
ON A FOURTH ORDER CURVATURE INVARIANTSun-Yung A. Chang and Paul C. Yangx0. IntrodutionThis artile is a ontinuation of the survey artile [C3℄ on the fourth order equa-tion �rst introdued by Paneitz ([Pa℄). In partiular we desribe the geometriaspet of the equation, as well as further analyti development sine that surveywas written.On a Riemannian manifold (Mn; g) of dimension n, the Laplae Beltrami opera-tor is the natural geometri operator. Under onformal hange of metri ~g = e2wg,when the dimension is two, �gw is related to �g by the simple formula:(0.1) �gw (') = e�2!�g(') for all ' 2 C1(M2) :In dimension greater than two, similar tranformation property ontinue to hold fora modi�ation of the Laplaian operator alled the onformal Laplaian operatorL � � 4(n�1)n�2 �+ R where R is the salar urvature of the metri. We have(0.2) Lgw(') = e�n+22 !Lg �en�22 !'�for all ' 2 C1(M).In general, we all a metrially de�ned operator A onformally ovariant of bide-gree (a; b), if under the onformal hange of metri g! = e2!g, the pair of orre-sponding operators A! and A are related by(0.3) A!(') = e�b!A(ea!') for all ' 2 C1(Mn) :A partiularly interesting suh operator is a fourth order operator on 4-manifoldsdisovered by Paneitz [Pa℄ in 1983:(0.4) P' � �2'+ Æ�23RI � 2Ri� d'Researh of Chang supported by NSF grant DMS-9706864.Researh of Yang supported by NSF grant DMS-DMS-9706507 Typeset by AMS-TEX1



where Æ denotes the divergene, d the deRham di�erential and Ri the Rii tensor ofthe metri. The Paneitz operator P (whih we will later denote by P4) is onformalovariant of bidegree (0; 4) on 4-manifolds, i.e.(0.5) Pg! (') = e�4!Pg(') for all ' 2 C1(M4) :For manifold of general dimension n, when n is even, the existene of a n-thorder operator Pn onformal ovariant of bidegree (0; n) was veri�ed in [GJMS℄.However it is only expliitly known on the standard Eulidean spae Rn and heneon the standard sphere Sn. The expliit formula for Pn on standard sphere Sn hasappeared in Branson [Br-1℄ and independently in Bekner [B℄.In dimension four, the Paneitz equation has lose onnetion with the Chern-Gauss-Bonnet formula. The Q urvature invariant de�ned by the Paneitz operatorintegrates to a numerial onformal invariant whih is essentially bounded by theEuler number. We have obtained ([CY3℄) general existene and uniqueness riteriafor the Paneitz and related equations. The appearane of the traeless Rii tensorin the equation an be exploited to haraterize ertain speial onformal lassesin the work of Gursky ([Gu1℄). He has also shown that the riteria for existenein ([CY3℄)is satis�ed by a large lass of onformal strutures. To further relate therole of the quantity Q urvature, it is natural to understand the ontribution ofthe boundary term in the Chern-Gauss-Bonnet integral when we inorporate theQ urvature. Previously Chang-Qing ([CQ1℄, [CQ2℄) had onsidered the boundaryterm and de�ned a third order boundary operator whih we shall all P3 operatorwhih de�nes boundary urvature invariant. Reently we have derived in ollabo-ration with Qing ([CQY1, CQY2℄) Cohn-Vossen type inequality whih express thedi�erene of the Q urvature integral from the Euler number by an isoperimetriratio analogous to Finn's result in dimension two. Suh an integral formula gives ariteria for onformal ompati�ation of omplete onformally at manifold of pos-itive salar urvature and �nite Q urvature integral. As a onsequene we obtaina lassi�ation of suh manifolds with zero Q urvature.One annot disuss the Paneitz operator without mentioning its onnetion withthe zeta funtion formulation of the determinant of the onformal Laplaian. Suhonsideration in fat lead to the relevane of the Paneitz operator to four dimen-sional onformal geometry, as well as the disovery of the boundary P3 operator.It is appropriate to aknowledge on this oasion the pioneering work of Osgood-Phillips-Sarnak ([OPS1℄, [OPS2℄) in two dimension.This paper is organized as follows. In setion one, we disuss basi propertiesof the Laplae operator in dimension two and ompared it, from the point of viewof onformal geometry, to analogous properties of the Paneitz operator P4. Insetion two, we disuss uniqueness results of the Paneitz equation on spheres. Insetion three, we onsider the variational funtional for the Paneitz operator P4 ongeneral ompat 4-manifolds. In setion four, we disuss another natural geomet-ri funtional-namely the zeta funtional determinant for the onformal Laplaianoperator-where Paneitz operator plays an important role. We survey some existeneand regularity results of the extremal metris of the zeta funtional determinant,2



and indiate some reent geometri appliations by M. Gursky of the extremal met-ris to haraterize some ompat 4-dimensional onformal strutures. In setion�ve, we disuss the P3 operator, whih is onformally ovariant of bidegree (0; 3);and its assoiated urvatures T , operating on funtions de�ned on the boundaryof ompat 4-manifolds. We mention some existene results for extremal metrisin this setting. In setion six, we disuss the Chern-Gauss-Bonnet formula thatrelates the Q urvature integral to the Euler number. We disuss the generalizationof the Cohn-Vossen inequality for surfaes to 4-dimensional onformally at mani-folds as well as some appliation to obtain further uniqueness result for the Paneitzequation on suh manifolds. In setion seven, we onsider a variational problem inwhih the P4 and P3 operators both play a role. We de�ne a numerial onformalinvariant of the pair (M4; �M) and prove an existene theorem when this numerialinvariant is suitably restrited. In order to avoid tehnial ompliations aused bythe boundary geometry, we onsider boundaries whih are umbili. We show thatthe argument of Gursky ([Gu2℄) an be modi�ed to determine the onformally atpairs (M;�M) that satis�es the simplest equations Q = 0 and T = 0.We are indebted to many friends and ollaborators among whom we shall mentionBranson, Gilkey, Gursky, C.S. Lin, Qing, Sarnak and Xu.x1. Properties of the Paneitz operatorOn a ompat Riemannian manifold (Mn; g) without boundary, when the dimen-sion of the manifold is two, we denote by P2 � �� = ��g, the Laplaian operator.When the dimension is four, we denote by P = P4 the Paneitz operator as de�ned on(0:4). Thus both operators satisfy onformal ovariane property (Pn)! = e�n!Pn,where (Pn)! denote the operator with respet to (Mn; g!), g! = e2!g. Here we listseveral suh properties for omparison.(i) On a ompat surfae, a natural urvature invariant assoiated with theLaplae operator is the Gauss urvature K. Under the onformal hange of metrig! = e2!g, we have(1:1)a �! +K!e2! = K on M2where K! denotes the Gaussian urvature of (M2; g!). While on 4-manifold, wehave(1:1)b �P4! + 2 ~Qwe4! = 2 ~Q on M4where ~Q is the urvature invariant(1.2) 12 ~Q = ��R+ R2 � 3jRij2(ii) The analogy between K and ~Q beomes more apparent if one onsiders theGauss-Bonnet formulae:(1:3)a 2��(M) = Z Kdv on M =M23



(1:3)b 4�2�(M) = Z � ~Q+ jCj28 � dv on M =M4where �(M) denotes the Euler-harateristi of the manifold M , and jCj2= normsquared of the Weyl tensor. Sine jCj2dv is a pointwise invariant under onformalhange of metri, ~Qdv is the term whih measures the onformal hange in formula(1; 3)b.(iii) When n � 3, another natural analogue of �� on M2 is the onformalLaplaian operator L as de�ned on (0:2). In this ase, if we denote the onformalhange of metri as gu = u 4n�2 g for some positive funtion u, then we may rewritethe onformal ovariant property (0:2) for L as(1:4)a Lu(') = u� n+2n�2L(u') on Mn; n � 3for all ' 2 C1(Mn).A di�erential equation assoiated with the operator L is the salar urvatureequation:(1:5)a Lu = Ruun+2n�2 on Mn; n � 3 :Equation (1:5)a has been intensively studied in the reent deade. For example thefamous Yamabe problem in di�erential geometry is the study of the equation (1:5)afor solutions Ru � onstant; the problem has been ompletely solved by Yamabe[Y℄, Trudinger [T-1℄, Aubin [Au℄ and Shoen [S℄.(iv) There is also a natural fourth order Paneitz operator Pn4 in all dimensionn 6= 4, whih enjoys the onformal ovariane property with respet to onformalhanges in metris also. The relation of this operator to the Paneitz operator indimension four is ompletely analogous to the relation of the onformal Laplaianto the Laplaian in dimension two. On (Mn; g) when n 6= 4, de�nePn4 = (��)2 + Æ(anR+ bnRi)d+ n� 42 Qn4 ;where Qn4 = njRij2 + dnR2 � 12(n� 1)�R;and an = (n�2)2+42(n�1)(n�2) , bn = � 4n�2 , n = � 2(n�2)2 ; dn = n3�4n2+16n�168(n�1)2(n�2)2 aredimensional onstants. Thus P 44 = P4; Q44 = ~Q. Then (Branson [Br1℄), we have forgu = u 4n�4 g, n 6= 4(1:4)b (Pn4 )u (') = u�n+4n�4 (Pn4 ) (u')for all ' 2 C1(Mn). We also have the analogue for the Yamabe equation:(1:5)b Pn4 u = Qn4un+4n�4 on Mn; n 6= 4 :4



We remark that on Rn with Eulidean metri, Pn4 redues to the bi-Laplaianoperator. Equation (1:5)b takes the form (��)2u = nun+4n�4 , an equation whih hasbeen studied in literature e.g. [PuS℄.x2. Uniqueness result on SnIn this setion we will onsider the behavior of the Paneitz operator on thestandard spheres (Sn; g). First we reall the situation when n = 2. On (S2; g),when one makes a onformal hange of metri g! = e2!g, the Gaussian urvatureK! = K(g!) satis�es the di�erential equation(2.1) �! +K!e2! = 1on S2, where � denotes the Laplaian operator with respet to the metri g on S2.When Kw � 1 on (2.1), the Cartan-Hadamard theorem asserts that e2wg isisometri to the standard metri g by a di�eomorphism '; and the onformality re-quirements says ' is a onformal transformation of S2. In partiular, w = 12 log jJ'j,where J' denotes the Jaobian of the transformation '.In [CL℄, Chen and Li studied the orresponding equation of (2.1) on R2 withKw � 1, and they proved, using the method of moving plane, that when u is asmooth funtion de�ned on R2 satisfying(2.2) ��u = e2u on R2with RR2 e2udx <1, then u(x) is of the form u(x) = log 2��2+jx�x0j2 for some x0 2 R2and some � > 0. There is an alternative argument by Chanillo-Kiessling ([ChK℄)for this uniqueness result using the isoperimetri inequality.On (Sn; g), denote gu = u 4n�2 g the onformal hange of metri of g, where u is apositive funtion, then the salar urvature Ru = R(gu) of the metri is determinedby the following di�erential equation(2.3) �4(n� 1)n� 2 �u+ n(n� 1)u = Ruun+2n�2 :When Ru = n(n � 1), a uniqueness result established by Obata [Ob℄ states thatthis happens only if the metri gu is isometri to g or equivalently u = jJ'jn�22n forsome onformal transformation ' of Sn. In [CGS℄ Ca�arelli-Gidas-Spruk studiedthe orresponding equation on Rn :(2.4) ��u = n(n� 2)un+2n�2 ; u > 0 on Rn :They lassi�ed all solutions of (2.4), via the method of moving plane, as u(x) =( 2��2+jx�x0j2 )n�22 for some x0 2 Rn , � > 0.For all n, on (Sn; g), there also exists a n-th order (pseudo) di�erential operatorPn whih is the pull bak via sterographi projetion of the operator (��)n=2 from5



Rn with Eulidean metri to (Sn; g). Pn is onformal ovariant of bi-degree (0, n),i.e. (Pn)w = e�nwPn. Aording to Branson [Br1℄ and Bekner [B℄:(2.5) 8<: For n even Pn =Qn�22k=0 (��+ k(n� k � 1));For n odd Pn = ���+ �n�12 �2�1=2 Qn�32k=0 (��+ k(n� k � 1)):On general ompat manifolds in the ases when the dimension of the manifold istwo or four, there exist natural urvature invariants Qn of order n whih, underonformal hange of metri gw = e2wg, is related to Pnw through the followingdi�erential equation:(2.6) �Pnw + (Qn)wenw = Qn on M :In the ase when n = 2, P2 is the negative of the Laplaian operator, Q2 = K,the Gaussian urvature. When n = 4, P4 is the Paneitz operator, Q4 = 2 ~Q4as de�ned in (1.2). In the speial ase of (S2; g), P2 = P2, similarly on (S4; g),P4 = P4. In setion 5 below, we will also disuss the existene of P1, P3 operatorsand orresponding urvature invariants Q1 and Q3 de�ned on boundaries of generalompat manifolds of dimension 2 and 4 respetively.On (Sn; g), when the metri gw is isometri to the standard metri, then (Qn)w =Qn = (n� 1)! . In this ase, equation (2.6) beomes(2.7) �Pnw + (n� 1)!enw = (n� 1)! on SnOne an establish the following uniqueness result for solutions of equation (1.7).Theorem 2.1. [CY4℄ On (Sn; g), all smooth solutions of the equation (2.7) areof the form e2wg = '�(g) for some onformal transformation ' of Sn; i.e. w =1n log jJ'j for the transformation '.Appealing to the onformal ovariane of the equation (2.7) one an rewrite theequation on Rn:(2.8) (��)n=2u = (n� 1)!enu on Rn :For the fourth order equation C.S. Lin ([L℄) and Xu ([X1℄) have obtained a las-si�ation of solutions of the equation (2.8) in R4 . Then ombining the argumentsof Wei-Xu ([WX℄) in even dimensions and that of Zhu ([Z℄) in odd dimensions,solutions of equation (2.8) an be lassi�ed:Theorem 2.2. ([L℄, [X1℄, [WX℄, [Z℄) On Rn , suppose u is a smooth solution ofthe equation (2.8) suh that:(2.9) u(x) = log 21 + jxj2 + o(jxj2);6



then u(x) is of the form(2.10) u(x) = log 2��2 + jx� x0j2 for some x0 2 Rn � > 0:Remarks1. In the ase when w is a minimal solution of the funtional with Euler-Lagrangeequation (1.7), the result in Theorem 2.2 is a onsequene of the sharp Sobolev typeinequality of Milin-Lebedev when n = 1, that of Moser [Mo℄ and Onofri [On℄ whenn = 2 and Bekner [B℄ for general n.2. The ondition (2.9) is neessary as one an show using an argument of MOwen([M℄) that for any hoie of ai > 0; 1 � i � 4 there exists solution v of the equation(��)2v = exp(� 4Xi=1 aix2i )e4v; onR4whih has the asymptoti behavior v(x) � �2 log(jxj). Then settingu(x) = �14 4Xi=1 aix2i + v(x);we obtain an extraneous solution of the equation whih does not satisfy the ondition(2.9). Geometrially suh solutions orrespond to metris whih are inomplete andhas very large negative salar urvature at in�nity.Conerning the analogue of the Yamabe equation (1.5)b, Lin and Xu have alsoobtained uniquess result on Rn.Theorem 2.3. ([L℄, [X1℄) In Rn ; n � 5, the positive solutions of the equation�2u = u(n+4)=(n�4) are of the form u(x) = ( ��2+jx�x0j2 )n�42 .In general dimensions n � 5 there is additional analyti diÆulty assoiated withthe lak of a good maximum priniple for fourth order equations. In partiular itis not a simple matter to verify that minimizing solutions to (1.5)b are positive.x3. Existene and regularity of the Paneitz equation on 4-manifoldOn (M2; g) with Gaussian urvature K = Kg, onsider the funtional(3.1) J [w℄ = Z jrwj2dv + 2 Z Kwdv � (Z Kdv) log�Z e2wdvwhere the gradient, the volume form are taken with respet to the metri g, and�R 'dv = R 'dv=volume for all '.The Euler-Lagrange equation for J is:(3.2) �! + e2! = K on M27



where  is a onstant. Notie that (3.2) is a speial ase of equation (1:1)a withK! � . For the speial manifold (S2; g), K � 1, (3.2) is a speial ase of equation(2.1).On a ompat 4-manifold (M4; g), denote by kp = R Qdv, and de�ne(3.3) II[!℄ = Z (P4!)! + 4 Z Qwdv � (Z Qdv) log(�Z e4!dv)Theorem 3.1. ([CY-3℄) Suppose kp < 8�2, and suppose P4 is a positive operatorwith ker P = fonstantsg; then inf IIw2W 2;2[w℄ is attained. Denote the in�mum bywp, then the metri gp = e2wpg satis�es Qp � onstant = kp= R dv.Remarks(1) In general, the positivity of P4 is a neessary ondition for the funtional II tobe bounded from below. Reent work of Gursky [Gu-2℄ indiates that under theadditional assumption that kp > 0 and that g is of positive salar lass, P4 is alwayspositive. Furthermore, under the same assumption, kp < 8�2 is always satis�edunless (M4; g) is onformally equivalent to (S4; g); in the latter ase then kp = 8�2and the extremal metri for II[w℄ has been studied in [BCY℄.(2) Notie that the extremal funtion wp in W 2;2 for II satis�es the equation(3.4) �P4wp +Qpe4!p = Qwith Qp � onstant. Thus standard ellipti theory an be applied to establish thesmoothness of wp. This is in ontrast with the smoothness property of the extremalfuntion wd of the log-determinant funtional F [w℄, in whih II[w℄ is one of theterm. We will disuss regularity property of wd in setion 4.(3) A key analyti fat used in establishing Theorem 3.1 above is the generalizedMoser inequality established by Adams [A℄, whih in the speial ase of domains 
in R4 states that W 2;20 (
) ,! expL2.x4 Zeta funtional determinantOn ompat surfae (M2; g), let f0 < �1 � �2 � � � � g be the spetrum of the(negative of) Laplaian -�g. Let �(s) = P��si de�ned for Res > 12 , then � has ameromorphi ontinuation to the whole plane and is regular at the origin using theheat kernel expansion of �g. �� 0(0) is well-de�ned, and one may de�ne log det�g tobe �� 0(0) (as in Ray-Singer [RS℄). In [Po℄, Polyakov further omputed the logarithmof the ratio of determinant of two onformally related metris gw = e2wg on aompat surfae without boundary.(4.1) F [w℄ = log det�wdet� = 13 ZM (jrwj2 + 2Kw)dvgunder the normalization that vol(gw) = vol(g). Notie that F [w℄ is essentiallythe same as the funtional J [w℄ in (3.1). In a series of papers, Osgood-Phillips-Sarnak ([OPS1℄, [OPS2℄)have shown among other things that F [w℄ enjoys a ertain8



ompatness property on aount of the Moser-Trudinger inequality, and provedthat in eah onformal lass, the funtional F [w℄ attains its extrema at the onstanturvature metris.When the dimension of a losed manifold is odd, it was shown in Branson [Br2℄that log detLg is a onformal invariant. Thus the next natural dimension to studythe generalized Polyakov formula (4.1) is four.Suppose (M; g) is a ompat, losed 4-manifold, and suppose A is a onformallyovariant operator satisfying (0.3). In [BO℄ Branson-Orsted gave an expliit om-putation of the normalized form of log det Awdet A whih may be expressed as:(4.2) F [w℄ = 1I[w℄ + 2II[w℄ + 3III[w℄where 1; 2; 3 are onstants depending only on A andI[w℄ = 4 Z jCj2wdv � �Z jCj2dv� log �Z e4wdvII[w℄ = hPw;wi+ 4 Z Qwdv � �Z Qdv� log �Z e4wdv;III[w℄ = 12�Y (w)� 13 Z (4R) wdv� ;where C is the Weyl tensor, and Y (w) = R ��(ew)ew �2� 13 R R jrwj2:We also remarkthat the funtional III[w℄ [BCY℄ may be written asIII[w℄ = 13 �Z R2w dvw � Z R2 dv�so that when the bakground metri is assumed to be the Yamabe metri in apositive onformal lass, the funtional III is non-negative.Let us de�ne the onformal invariant:kd = �1 Z jCj2dv � 2 Z Qdv= (�2) 4�2�(M) + �28 � 1� Z jCj2dv(4.3)Theorem 4.1. ([CY3℄) If the funtional F satis�es 2 < 0; 3 < 0, and kd <(�2)8�2, then supw2W 2;2 F [w℄ is attained by some funtion wd and the metri gd =e2wdg0 satis�es the equation(4.4) 1 jCdj2 + 2Qd � 34dRd = �kd �Vol(gd)�1:Further, all funtions ' 2W 2;2 satisfy the inequality:(4.5) kd log �Z e4('� ~')dvd � (�2) hP'; 'i � 123Yd('):where ~' denotes the mean value of ' with respet to the metri gd, and �R denotes1vol(M;gd) RM dvd. 9



Theorem 4.2. If kd � 0, the extremal metri gd for the funtional F orrespond-ing to the onformal Laplaian operator L is unique.This uniqueness assertion is obtained as onsequene of the onvexity of theorresponding funtionals. Applying the uniqueness result, we were able to identifysome of the extremal metris with known metri in speial irumstanes.As a onsequene of a general regularity result for minimizing W 2;2 solution ofthe equation:(4.6) ��! = 1jr!j4 + 2(�!)2 + 3�!jr!j2 + lower order terms;we have the following regularity result:Theorem 4.3. ([CGY℄) Let F [!℄ be as in Theorem 4.1, then sup!2!2;2 F [!℄, whenattained, is a smooth funtion.The appearane of the Rii tensor in the Euler equation (4.4) an be put togood use sine suh terms also arise in the Bohner formula for the Laplaian ofthe length of harmoni forms. Indeed Gursky has given ([Gu1℄) beautiful applia-tion of the extremal metris (also some modi�ed version) to haraterize ertainspeial 4-dimensional onformal lasses. To state his results, we need to make somede�nitions. On a ompat manifold (Mn; g), de�ne the Yamabe invariant of g as(4.7) Y (g) = infg!=e2!gvol(g!)�n�2n Z Rg!dvg! :By the work of Yamabe, Trudinger, Aubin and Shoen mentioned in setion 1,every ompat manifold Mn admits a metri g! onformal to g whih ahievesY (g), hene g! has onstant salar urvature. We say (Mn; g) is of positive salarlass if Y (g) > 0.On ompat 4-manifolds, both Y (g) and R Qgdvg are onformal invariants. Thefollowing result of Gursky [Gu1℄ indiates that these two onformal invariants on-strain the topologial type of M4.Theorem 4.4. ([Gu1℄) Suppose (M4; g) is a ompat manifold with Y (g) > 0,(i) If R Qgdvg > 0, then M admits no non-zero harmoni 1-forms. In partiular,the �rst Betti number of M vanishes.(ii) If R Qgdvg = 0, and if M admits a non-zero harmoni 1-form, then (M; g) isonformal equivalent to a quotient of the produt spae S3�R. In partiular (M; g)is loally onformally at.As a orollary of part (ii) of Theorem 4.4, one an haraterize quotient of theprodut spae S3�R as ompat, loally onformally at 4-manifold with Y (g) > 0and �(M) = 0.A ruial step in the proof of theorem above is to show that for suitable hoie of1, 2, 3, the extremal metri gd for the log-determinant funtional F [!℄ exists andis unique. Furthermore under the assumption Y (g) > 0, one has Rgd > 0; if Y (g) =0 then Rgd � 0. In the ase R Qgdvg = 0, existene of non-zero harmoni 1-form10



atually indiates that Rgd � positive onstant. It is urious that in haraterizingthese speial onformal lasses one annot work diretly with the Q = onstantmetris. Using similar ideas, Gursky [Gu1℄ has also haraterized the onformallass of Kahler-Einstein surfaes:Theorem 4.5. ([Gu1℄) Suppose (M4; g) is ompat 4-manifold with non-negativesalar urvature, and suppose the self intersetion form has a positive element, then(4.8) Z jW+j2dV � 4�23 (2�+ 3�)where W+ is the self dual part of the Weyl tensor, � is the euler number and � isthe signature. Furthermore,(i) equality is ahieved in (4.8) by some metri with Y (g) > 0 if and only if g isonformal to a Kahler-Einstein metri with positive salar urvature,(ii) equality is ahieved in (4.8) by some metri with Y (g) = 0 if and only if gis onformal to a Kahler Rii at metri.x5. P3 { a boundary operatorThere exist natural boundary operators for funtions de�ned on the boundaryof ompat manifolds. We desribe suh operators on boundary of Mn for n = 2and n = 4. Most of the material desribed in this setion is ontained in the jointwork [CQ1℄, [CQ2℄and [CQ3℄. The reader is also referred to the leture notes [C2℄for a more detailed desription of suh operators derived in onjuntion with thegeneralized formula [BO℄ [BCY℄ [CY℄ of Polyakov [Po℄ of zeta funtional determinantfor 4-manifolds with boundary. We start with terminology. On ompat manifold(Mn; g) with boundary, we say a pair of operators (A;B) satisfy the onformalassumptions if:Conformal Assumptions. Both A and B are onformally ovariant of bidegree(a1; a2) and (b1; b2) in the following senseAw(f) = e�a1!A(ea2!f)Bw(g) = e�b1!B(eb2!g);for any f 2 C1(M); g 2 C1(�M). Assume also thatB(ea2!g) = 0 if and only if Bw(g) = 0;for any ! 2 C1( �M), where Aw, Bw denote the operator A, B respetively withrespet to the onformal metri gw = e2wg.Examples: The typial examples of pairs (A;B) whih satisfy all three assump-tions above are: 11



(i) when n = 2, A = ��; B = ��n (negative of) the Laplaian operator and theNeumann operator respetively.(ii) when n = 4, in [CQ-1℄ we have disovered a boundary operator P3 onformalof bidegree (0,3) on the boundary of a ompat 4-manifold. On 4-manifolds, (P4; P3)is a pair of operators satisfying the onformal ovariant assumptions, whih in thesense we shall desribe below, is a natural analogue of the pair of operators (��; ��n )de�ned on ompat surfaes.On ompat surfaeM with boundary, the Gauss-Bonnet formula takes the form(5.1) 2��(M) = ZM Kdv + I�M kd�;where k denotes the geodesi urvature of �M and d� the ar length measure on�M . Through onformal hange of metri gw = e2wg for w de�ned on �M , theNeumann operator ��n is related to the geodesi urvature k via the di�erentialequation(5.2) ��w�n + kwew = k on �M:On 4-manifold with boundary there exists a boundary loal invariant of order 3and a onformal ovariant operator P3 of bidegree (0; 3), the relation of (Q; T ) to(P4; P3) on 4-manifolds is parallel to that of (K; k) to (�; ��n ) on ompat surfaes.(5.3) P3 = �12 ��n�� ~� ��n � 23H ~�+L�� ~r� ~r� +(13R�R�N�N ) ��n + 13 ~rH � ~r:(5.4) T = 112 ��nR+ 16RH � R�N�NL�� + 19H3 � 13TrL3 � 13 ~�H:In partiular, via the onformal hange of metris gw = e2wg, P3 and T satis�esthe equation:(5.5) �P3w + Twe3w = T on �M;and(5.5) (P3)w = e�3wP3 on �M:The operator T and P3 were disovered in [CQ2℄ through the Chern-Gauss-Bonnet formula for 4-manifolds with boundary:(5.7) �(M) = (32�2)�1 ZM (jCj2 + 4Q)dx+ (4�2)�1 I�M (T � L4 � L5)dy:In the boundary integral above the invariants L4 and L5 involve the ambient ur-vature tensor and the seond fundamental form Lab. We shall use an orthonormal12



frame and use the latin indies to run through the ambient indies and the Greekindies to only run through the boundary diretions.(5.8) L4 = �RH3 +R�N�NH �R�N�NL�� + R��L�� ;and(5.9) L5 = �29L��L��L + L��L�L� � L��L�L�:Analogous to the Weyl term, L4 and L5 are boundary invariant of order 3 whih arepointwise invariant under onformal hange of metris. Hene for a �xed onformallass of metris, 12 ZM Qdv + I�M Tdsis a �xed onstant. We remark that in the original Chern-Gauss-Bonnet formula Tdi�ers from the present form by 13 ~�H, whih does not a�et the integration formula(5.7).Thus on 4-manifolds with boundary it is natural to study the energy funtional(5.10) E[w℄ = 14 Z wP4w + 12 I�M wP3w:In view of the ompliated expressions of the operators P4, P3, Q and T , it isdiÆulty to study the funtional E[w℄ de�ned as above on general ompat mani-folds. We mention some speial situations that allows an understanding of the basisituation. In the ase of (B4; S3) with the standard metris, we have(5.11) P4 = (�)2; P3 = �12N�� ~�N � 2 ~� and Q = 0; and T = 3;where ~� denotes the the Laplaian operator � on (S3; g). Thus the expressionin E[w℄ beomes relatively simple. In this speial ase, we are able to study thefuntional E[w℄. The main analyti tool is the following sharp inequality of Lebedev-Milin type on (B4; S3).Theorem 5.1. Suppose w 2 C1( �B4). Then(5.12)log� 12�2 IS3 e3(w� �w)dy� � 34�2 �14 ZB4 w�2w + IS3 12wP3w � 14 �w�n + 14 �2w�n2 � ;under the boundary assumptions RS3 � [w℄ds[w℄ = 0 where � is the salar urvatureof S3. Moreover the equality holds if and only if e2wg on B4 is isometri to theanonial metri g. 13



x6 An extension of the Cohn-Vossen/Huber/Finn inequalityWe �rst reall the Cohn-Vossen ([CV℄) inequality for omplete surfaes. Suppose(M; g) is a omplete surfae with Gauss urvature K in L1, then(6.1) ZM KdA � 2��:In fat, Huber ([H℄) has shown that suh a surfae has a onformal ompati�ationM = ~MnfP1; :::Png where ~M is a ompat Riemann surfae. At eah punture Piby inverting a onformal dis DinfPig, Finn ([Fn℄) has onsidered the isoperimetriratio �i = limr!1 (Length(�Dr))22Area(Dr) , and aounted for the de�it in the inequalityabove:(6.2) 2��� ZM KdA = nXi=1 �i:A ompletely analogous situation holds in dimension four provided we restrit our-selves to onformally at 4-manifolds of positive salar urvature. Let us �rst reallthat Shoen-Yau ([SY℄) has demonstrated that for suh manifolds, the holonomyover of suh manifolds embed onformally as domain ~M in S4 with a boundarywhih has Hausdor� dimension less than one. Thus by going to a overing of suhmanifolds we may assume that we are dealing with domains in R4.Theorem 6.1. ([CQY1℄)Let e2wjdxj2 be a omplete metri on 
 = R4nfP1; :::; Png with nonnegative salarurvature near the puntures. Suppose in addition that Q is integrable. Then wehave(6.3) �(
)� 18�2 Z
QdV = nXi=1 �iwhere at eah punture Pi a onformal disk DinfPig is inverted and(6.4) �i = limr!1 (vol(�Br))4=34(2�2)1=3vol(Br) :The �niteness of the Q integral together with the embedding result of Shoen-Yauhas strong impliation for the underlying topology:Theorem 6.2. ([CQY2℄) Let (M4; g) be a simply onneted omplete onformallyat manifold satisfying salar urvature R �  > 0, Ri � �, and R jQjdv < 1;then M is onformally equivalent to R4nfP1; :::; Png. In ase M4 is not assumedsimply onneted, under the additional assumption that M4 is geometrially �niteas a Kleinian manifold, then M is onformally equivalent to ~MnfP1; :::; Png, where~M is a ompat onformally at manifold.Remarks 14



1. An important ingredient in the proof of theorem is the onsideration of theboundary P3 operator. The loal expression for the quantity T allows us to interpretthe T integral as ontrolling the growth of volume. The idea is that the �nitenessof the Q integral does not allow large growth of volume hene onstrain the numberof ends.2. As a onsequene of this �niteness riteria, we an lassify the ompleteonformal metris de�ned on domains in S4, whih satisfy the urvature onditionsin the statement of Theorem 6.2, and in addition has onstant Q urvature whihare integrable. There are only three suh metris: the standard metri on S4, theat metri on R4 and the ylindrial metri on R4nf0g.x7 A onformal variational problem for 4-manifold with boundaryIn this setion we onsider onformal variations of Neumann type on a 4-manifoldwith boundary (M;�M). That is the bakground metri g on the pair (M;�M)whih satisfy the property that the salar urvature of M is onstant and the meanurvature H vanishes on the boundary. This ondition an always be ahievedaording to Esobar's solution of the Yamabe problem on manifolds with boundary([E℄). We onsider onformal hange of metri gw = e2wg = u2g that satisfy theonstraints(7.1) vol(M)[w℄ = vol(M)[0℄H[w℄ = 0:For onveniene we set Y (g) = infZM Lu � udvwhere the in�mum is taken over positive onformal fators satisfying the onstraint(7.1). The variational funtional we shall onsider is an analogue of the funtionalII disussed in setion three with additional terms to aommodate the presene ofboundary:(7.2) J [w℄ = 14 Z fwP4w + 12wQg+ 12 I�M wP3w � (1=8 Z Q)log Z e4w:In order to formulate riterion for existene of extremal metris for the funtionalJ let us de�ne the natural invariant(7.3) kp(M;�M) = 12 ZM Qdv + I�M TdsThen the analysis of ([CQ3℄) yields the following:Theorem 7.1. Suppose kp(M;�M) < 16�2 and the operator pair (P4; P3) is posi-tive exept on onstants, then the funtional J under the onstraint (7.1) ahievesits minimum.In fat it is easy to see that the funtional J is onvex under the stronger as-sumption kp(M;�M) � 0 and hene: 15



Theorem 7.2. Suppose kp(M;�M) � 0 and the operator pair (P4; P3) is positiveexept on onstants, then the funtional J under the onstraint (7.1) has a uniqueritial point whih is the minimum.In the following we impose additional boundary onditions on the pair (M;�M)in order to formulate the simplest boundary value problem for the operator pair(P4; P3). It would be interesting to relax this boundary ondition to aommodatemore general situations.De�nition. We say �M is umbili if the seond fundamental form has all equalprinipal eigenvalues.Remark. The umbiliity ondition is onformally invariant, thus under thisassumption, the solution of Yamabe problem with minimal boundary atually makesthe boundary totally geodesi.Proposition 7.3. Suppose (M4; g) has onstant positive salar urvature and �Mhas zero mean urvature, then kp(M;�M) � 16�2; and equality holds if and only if(M;�M) is onformally equivalent to the upper hemisphere (S4+; S3).Proof: The solution of the Yamabe problem with boundary provides a onformalmetri with onstant salar urvature with xero mean urvature H = 0 on theboundary. Hene the boundary ontribution in the de�nition of kp vanishes andhene kp(M;�M) = Z (�jEj2 + 112R2)dV� Z 112R2dV� 16�2Of ourse, equality an hold if and only if the Yamabe onstant is equal to thatof the hemisphere, in whih ase the positive mass theorem (see [E℄) asserts that(M;�M) is onformally equivalent to the hemisphere (S4+; S3).In order to irumvent the positivity requirement on the pair (P4; P3), we addan extra term to the funtional J and onsider(7.4) F [w℄ = � Z R2dV + J [w℄:The argument in the proof of Theorem 2.1 in ([CQ3℄) shows that as long as � > 0,and kp � 16�2, we have W 2;2 ompatness of the minimizing sequene for thefuntional F under the onstraint (7.1). Hene we an minimize the funtional Fto produe a minimizing extremal metri. The extremal metri satisfy the Eulerequation(7.5) �R = �+ (�jEj2 + 112R2); where � � 0;  = 14(3� + 112)�1;and the boundary ondition H = 0. Sine the boundary ondition is of Neumanntype, the regularity theory developed in ([CGY2℄) goes through without essentialhange. Hene we may assume the solution is smooth up to the boundary.16



Lemma 7.4. If 0 < � � 95432 then the extremal metri satis�es(7.6) �R = �+ (�jEj2 + 112R2); where � � 0;and(7.7) ��nR = 0 on �M:In addition, we have R > 0 on M .Proof. Let � be the prinipal eigenfuntion of the pair (P4; P3): L� = �1� withthe boundary ondition �n� = 0. Consider the funtionF = R� :Then we �nd gives�F = ��  jEj2� + ( � 16 + �1)F � 2 < rF; r�� > � �1F � 2 < rF; r�� >and �nF = �nR� � F �n�� on �M:The strong maximum priniple and the boundary Hopf lemma then shows that theminimum must our on the interior and F is positive there.Now we are in a position to single out the pairs (M;�M) with Q = 0 and T = 0.Proposition 7.5. If M4 is loally onformally at with umbili boundary �M ,assume Y (g) > 0 and �(M)=0, then either (M;�M) = (S1 � S3+; S1 � S2), or(M;�M) = (I � S3; �I � S3) where I is an interval.Proof: We �rst alulate the Euler number to see that either b1 = 1; b3 = 0or b1 = 0; b3 = 1. This is due to the vanishing of the seond homology sine theargument of Bourguignon ([Bo℄) still applies in our situation: if b2 6= 0, there is aharmoni two form ! satisfying the absolute boundary ondition i(�n)(!) = 0 andi(�n)(d!) = 0. The Bohner formula gives12�!j2 = jr!j2 + 23Rj!j2�nj!j2 = 0 on �M:The strong maximum priniple and the Hopf boundary lemma then shows ! mustbe identially zero. Thus not both b1 and b3 an vanish.17



In the �rst ase, there is a harmoni 1-form ! on M4 satisfying the absoluteboundary onditions. Choose � = 136 in (7.5) for the funtional F , we have theexistene of onformal metri satisfying the equation(7.8) �R = �32 jEj2 + 18R2with the boundary ondition(7.9) �nR = 0:Consider the funtion G = j!jR . The alulation of Gursky then gives(7.10) �G+ 2 < rG; rRR >� 32 GR (jEj � p36 R)2 +Gj!j�2(jr!j2 � jrj!jj2)on the set 
 = fxj!(x) 6= 0g; and equality an hold at a point if and only if E hasthe form(7.11) E = 0B��3� 0 0 00 � 0 00 0 � 00 0 0 �1CASine the boundary ondition assures that �nG = 0, the Hopf boundary lemmashows that the maximum of G annot take plae there unless ! vanishes identiallyontraditing its non-triviality. The strong maximum priniple then asserts that Gis onstant so that jEj2 = 112R2. Then we �nd �R = 0, and the boundary ondition�nR = 0 implies that R is onstant. This implies j!j is onstant, and hene r! = 0.We �nd equality holds everywhere in (7.10). This shows that the Rii tensor is ofthe form 0B� 0 0 0 00 4� 0 00 0 4� 00 0 0 4�1CAThis shows that M is loally onformally equivalent to R � S3 with ! = 0displaying the S3 fator. The boundary ondition !(�n) = 0 shows that the bound-ary respet the produt struture and the one dimensional fator is tangent tothe boundary, but the total geodesi ondition implies that the other fator is aonstant positive Gauss urvature surfae, hene is S2. Thus globally we have(M;�M) = (S1 � S3+; S1 � S2).In the seond ase, we have a harmoni 3-form  satisfying the absolute boundaryonditions. Hene its dual 1-form ! = � is harmoni and satis�es the relativeboundary onditions. The foregoing argument still shows that M is loally of theform R �S3, but now the one dimensional fator is perpendiular to the boundary,whih being totally geodesi must be of onstant setional urvature. Thus (M;�M)is onformally equivalent to (I � S3=�; �I � S3=�).18
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