Q-curvature and Conformal Covariant operators

Sun-Yung Alice Chang
Princeton University

January 9, 2004
Table of Contents

§1. Introduction

§2. Conformal Compact Einstein manifold, Scattering theory

§3. Q-curvature, general structure

§4. Renormalized volume, n odd

§5. Renormalized volume, n even
Question: What are the general conformal invariants? What are the conformal covariant operators and their related curvature invariants?
• Second order invariants:
 1. \((\Delta_g, K_g)\) on \((M^2, g)\) satisfying
 \[
 \Delta_{gw} = e^{-2w} \Delta_g
 \]
 and
 \[
 -\Delta_{gw} + K_g = K_{gw}e^{2w}.
 \]
 2. \((L_g, R_g)\) on \((M^n, g), n \geq 3,\) where
 \[
 L_g = -c_n \Delta_g + R_g
 \]
 where \(R_g\) the scalar curvature, satisfying
 \[
 L_{gw} = e^{-\frac{n+2}{2}w} L_g(e^{\frac{n-2}{2}w}).
 \]
 Yamabe equation
 \[
 L_g(e^{\frac{n-2}{2}w}) = R_{gw}e^{\frac{n+2}{2}w}.
 \]
4th order invariants:
When $n = 4$, Paneitz operator: (1983)

$$P_\varphi \equiv \Delta^2 \varphi + \delta \left[\left(\frac{2}{3} R g - 2 \text{Ric} \right) d\varphi \right]$$

Satisfying:

$$P_{gw} = e^{-4w} P_g$$

$$P_{gw} + 2Qg = 2Q_{gw} e^{4w}$$

$$Q = \frac{1}{12} (-\Delta R + R^2 - 3 |\text{Ric}|^2)$$
3. On (M^n, g), $n \neq 4$.

Existence of 4-th order conformal Paneitz operator P^4_n,

$$P^4_n = \Delta^2 + \delta (a_n Rg + b_n \text{Ric}) + \frac{n-4}{2} Q^4_n.$$

For $\tilde{g} = u^{n-4} g$: $P^4_n u = \tilde{Q}^n_{4} u^{\frac{n+4}{n-4}}.$

- P^4_n is conformal covariant of bidegree $(\frac{n-4}{2}, \frac{n+4}{2}).$

- Q^4_n is a fourth order curvature invariants. i.e. under dilation $\delta_t g = t^{-2} g,$

$$(Q^4_n)(\delta_t g) = t^4 (Q^4_n)(g).$$
Fefferman-Graham (1985) systematically construct (pointwise) conformal invariants:

Example: The Riemann curvature tensor has the decomposition

\[R_{ijkl} = W_{ijkl} + [A_{jk}g_{il} + A_{il}g_{jk} - A_{jl}g_{ik} - A_{ik}g_{jl}] \]

where

\[A = \frac{1}{n-2}[R_{ij} - \frac{R}{2(n-1)}g_{ij}] \]

is called the Schouten tensor. The Weyl tensor satisfies \(W_{gw} = e^{-2w}W_g \).

Graham-Jenne-Mason-Sparling (1992) applied method of construction to existence results of general conformal covariant operators \(P_{2k}^n \) for \(n \) even.
§2. Conformally compact Einstein manifold

Given \((M^n, g)\), denote \([g]\) class of conformal metrics \(g_w = e^{2w} g\) for \(w \in C^\infty(M^n)\).

Definition: Given \((X^{n+1}, M^n, g^+)\) with smooth boundary \(\partial X = M^n\). Let \(r\) be a defining function for \(M^n\) in \(X^{n+1}\) as follows:

- \(r > 0\) in \(X\);
- \(r = 0\) on \(M\);
- \(dr \neq 0\) on \(M\).

- We say \(g^+\) is **conformally compact**, if there exists some \(r\) so that \((X^{n+1}, r^2 g^+)\) is a compact manifold.
- \((X^{n+1}, M^n, g^+)\) is **conformally compact Einstein** if \(g^+\) is Einstein (i.e. \(Ric_{g^+} = cg^+\)).
- We call \(g^+\) a **Poincare metric** if \(Ric_{g^+} = -ng^+\).
Example:

On \((H^{n+1}, S^n, g_H)\)

\[
(H^{n+1}, (\frac{2}{1-|y|^2})^2|dy|^2).
\]

We can then view \((S^n, [g])\) as the compactification of \(H^{n+1}\) using the defining function

\[
r = 2 \frac{1 - |y|}{1 + |y|}
\]

\[
g_H = g^+ = r^{-2} \left(dr^2 + \left(1 - \frac{r^2}{4}\right) g \right).
\]
Given \((M^n, g)\), consider \(M^+ = M^n \times [0, 1]\) and metric \(g^+\) with

(i) \(g^+\) has \([g]\) as conformal infinity,
(ii) \(\text{Ric}(g^+) = -ng^+\).

In an appropriate coordinate system \((\xi, r)\), where \(\xi \in M\) with

(iii) \(g^+ = r^{-2} \left(dr^2 + \sum_{i,j=1}^{n} g^+_{ij}(\xi, r) d\xi_i d\xi_j \right)\),

and \(g^+_{ij}\) is even in \(r\).

Theorem: (C. Fefferman- R. Graham, ’85)

(a) In case \(n\) is odd, up to a diffeomorphism fixing \(M\), there is a unique formal power series solution of \(g^+\) to (i)–(iii).

(b) In case \(n\) is even, there exists a formal power series solution for \(g^+\) for which the components of \(\text{Ric}(g^+) + ng^+\) vanish to order \(n - 2\) in power series of \(r\).
Remarks:

- Conformally compact Einstein manifold is of current interest in the physics literature. The Ads/CFT correspondence proposed by Malda-cena involves string theory and super-gravity on such X.
- The construction of the Poincare metric is actually accomplished via the construction of a Ricci flat metric, called the ambient metric on the manifold \tilde{G}, where $\tilde{G} = G \times (-1,1)$ of dimension $n+2$ and G is the metric bundle

$$G = \left\{ (\xi, t^2 g(\xi)) : \xi \in M^n, t > 0 \right\}$$

of the bundle of symmetric 2 tensors S^2T^*M on M. The conformal invariants are then contractions of $(\tilde{\nabla}^{k_1} \tilde{R} \otimes \tilde{\nabla}^{k_2} \tilde{R} \otimes \ldots \tilde{\nabla}^{k_l} \tilde{R})$ restricted to TM where \tilde{R} denotes the curvature tensor of the ambient metric.
A model example is given by the standard sphere (S^n, g). Denote $S^n = \{ \sum_{1}^{n+1} \xi_k^2 = 1 \}$.

$$G = \left\{ \sum_{1}^{n+1} p_k^2 - p_0^2 = 0 \right\}$$

under $\xi_k = p_k/p_0$ ($1 \leq k \leq n + 1$). Then the ambient space \tilde{G} is Minkowski space $R^{n+1,1} = \{(p,p_0), |p| \in R^{n+1}, p_0 \in R \}$ with the Lorentz metric

$$\tilde{g} = |dp|^2 - dp_0^2,$$

The standard hyperbolic space is realized as the quadric $H^{n+1} = \{|p|^2 - p_0^2 = -1\} \subset R^{n+1,1}$.

PICTURE
Graham, Jenne, Mason and Sparling (1992)
The existence of conformal covariant operator P_{2k}^n on (M^n, g) with:

- Order $2k$ with leading symbol $(-\Delta)^k$

- Conformal covariant of bi-degree $(\frac{n-2k}{2}, \frac{n+2k}{2})$; where $k \in \mathbb{N}$ when n is odd, but $2k \leq n$ when n is even.

- In general, the operators P_{2k}^n is not unique, e.g. add $|W|^k$ to P_{2k}^n, where W is the Weyl tensor, when k is even.

- On \mathbb{R}^n, the operator is unique and is equal to $(-\Delta)^k$. Hence the formula for P_{2k}^n on the standard sphere and on Einstein metric.
Q curvature associated with P_{2k}^n.

- When $2k \neq n$, then $P_{2k}^n(1) = c(n, k)Q_{2k}^n$, e.g. when $k = 1, 2 < n$, $P_2^n = -c_n \Delta + R = L$, and $Q_2^n = R = P_2^n(1)$.

- When $2k = n$, n even Branson ('93) justified the existence of Q_n^n by a dimension continuation (in n) argument from Q_{2k}^n. e.g. When $k = 1$ and $n = 2k = 2$, $Q_2^2 = K$ the Gaussian curvature. When $k = 2$ and $n = 4$, $Q_4^4 = 2Q_4$.

- Graham and Zworski ('02) Existence of Q_n^n when n even, the analytic continuation of a spectral parameter in scattering theory.
Spectral Theory on \((X^{n+1}, M^n, g^+)\), with \(g^+\) Poincare metric and \((M^n, [g])\) as conformal infinity.

- A basic fact is (Mazzeo, Melrose-Mazzeo)
 \[
 \sigma(-\Delta_{g^+}) = \left[\left(\frac{n}{2}\right)^2, \infty\right) \cup \sigma_{pp}(-\Delta_{g^+})
 \]
 the pure point spectrum \(\sigma_{pp}(-\Delta_{g^+})\) (\(L^2\) eigenvalues), is finite.
- For \(s(n-s) \notin \sigma_{pp}\), consider
 \[
 (-\Delta_{g^+} - s(n-s))u = 0.
 \]
 Given \(f \in C^\infty(M)\), then there is a meromorphic family of solutions \(u(s) = \varphi(s) f\)
 \[
 \varphi(s)f = Fr^{n-s} + Gr^s \quad \text{if} \quad s \notin n/2 + \mathbb{N}
 \]
 with \(F|_M = f\)

Define Scattering matrix to be
 \[
 S(s)f = G|_M
 \]
The relation of f to $S(s)f$ is like that of the Dirichlet to Neumann data.

Theorem: (Graham-Zworski 2002)

Let (X^{n+1}, M^n, g^+) be a Poincare metric with $(M^n, [g])$ as conformal infinity. Suppose n is even, and $k \in \mathbb{N}$, $k \leq \frac{n}{2}$ and $s(n - s)$ not in $\sigma_{pp}(-\Delta_{g^+})$. Then the scattering matrix $S(s)$ has a simple pole at $s = \frac{n}{2} + k$ and

$$c_k P^n_{2k} = -\text{Res}_{s=n/2+k} S(s)$$

When $2k \neq n$, $P^n_{2k}(1) = c(n, k)Q^n_{2k}$

When $2k = n$, $c_{n/2} Q_n = S(n)1$.
§3. Known facts for Q_n, n even:

- Q_n is a conformal density of weight $-n$; i.e. with respect to the dilation δ_t of metric g given by $\delta_t(g) = t^2 g$, we have $(Q_n)_{\delta tg} = t^{-n}(Q_n)_g$.

- $\int_{M^n}(Q_n)_g dv_g$ is conformally invariant.

- For $g_w = e^{2w} g$, we have $(P_n)_{g_w} + (Q_n)_g = (Q_n)_{g_w} e^{nw}$.

- When (M^n, g) is locally conformally flat, then $(Q_n)_g = c_n \sigma_{\frac{n}{2}}(A_g) + \text{divergence terms}$, e.g. $Q_4 = \sigma_2(A_g) - \frac{1}{6} \Delta_g R$.

- Alexakis

$$Q_n = c_n \text{Pfaffian} + J + \text{div}(T_n).$$

where Pfaffian is the Euler class density, which is the integrand in the Gauss-Bonnet formula, J is a pointwise conformal invariant, and $\text{div}(T_n)$ is a divergence term.
• Alexakis (also Fefferman-Hirachi) has extended the existence of conformal covariant operator to conformal densities of weight γ, where $\gamma \neq \left(-\frac{n}{2}\right) + k$ where k is a positive integer and γ not a nonnegative integer. An example of such operator is:

$$2P(f) = \nabla^i (||W||^2 \nabla^i f) + \frac{n-6}{n-2} ||W||^2 \Delta f.$$

with corresponding Q-curvature explicit.

• Fefferman and Hirachi have also extended the construction of conformal covariant operator and Q curvature to CR manifolds.

• Branson, Eastwood-Gover survey articles, AIM meeting August 2003.
§4. Renormalized Volume (Witten, Gubser-Klebanov-Polyakov, Henningson-Skenderis, Graham)

On conformal compact \((X^{n+1}, M^n, g^+)\) with defining function \(r\), For \(n\) odd,

\[
\text{Vol}_{g^+}(\{r > \epsilon\}) = c_0 \epsilon^{-n} + c_2 \epsilon^{-n+2} + \cdots + c_{n-1} \epsilon^{-1} + V + o(1)
\]

For \(n\) even,

\[
\text{Vol}_{g^+}(\{r > \epsilon\}) = c_0 \epsilon^{-n} + c_2 \epsilon^{-n+2} + \cdots + c_{n-2} \epsilon^{-2} + L \log \frac{1}{\epsilon} + V + o(1)
\]

• For \(n\) odd, \(V\) is independent of \(g \in [g]\), and for \(n\) even, \(L\) is independent of \(g \in [g]\), and hence are conformal invariants.
Theorem: (Graham-Zworski) When n is even,

$$ L = -2 \int_M S(n)1 = 2c_n \frac{1}{2} \int_M Q_n dv_g. $$

Theorem: (Fefferman-Graham '02) Consider $v = \frac{d}{ds}|_{s=n} S(s)1$ then v is a smooth function defined on X solving

$$ -\Delta_{g^+}(v) = n $$

and with the asymptotic

$$ v = \begin{cases}
\log x + A + Bx^n \log x & \text{for } n \text{ even} \\
\log x + A + Bx^n & \text{for } n \text{ odd}
\end{cases} $$

where $A, B \in C^\infty(X)$ are even mod $O(x^\infty)$ and $A|_M = 0$. Moreover

(i) If n is even, then

$$ B|_M = -2S(n)1 = -2c_n Q_n $$

hence $L = 2c_n \frac{1}{2} \int_M Q_n$.

19
(ii) If \(n \) is odd, then

\[
B|_M = -\frac{d}{ds}|_{s=nS(s)}1,
\]

and if one defines \(Q_n(g^+, [g]) \) to be

\[
Q_n(g^+, [g]) = k_nB|_M
\]

then

\[
k_nV = \int_M Q_n(g^+, [g])dv_g.
\]

Remark: when \(n \) is odd, the \(Q \) curvature thus defined is not intrinsic, it depends not only on the boundary metric \(g \) on \(M \) but also on the extension of \(g^+ \) on \(X \).
On compact Riemannian 4-manifold \((X^4, M^3, g^+)\) with boundary, Chang-Qing introduced

\[
(P_b)_{gw} = e^{-3w}(P_b)_g, \quad \text{on } M \quad \text{and} \quad (P_b)_{gw} + T_g = T_g w e^{3w} \text{on } M.
\]

\[8\pi^2 \chi(X) = \int_{X^4} \left(\frac{1}{4} |W|^2 + Q_4 \right) dv + 2 \int_{M^3} (\mathcal{L} + T) d\sigma,\]

where \(\mathcal{L}\) is a point-wise conformal invariant term on the boundary of the manifold.

On conformally compact Einstein \((X^4, M^3, g^+)\):

\[
(P_b)_g = -\frac{1}{2} \frac{\partial}{\partial n} \Delta g^+ \big|_M, \quad T_g = \frac{1}{12} \frac{\partial R}{\partial n} \big|_M,
\]

and in this case \(\mathcal{L}\) vanishes.
When $n = 3$, on (X^4, M^3, g^+), conformally compact Einstein

Theorem: (Chang-Qing-Yang)

On (X^4, M^3, g^+)

(i) $(Q_4)_{e^2v g^+} = 0,$

Proof: Recall

$$Q_4 = \frac{1}{6}(-\Delta R + R^2 - 3|Ric|^2).$$

Thus for g^+ a Poincare metric with $Ric g^+ = -3g^+$, we have $(Q_4)_{g^+} = 6$ and

$$(P_4)_{g^+} = (\Delta)g^+ + 2\Delta_{g^+}.$$

We then use the equations $-\Delta_{g^+}(v) = n = 3$ and

$$(P_4)_{g^+}(v) + (Q_4)_{g^+} = (Q_4)_{e^2v g^+}$$

to conclude the proof.
(i) \((Q_4)_{e^{2v}g^+} = 0\),
(ii) \(Q_3(e^{2v}g^+, [e^{2v}g]) = 3B|_{x=0} = T_{e^{2v}g}\).

As a consequence we have

\[
6V = \int_{X^4} (Q_4)_{e^{2v}g^+} + 2 \int_{M^3} T_{e^{2v}g} \\
= \int_{X^4} \sigma_2(A_{e^{2v}g^+}).
\]

Hence (M. Anderson)

\[
8\pi^2 \chi(X^4) = \frac{1}{4} \int_{X^4} |W|^2 dv_\bar{g} + \int_{X^4} \sigma_2(A_\bar{g}) \\
= \frac{1}{4} \int_{X^4} |W|^2 dv_\bar{g} + 6V,
\]

for \(\bar{g} = e^{2v}g^+\) or any conformal compact \(\bar{g}\).
Conformal Sphere Theorem:
(Chang-Gursky-Yang)
On \((M^4, g)\) with \(Y(M^4, g) > 0\). If
\[
\int_{M^4} |W_g|^2 dv_g < 16\pi^2 \chi(M^4),
\]
or equivalently
\[
\int_{M^4} \sigma_2(A_g) dv_g > 4\pi^2 \chi(M^4)
\]
then \(M^4\) is diffeomorphic to \(S^4\) or \(\mathbb{R}^4\).

Note that on \((M^4, g)\), with \(Y(M^4, g) > 0\).
\[
\int_{M^4} \sigma_2(A_g) dv_g \leq 16\pi^2
\]
with equality if and only if \(M^4\) is diffeomorphic to \(S^4\).
Theorem: (Chang-Qing-Yang)

Suppose \((X^4, M^3, g^+)\) is a conformal compact Einstein manifold, and \((M^3, [g])\) has positive Yamabe constant, then

(i) \(V \leq \frac{4\pi^2}{3}\), with equality holds if and only if \((X^4, g^+)\) is the hyperbolic space \((H^4, g_H)\), and therefore \((M^3, g)\) is the standard 3-sphere.

(ii) If

\[V > \frac{1}{3}(\frac{4\pi^2}{3}\chi(X)), \]

then \(X\) is homeomorphic to the 4-ball \(B^4\) up to a finite cover.

(iii) If

\[V > \frac{1}{2}(\frac{4\pi^2}{3}\chi(X)), \]

then \(X\) is diffeomorphic to \(B^4\) and \(M\) is diffeomorphic to \(S^3\).
A crucial step in the proof of the theorem above is an earlier result:

Theorem: (Qing ’02)
Suppose \((X^{n+1}, M^n, g^+)\) is a conformal compact Einstein manifold, with \(Y(M^n, [g])\) positive, then there is a positive eigenfunction \(u\) satisfying

\[-\Delta_{g^+} u = (n + 1)u \text{ on } X^{n+1},\]

so that \((X^{n+1}, u^{-2}g^+)\) is a compact manifold with totally geodesic boundary and the scalar curvature is greater than or equal to \(\frac{n+1}{n-1} R_g\), where \(g \in [g]\) is the Yamabe metric.

PICTURE
Theorem:
(Chang-Qing-Yang, Epstein)
On conformally compact Einstein \((X^{n+1}, M^n, g^+)\), when \(n\) is odd,
\[
\int_{X^{n+1}} W_{n+1} \, dv_g + c_n V(X^{n+1}, g) = \chi(X^{n+1})
\]
for some curvature invariant \(W_{n+1}\), which is a sum of contractions of Weyl curvatures and/or its covariant derivatives in an Einstein metric.

Proof:
Use structure equation of \(Q_n\); in particular, the result of Alexakis that
\[
Q_n = a_n \text{Pfaffian} + J + \text{div}(T_n).
\]
§5. Renormalized volume when n is even.

The renormalized volume can also be defined via the scattering matrix:

$$V(X^3, [g], g^+) = -\int_{M^2} \frac{d}{ds}|_{s=2} S(s) 1 dv_g, \text{ for } n = 2$$

$$V(X^5, [g], g^+) = -\int_{M^4} \frac{d}{ds}|_{s=4} S(s) 1 dv_g$$

$$- \frac{1}{32 \cdot 36} \int_{M^4} R^2[g] dv_g, \text{ for } n = 4$$

$$V(X^{n+1}, [g], g^+) = -\int_{M^n} \frac{d}{ds}|_{s=n} S(s) 1 dv_g$$

$+ \text{ correction terms, for } n \text{ even}$
Definition: We call a functional \mathcal{F} defined on (M^n, g) a conformal primitive of a curvature tensor \mathcal{A} if

$$\frac{d}{d\alpha}|_{\alpha=0}\mathcal{F}[e^{2\alpha}w g] = -2c_n \int_M w \mathcal{A} dv_g.$$

Theorem: On (X^{n+1}, M^n, g^+), n even, the scattering term $S(g, g^+) = \frac{d}{ds}|_{s=n} S(s) 1(g, g^+)$ is the conformal primitive of $(Q_n)_g$.

Corollary: (Henningson-Skenderis, Graham)

On (X^3, M^2, g^+), V is the conformal primitive of K, the Gaussian curvature.

On (X^5, M^4, g^+), V is the conformal primitive of $\frac{1}{16} \sigma_2$, where $\sigma_2 = \frac{1}{6}(R^2 - 3|Ric|^2)$.

29
• Qing established the rigidity result that any conformal compact Einstein manifold with conformal infinity the standard n-sphere is the hyperbolic $n + 1$ space extending prior results of L. Andersson.

• X. Wang proved that on (X^{n+1}, M^n, g^+) with $\lambda_0(g^+) > n - 1$, then $H_n(X, \mathbb{Z}) = 0$. In particular, the conformal infinity M is connected; thus extending an earlier result of Witten-Yau.

Given $(M^n, [g])$ in general, both the existence and uniqueness problem of a conformal compact Einstein manifold with $(M^n, [g])$ as conformal infinity remain open.