j is a onstant on 
thus W annot vanish at all. It follows that the urvature tensor of the limit metri agreeswith that of Fubini-Study metri everywhere.



4 A Moser-Onofri inequality for the 4-sphereIn [3℄, Bekner generalized the sharp inequality (2.5) of Moser-Onofri to n-spheres. Denoteby (Sn; g0) the n-sphere in Rn+1 with the standard metri g0; Bekner's inequality boundsthe volume of the metri gw = e2wg0 by an energy term with leading order term of the formR (�w)n2 dV0. In our work ([20℄), we gave an alternative argument for this inequality basedon the onformal ovariane of the general n-th order Paneitz operator. For example in aseof the 4-sphere, the inequality takes the form:1jS4j ZS4f�w)2 + 2jrwj2 + 12wgdV0 � 3logf 1jS4j ZS4 e4wdV0g � 0; (4.1)where jS4j ( = 8�23 ) denotes the volume of the 4-sphere. The equality hold if and only if themetri gw is isometri to the standard metri g0.In this setion we disuss another extension of the sharp Moser-Onofri inequality to Snwhen n = 2k is even, and for a lass of funtions whose assoiated onformal metris belongto the lass �+k .For a ompat surfae (M2; g0), onsider the funtionalJ [w℄ = Z jrwj2 + 2K0wdV0 (4.2)under the volume onstraint that R e2wdV0 = V ol(g0), where K0 denotes the Gaussian ur-vature of the metri g0. ThenJ 0[w℄(�) = dd� j�=0J [w + ��℄ = 2 Z (��w +K0)�dV0 (4.3)for all � 2 C1(M) with R e2w�dV0 = 0. It follows from the Gaussian urvature equation��w +K0 = Kwe2w (4.4)that at a ritial point w of the funtional J :0 = J 0[w℄(�) = 2 Z Kwe2w�dV0 (4.5)for all � 2 C1(M) with R e2w�dV0 = 0. We say 12J is a onformal primitive of the Gaussianurvature K.On a ompat n-manifold (n � 3), a similar omputation shows that the funtionalF [w℄ = 1n� 2 ZM RgwdVgw (4.6)is the onformal primitive of the salar urvature R. Using this terminology, the result ofVialovsky whih we have mentioned in the previous setion an be restated as:



Theorem 7. ([54℄) On a ompat (Mn; g),(a) in the ase n 6= 2k, the funtional F k[w℄ = 1n�2k RM �k(Agw)dVgw is the onformal primi-tive of �k(Ag);(b) in the remaining ase n = 2k, and assume also that (Mn; g) is loally onformally at,then RM �k(Agw)dVgw is onformally invariant.In view of the statement (a), it is natural to ask for the existene of a funtional whih isthe onformal primitive of �k(Ag) when n = 2k. In our previous work on the log determinantfuntional ([5℄ for the 4-sphere; [20℄ for general 4-manifolds), it was observed that suh afuntional exists in the ase n = 4 = 2k. To desribe the funtional, let us de�ne for aompat 4-manifold M, gw = e2wg:II[w℄ = Z Pw � w + 4 QgwdVgIII[w℄ = 13(Z R2gwdVgw � Z R2gdVg);where P is the Paneitz operator, and Q = � 112�R + 12�2 as de�ned in setion 3. In fat,using equation (3.9) one an easily hek that II is the onformal primitive of the fourthorder urvature 4Q. By another straightforward alulation, one an also hek that III isthe onformal primitive of �4�R. Therefore, the onformal primitive of �2 is given byF2[w℄ = 12(II[w℄� 112III[w℄): (4.7)It is thus natural to ask if one an study the problem to presribe the urvature invariant�2(Ag) by a variational method using the onformal primitive. We remark that, in generalthis annot be an easy task sine the funtional F2 is the di�erene of funtionals II andIII whih are both oerive (in the ases we onsider) and of higher order, although thereis total anellation of the fourth order terms. In partiular on the 4-sphere, both II andIII are extremized by the standard metri ([5℄, see also [3℄). It is not lear how to studyinf F2[w℄. It is our purpose in this setion to study this problem for the restritive lass ofmetris gw 2 �+2 . We will use a paraboli equation introdued by Guan and Wang ([29℄):ddtg = �(log(�k(g))� log(rk(g))) � g (4.8)where log(rk(g)) = R log(�k(g))dVg and the initial metri g(0) = g0. When the manifoldM4 is onformally at, the argument of Ye ([57℄), shows that there is apriori C1 estimatesfor solutions of equation (4.8). In the artile [29℄, Guan and Wang showed the longtimeexistene as well as the uniform C2 estimates for solutions of the equation. We now followthe arguments in [50℄ and modify them to the funtional F2. First it is easy to see thatunder the ow (4.8) we haveddtF2[g(t)℄ = �12 Z (�2(g)� r2(g))(log�2(g)� log(r2(g))dVg: (4.9)



Therefore the funtional F2 dereases under the ow (4.8). In addition, we haveZ T0 ZM(�2(g)� r2(g))(log(�2(g))� log(r2(g))dVgdt � 2jF2[g(t)℄� F2[g(0)℄j: (4.10)It follows that under the ow �2(g) and F2[g℄ remain bounded andZ 10 ZM(�2(g)� r2(g))2dVgdt <1: (4.11)Then there exists a sequene of times ftlg for whihZM(�2(g(tl))� r2(g(tl)))2dVg ! 0: (4.12)On aount of the uniform C2 bounds for the metris g(tl), a subsequene will onverge inC1;� to a C1;1 metri g1 whih is a visosity solution of the equation �2(g) = onstant; thisonstant is positive due to the onformal invariane of the integral R �2(Ag)dVg. Sine suhsolutions are in fat smooth aording to Evans-Krylov ([25℄, [35℄), the lassi�ation providedin ([55℄, see also [13℄) shows that g1 must be standard, hene the onstant urvature metrion S4 realizes the in�mum for F2. We summarize this onlusion in the following:Theorem 8. On the 4-sphere (S4; g0), if gw = e2wg0 is a onformal metri lying in the set�+2 , then we have1jS4j ZS4f�2�wjrwj2 � jrwj4 + 6jrwj2 + 12wgdV0 � 3 logf 1jS4j ZS4 e4wdV0g � 0: (4.13)Remark: The onditon gw 2 �+2 annot be removed as we see easily that by taking w tobe a large multiple of any �rst eigenfuntion on the 4-sphere makes the quantity in (4.13)an arbitrarily large negative number. We thank the referee for pointing out this example.However, it is reasonable to ask if the inequality ontinues to hold for metris in the set �+1 ,that is, metris with positive salar urvature.More generally, we now desribe a possible proedure to �nd a funtional Fk;n, whih isa onformal primitive of �k when n = 2k for a onformally at struture. We illustrate themethod by deriving the funtional F2;4 = 14F2 for the funtional F2 in (4.7) in dimension4. Thus the onformal ow (4.8) an be applied to derive, in priniple, an extension of theMoser-Onofri inequality to all even dimensional spheres.We �rst set up the notations. To be onsistent with the notations of Vialovsky, let usdenote Cij = 1n�2Aij and �k;n the k-th symmetri funtion of the eigenvalues of Cij. Thusfor n = 4, we have �2;4 = 14�2 for �2 de�ned in (3.6).We de�ne the onformal primitive for �k;n, using the "analyti ontinuation in dimension"method that we learned from Tom Branson. In [4℄, Branson used a similar method to



alulate the onformal primitive of the Q-urvatures. Let us denote for n 6= 2k, �k;n(w) =�k;n(Cgw) and de�ne for gw = e2wg0Fk;n[w℄ = 1n� 2k ZM(�k;n(w)enw � �k;n(0))dV0: (4.14)Then aording to Vialovsky,dd� j�=0Fk;n[w + ��℄ = Z �k;n(w)�dVw: (4.15)We write for n 6= 2k,�k;n(w)enw � �k;n(0) = e(n�2k)w�k;n(w)e2kw � �k;n(0)= (e(n�2k)w � 1)�k;n(w)e2kw + (�k;n(w)� �k;2k(w))e2kw+ (�k;2k(w)e2kw � �k;2k(0)) + (�k;2k(0)� �k;n(0)):Notie that the seond to the last term in the above expression is zero after integration overthe manifoldM . Therefore we divide the equation above by n�2k and take limit as n tendsto 2k:Fk;2k[w℄ = limn!2kFk;n[w℄ = Z (w�k;2k(w)e2kw + ddn jn=2kf�k;n(w)e2kw � �k;n(0)g)dV0: (4.16)Remarks:1. The quantity Fk;n[w℄ has the following saling property: if in the de�nition of Cij we putCij = nAij for some hoie of n, and denote the resulting quantity by ~�k;n and repeat thesame steps to de�ne the orresponding funtional ~Fk;n. Then ~Fk;n[w℄ = nFk;n[w℄. This islear when n 6= 2k. When n = 2k, we observe that in the formula (4.16) we haveddn jn=2k~�k;n[w℄ = ( ddn jn=2kn)�k;2k[w℄ + n ddn jn=2k�k;n[w℄: (4.17)Thus, due to the onformal invariane of the integral R �k;2k(g)dVg, we have ~Fk;2k[w℄ =nFk;2k[w℄.2. We need to explain the justi�ation in taking the derivative ddn in the above formula. Whenviewed as formal algebrai expressions in the various derivatives of w in an appropriatetensor spae, the quantity �k;n(w) may be expanded using the formula of Aij as in (3.2)into a polynomial expression in various derivatives of w with oeÆients that are rationalexpressions in n. Viewed as funtion of n suh an expression is rational in n with no pole atn = 2k. Sine the formula (4.15) for the onformal primitive may be viewed as an identityin the orresponding rational expression in n, it may be di�erentiated at n = 2k to derivethe equation of onformal primitive for �k;2k.



To illustrate this proedure, we arry out the omputation of F1;2 in (4.16). Reall�1;n = 1n� 2tr(Rij � 12(n� 1)Rgij) = 12(n� 1)R: (4.18)Let us denote the onformal metri by gw = e2wg = u 4n�2 g. Reall the salar urvatureequation (3.4): �1;n(w) = (� 2n� 2�u+ �1;n(0)u)u�n+2n�2 ; (4.19)whih may also be written as�1;n(w) = �fn� 22 jrwj2 +�w � �1;n(0)ge�2w: (4.20)Thus ddn�1;njn=2e2w � ddn jn=2�1;n(0) = �12 jrwj2: (4.21)It follows from (4.20) thatZ w�1;2e2wdV0 = Z f��w +KgwdV0 = Z fjrwj2 +KwgdV0: (4.22)Combining equations (4.21) and (4.22) into (4.16), and ompare to the formula (4.2), we�nd: F1;2 = 12 Z fjrwj2 + 2KwgdV0 = 12J [w℄: (4.23)We remark that a similar, but more tedious omputation also shows that F2;4 = 14F2In view of the validity of Bekner's inequality for spheres of all dimension, one has toponder what should be an appropriate analogue of the inequality (4.13) for odd dimensionalspheres. In the artiles [15℄, [16℄ sharp versions of the Moser-Onofri inequality for a thirdorder operator on the 3-sphere as a boundary operator was obtained. Suh onsiderationsmay be relevant to this question. We hope to return to this question on a later oasion.Referenes[1℄ D. Adams; A sharp inequality of J. Moser for higher order derivatives, Ann. of Math. 128(1988), 385-398.[2℄ T. Aubin; Meilleures onstantes dans le theorem d'inlusion de Sobolev et un theorem deFredholme non lineaire pour la transformation onforme de la ourbure salaire, J. Funt.Anal. 32 (1979), 148-174.
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