Homework 5. Due on October 23

1. Decide if the following series converges, give your reasoning:
 \[
 (a) \sum \frac{n^2 - 5n + 3}{10n^2 + 5} \quad (b) \sum \frac{1}{n^2 - 3n + 6} \quad (c) \sum \frac{\sin n}{n^2} \quad (d) \sum \frac{1}{n \ln n}
 \]

2. If \(\sum x_n \) and \(\sum y_n \) are convergent, prove that \(\sum (x_n + y_n) \) is convergent.

3. Can you give an example of a convergent series \(\sum x_n \) and a divergent series \(\sum y_n \) such that \(\sum (x_n + y_n) \) is convergent? Explain.

4. If \(\sum a_n \) with \(a_n > 0 \) is convergent, then is \(\sum a_n^2 \) always convergent? Is \(\sum \sqrt{a_n} \) always convergent? Either prove or give counter an example in each case.

5. Suppose \(\{a_n\} \) is a decreasing sequence of strictly positive numbers. Prove that \(\sum a_n \) converges if and only if \(\sum 2^n a_{2^n} \) converges.

6. Use problem 5 to discuss the convergence or divergence of the \(p \)-series \(\sum \frac{1}{n^p} \).

7. Problem 9 on page 79 of Rudin. (You may treat \(z \) as a real number).

8. We say a sequence \(\{x_n\} \) of real numbers is contractive if there exists a constant \(C, 0 < C < 1 \) such that \(|x_{n+2} - x_{n+1}| \leq C|x_{n+1} - x_n| \) for all \(n \in \mathbb{N} \). Prove that a contractive sequence is a Cauchy sequence.

9*. Decide the convergent or divergent of the series \(\sum \frac{\cos n}{n} \) and \(\sum \frac{\sin n}{n} \).