
ON A FOURTH ORDER CURVATURE INVARIANTSun-Yung A. Chang and Paul C. Yangx0. Introdu
tionThis arti
le is a 
ontinuation of the survey arti
le [C3℄ on the fourth order equa-tion �rst introdu
ed by Paneitz ([Pa℄). In parti
ular we des
ribe the geometri
aspe
t of the equation, as well as further analyti
 development sin
e that surveywas written.On a Riemannian manifold (Mn; g) of dimension n, the Lapla
e Beltrami opera-tor is the natural geometri
 operator. Under 
onformal 
hange of metri
 ~g = e2wg,when the dimension is two, �gw is related to �g by the simple formula:(0.1) �gw (') = e�2!�g(') for all ' 2 C1(M2) :In dimension greater than two, similar tranformation property 
ontinue to hold fora modi�
ation of the Lapla
ian operator 
alled the 
onformal Lapla
ian operatorL � � 4(n�1)n�2 �+ R where R is the s
alar 
urvature of the metri
. We have(0.2) Lgw(') = e�n+22 !Lg �en�22 !'�for all ' 2 C1(M).In general, we 
all a metri
ally de�ned operator A 
onformally 
ovariant of bide-gree (a; b), if under the 
onformal 
hange of metri
 g! = e2!g, the pair of 
orre-sponding operators A! and A are related by(0.3) A!(') = e�b!A(ea!') for all ' 2 C1(Mn) :A parti
ularly interesting su
h operator is a fourth order operator on 4-manifoldsdis
overed by Paneitz [Pa℄ in 1983:(0.4) P' � �2'+ Æ�23RI � 2Ri
� d'Resear
h of Chang supported by NSF grant DMS-9706864.Resear
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where Æ denotes the divergen
e, d the deRham di�erential and Ri
 the Ri

i tensor ofthe metri
. The Paneitz operator P (whi
h we will later denote by P4) is 
onformal
ovariant of bidegree (0; 4) on 4-manifolds, i.e.(0.5) Pg! (') = e�4!Pg(') for all ' 2 C1(M4) :For manifold of general dimension n, when n is even, the existen
e of a n-thorder operator Pn 
onformal 
ovariant of bidegree (0; n) was veri�ed in [GJMS℄.However it is only expli
itly known on the standard Eu
lidean spa
e Rn and hen
eon the standard sphere Sn. The expli
it formula for Pn on standard sphere Sn hasappeared in Branson [Br-1℄ and independently in Be
kner [B℄.In dimension four, the Paneitz equation has 
lose 
onne
tion with the Chern-Gauss-Bonnet formula. The Q 
urvature invariant de�ned by the Paneitz operatorintegrates to a numeri
al 
onformal invariant whi
h is essentially bounded by theEuler number. We have obtained ([CY3℄) general existen
e and uniqueness 
riteriafor the Paneitz and related equations. The appearan
e of the tra
eless Ri

i tensorin the equation 
an be exploited to 
hara
terize 
ertain spe
ial 
onformal 
lassesin the work of Gursky ([Gu1℄). He has also shown that the 
riteria for existen
ein ([CY3℄)is satis�ed by a large 
lass of 
onformal stru
tures. To further relate therole of the quantity Q 
urvature, it is natural to understand the 
ontribution ofthe boundary term in the Chern-Gauss-Bonnet integral when we in
orporate theQ 
urvature. Previously Chang-Qing ([CQ1℄, [CQ2℄) had 
onsidered the boundaryterm and de�ned a third order boundary operator whi
h we shall 
all P3 operatorwhi
h de�nes boundary 
urvature invariant. Re
ently we have derived in 
ollabo-ration with Qing ([CQY1, CQY2℄) Cohn-Vossen type inequality whi
h express thedi�eren
e of the Q 
urvature integral from the Euler number by an isoperimetri
ratio analogous to Finn's result in dimension two. Su
h an integral formula gives a
riteria for 
onformal 
ompa
ti�
ation of 
omplete 
onformally 
at manifold of pos-itive s
alar 
urvature and �nite Q 
urvature integral. As a 
onsequen
e we obtaina 
lassi�
ation of su
h manifolds with zero Q 
urvature.One 
annot dis
uss the Paneitz operator without mentioning its 
onne
tion withthe zeta fun
tion formulation of the determinant of the 
onformal Lapla
ian. Su
h
onsideration in fa
t lead to the relevan
e of the Paneitz operator to four dimen-sional 
onformal geometry, as well as the dis
overy of the boundary P3 operator.It is appropriate to a
knowledge on this o

asion the pioneering work of Osgood-Phillips-Sarnak ([OPS1℄, [OPS2℄) in two dimension.This paper is organized as follows. In se
tion one, we dis
uss basi
 propertiesof the Lapla
e operator in dimension two and 
ompared it, from the point of viewof 
onformal geometry, to analogous properties of the Paneitz operator P4. Inse
tion two, we dis
uss uniqueness results of the Paneitz equation on spheres. Inse
tion three, we 
onsider the variational fun
tional for the Paneitz operator P4 ongeneral 
ompa
t 4-manifolds. In se
tion four, we dis
uss another natural geomet-ri
 fun
tional-namely the zeta fun
tional determinant for the 
onformal Lapla
ianoperator-where Paneitz operator plays an important role. We survey some existen
eand regularity results of the extremal metri
s of the zeta fun
tional determinant,2



and indi
ate some re
ent geometri
 appli
ations by M. Gursky of the extremal met-ri
s to 
hara
terize some 
ompa
t 4-dimensional 
onformal stru
tures. In se
tion�ve, we dis
uss the P3 operator, whi
h is 
onformally 
ovariant of bidegree (0; 3);and its asso
iated 
urvatures T , operating on fun
tions de�ned on the boundaryof 
ompa
t 4-manifolds. We mention some existen
e results for extremal metri
sin this setting. In se
tion six, we dis
uss the Chern-Gauss-Bonnet formula thatrelates the Q 
urvature integral to the Euler number. We dis
uss the generalizationof the Cohn-Vossen inequality for surfa
es to 4-dimensional 
onformally 
at mani-folds as well as some appli
ation to obtain further uniqueness result for the Paneitzequation on su
h manifolds. In se
tion seven, we 
onsider a variational problem inwhi
h the P4 and P3 operators both play a role. We de�ne a numeri
al 
onformalinvariant of the pair (M4; �M) and prove an existen
e theorem when this numeri
alinvariant is suitably restri
ted. In order to avoid te
hni
al 
ompli
ations 
aused bythe boundary geometry, we 
onsider boundaries whi
h are umbili
. We show thatthe argument of Gursky ([Gu2℄) 
an be modi�ed to determine the 
onformally 
atpairs (M;�M) that satis�es the simplest equations Q = 0 and T = 0.We are indebted to many friends and 
ollaborators among whom we shall mentionBranson, Gilkey, Gursky, C.S. Lin, Qing, Sarnak and Xu.x1. Properties of the Paneitz operatorOn a 
ompa
t Riemannian manifold (Mn; g) without boundary, when the dimen-sion of the manifold is two, we denote by P2 � �� = ��g, the Lapla
ian operator.When the dimension is four, we denote by P = P4 the Paneitz operator as de�ned on(0:4). Thus both operators satisfy 
onformal 
ovarian
e property (Pn)! = e�n!Pn,where (Pn)! denote the operator with respe
t to (Mn; g!), g! = e2!g. Here we listseveral su
h properties for 
omparison.(i) On a 
ompa
t surfa
e, a natural 
urvature invariant asso
iated with theLapla
e operator is the Gauss 
urvature K. Under the 
onformal 
hange of metri
g! = e2!g, we have(1:1)a �! +K!e2! = K on M2where K! denotes the Gaussian 
urvature of (M2; g!). While on 4-manifold, wehave(1:1)b �P4! + 2 ~Qwe4! = 2 ~Q on M4where ~Q is the 
urvature invariant(1.2) 12 ~Q = ��R+ R2 � 3jRi
j2(ii) The analogy between K and ~Q be
omes more apparent if one 
onsiders theGauss-Bonnet formulae:(1:3)a 2��(M) = Z Kdv on M =M23



(1:3)b 4�2�(M) = Z � ~Q+ jCj28 � dv on M =M4where �(M) denotes the Euler-
hara
teristi
 of the manifold M , and jCj2= normsquared of the Weyl tensor. Sin
e jCj2dv is a pointwise invariant under 
onformal
hange of metri
, ~Qdv is the term whi
h measures the 
onformal 
hange in formula(1; 3)b.(iii) When n � 3, another natural analogue of �� on M2 is the 
onformalLapla
ian operator L as de�ned on (0:2). In this 
ase, if we denote the 
onformal
hange of metri
 as gu = u 4n�2 g for some positive fun
tion u, then we may rewritethe 
onformal 
ovariant property (0:2) for L as(1:4)a Lu(') = u� n+2n�2L(u') on Mn; n � 3for all ' 2 C1(Mn).A di�erential equation asso
iated with the operator L is the s
alar 
urvatureequation:(1:5)a Lu = Ruun+2n�2 on Mn; n � 3 :Equation (1:5)a has been intensively studied in the re
ent de
ade. For example thefamous Yamabe problem in di�erential geometry is the study of the equation (1:5)afor solutions Ru � 
onstant; the problem has been 
ompletely solved by Yamabe[Y℄, Trudinger [T-1℄, Aubin [Au℄ and S
hoen [S
℄.(iv) There is also a natural fourth order Paneitz operator Pn4 in all dimensionn 6= 4, whi
h enjoys the 
onformal 
ovarian
e property with respe
t to 
onformal
hanges in metri
s also. The relation of this operator to the Paneitz operator indimension four is 
ompletely analogous to the relation of the 
onformal Lapla
ianto the Lapla
ian in dimension two. On (Mn; g) when n 6= 4, de�nePn4 = (��)2 + Æ(anR+ bnRi
)d+ n� 42 Qn4 ;where Qn4 = 
njRi
j2 + dnR2 � 12(n� 1)�R;and an = (n�2)2+42(n�1)(n�2) , bn = � 4n�2 , 
n = � 2(n�2)2 ; dn = n3�4n2+16n�168(n�1)2(n�2)2 aredimensional 
onstants. Thus P 44 = P4; Q44 = ~Q. Then (Branson [Br1℄), we have forgu = u 4n�4 g, n 6= 4(1:4)b (Pn4 )u (') = u�n+4n�4 (Pn4 ) (u')for all ' 2 C1(Mn). We also have the analogue for the Yamabe equation:(1:5)b Pn4 u = Qn4un+4n�4 on Mn; n 6= 4 :4



We remark that on Rn with Eu
lidean metri
, Pn4 redu
es to the bi-Lapla
ianoperator. Equation (1:5)b takes the form (��)2u = 
nun+4n�4 , an equation whi
h hasbeen studied in literature e.g. [PuS℄.x2. Uniqueness result on SnIn this se
tion we will 
onsider the behavior of the Paneitz operator on thestandard spheres (Sn; g). First we re
all the situation when n = 2. On (S2; g),when one makes a 
onformal 
hange of metri
 g! = e2!g, the Gaussian 
urvatureK! = K(g!) satis�es the di�erential equation(2.1) �! +K!e2! = 1on S2, where � denotes the Lapla
ian operator with respe
t to the metri
 g on S2.When Kw � 1 on (2.1), the Cartan-Hadamard theorem asserts that e2wg isisometri
 to the standard metri
 g by a di�eomorphism '; and the 
onformality re-quirements says ' is a 
onformal transformation of S2. In parti
ular, w = 12 log jJ'j,where J' denotes the Ja
obian of the transformation '.In [CL℄, Chen and Li studied the 
orresponding equation of (2.1) on R2 withKw � 1, and they proved, using the method of moving plane, that when u is asmooth fun
tion de�ned on R2 satisfying(2.2) ��u = e2u on R2with RR2 e2udx <1, then u(x) is of the form u(x) = log 2��2+jx�x0j2 for some x0 2 R2and some � > 0. There is an alternative argument by Chanillo-Kiessling ([ChK℄)for this uniqueness result using the isoperimetri
 inequality.On (Sn; g), denote gu = u 4n�2 g the 
onformal 
hange of metri
 of g, where u is apositive fun
tion, then the s
alar 
urvature Ru = R(gu) of the metri
 is determinedby the following di�erential equation(2.3) �4(n� 1)n� 2 �u+ n(n� 1)u = Ruun+2n�2 :When Ru = n(n � 1), a uniqueness result established by Obata [Ob℄ states thatthis happens only if the metri
 gu is isometri
 to g or equivalently u = jJ'jn�22n forsome 
onformal transformation ' of Sn. In [CGS℄ Ca�arelli-Gidas-Spru
k studiedthe 
orresponding equation on Rn :(2.4) ��u = n(n� 2)un+2n�2 ; u > 0 on Rn :They 
lassi�ed all solutions of (2.4), via the method of moving plane, as u(x) =( 2��2+jx�x0j2 )n�22 for some x0 2 Rn , � > 0.For all n, on (Sn; g), there also exists a n-th order (pseudo) di�erential operatorPn whi
h is the pull ba
k via sterographi
 proje
tion of the operator (��)n=2 from5



Rn with Eu
lidean metri
 to (Sn; g). Pn is 
onformal 
ovariant of bi-degree (0, n),i.e. (Pn)w = e�nwPn. A

ording to Branson [Br1℄ and Be
kner [B℄:(2.5) 8<: For n even Pn =Qn�22k=0 (��+ k(n� k � 1));For n odd Pn = ���+ �n�12 �2�1=2 Qn�32k=0 (��+ k(n� k � 1)):On general 
ompa
t manifolds in the 
ases when the dimension of the manifold istwo or four, there exist natural 
urvature invariants Qn of order n whi
h, under
onformal 
hange of metri
 gw = e2wg, is related to Pnw through the followingdi�erential equation:(2.6) �Pnw + (Qn)wenw = Qn on M :In the 
ase when n = 2, P2 is the negative of the Lapla
ian operator, Q2 = K,the Gaussian 
urvature. When n = 4, P4 is the Paneitz operator, Q4 = 2 ~Q4as de�ned in (1.2). In the spe
ial 
ase of (S2; g), P2 = P2, similarly on (S4; g),P4 = P4. In se
tion 5 below, we will also dis
uss the existen
e of P1, P3 operatorsand 
orresponding 
urvature invariants Q1 and Q3 de�ned on boundaries of general
ompa
t manifolds of dimension 2 and 4 respe
tively.On (Sn; g), when the metri
 gw is isometri
 to the standard metri
, then (Qn)w =Qn = (n� 1)! . In this 
ase, equation (2.6) be
omes(2.7) �Pnw + (n� 1)!enw = (n� 1)! on SnOne 
an establish the following uniqueness result for solutions of equation (1.7).Theorem 2.1. [CY4℄ On (Sn; g), all smooth solutions of the equation (2.7) areof the form e2wg = '�(g) for some 
onformal transformation ' of Sn; i.e. w =1n log jJ'j for the transformation '.Appealing to the 
onformal 
ovarian
e of the equation (2.7) one 
an rewrite theequation on Rn:(2.8) (��)n=2u = (n� 1)!enu on Rn :For the fourth order equation C.S. Lin ([L℄) and Xu ([X1℄) have obtained a 
las-si�
ation of solutions of the equation (2.8) in R4 . Then 
ombining the argumentsof Wei-Xu ([WX℄) in even dimensions and that of Zhu ([Z℄) in odd dimensions,solutions of equation (2.8) 
an be 
lassi�ed:Theorem 2.2. ([L℄, [X1℄, [WX℄, [Z℄) On Rn , suppose u is a smooth solution ofthe equation (2.8) su
h that:(2.9) u(x) = log 21 + jxj2 + o(jxj2);6



then u(x) is of the form(2.10) u(x) = log 2��2 + jx� x0j2 for some x0 2 Rn � > 0:Remarks1. In the 
ase when w is a minimal solution of the fun
tional with Euler-Lagrangeequation (1.7), the result in Theorem 2.2 is a 
onsequen
e of the sharp Sobolev typeinequality of Milin-Lebedev when n = 1, that of Moser [Mo℄ and Onofri [On℄ whenn = 2 and Be
kner [B℄ for general n.2. The 
ondition (2.9) is ne
essary as one 
an show using an argument of M
Owen([M
℄) that for any 
hoi
e of ai > 0; 1 � i � 4 there exists solution v of the equation(��)2v = exp(� 4Xi=1 aix2i )e4v; onR4whi
h has the asymptoti
 behavior v(x) � �2 log(jxj). Then settingu(x) = �14 4Xi=1 aix2i + v(x);we obtain an extraneous solution of the equation whi
h does not satisfy the 
ondition(2.9). Geometri
ally su
h solutions 
orrespond to metri
s whi
h are in
omplete andhas very large negative s
alar 
urvature at in�nity.Con
erning the analogue of the Yamabe equation (1.5)b, Lin and Xu have alsoobtained uniquess result on Rn.Theorem 2.3. ([L℄, [X1℄) In Rn ; n � 5, the positive solutions of the equation�2u = u(n+4)=(n�4) are of the form u(x) = ( ��2+jx�x0j2 )n�42 .In general dimensions n � 5 there is additional analyti
 diÆ
ulty asso
iated withthe la
k of a good maximum prin
iple for fourth order equations. In parti
ular itis not a simple matter to verify that minimizing solutions to (1.5)b are positive.x3. Existen
e and regularity of the Paneitz equation on 4-manifoldOn (M2; g) with Gaussian 
urvature K = Kg, 
onsider the fun
tional(3.1) J [w℄ = Z jrwj2dv + 2 Z Kwdv � (Z Kdv) log�Z e2wdvwhere the gradient, the volume form are taken with respe
t to the metri
 g, and�R 'dv = R 'dv=volume for all '.The Euler-Lagrange equation for J is:(3.2) �! + 
e2! = K on M27



where 
 is a 
onstant. Noti
e that (3.2) is a spe
ial 
ase of equation (1:1)a withK! � 
. For the spe
ial manifold (S2; g), K � 1, (3.2) is a spe
ial 
ase of equation(2.1).On a 
ompa
t 4-manifold (M4; g), denote by kp = R Qdv, and de�ne(3.3) II[!℄ = Z (P4!)! + 4 Z Qwdv � (Z Qdv) log(�Z e4!dv)Theorem 3.1. ([CY-3℄) Suppose kp < 8�2, and suppose P4 is a positive operatorwith ker P = f
onstantsg; then inf IIw2W 2;2[w℄ is attained. Denote the in�mum bywp, then the metri
 gp = e2wpg satis�es Qp � 
onstant = kp= R dv.Remarks(1) In general, the positivity of P4 is a ne
essary 
ondition for the fun
tional II tobe bounded from below. Re
ent work of Gursky [Gu-2℄ indi
ates that under theadditional assumption that kp > 0 and that g is of positive s
alar 
lass, P4 is alwayspositive. Furthermore, under the same assumption, kp < 8�2 is always satis�edunless (M4; g) is 
onformally equivalent to (S4; g); in the latter 
ase then kp = 8�2and the extremal metri
 for II[w℄ has been studied in [BCY℄.(2) Noti
e that the extremal fun
tion wp in W 2;2 for II satis�es the equation(3.4) �P4wp +Qpe4!p = Qwith Qp � 
onstant. Thus standard ellipti
 theory 
an be applied to establish thesmoothness of wp. This is in 
ontrast with the smoothness property of the extremalfun
tion wd of the log-determinant fun
tional F [w℄, in whi
h II[w℄ is one of theterm. We will dis
uss regularity property of wd in se
tion 4.(3) A key analyti
 fa
t used in establishing Theorem 3.1 above is the generalizedMoser inequality established by Adams [A℄, whi
h in the spe
ial 
ase of domains 
in R4 states that W 2;20 (
) ,! expL2.x4 Zeta fun
tional determinantOn 
ompa
t surfa
e (M2; g), let f0 < �1 � �2 � � � � g be the spe
trum of the(negative of) Lapla
ian -�g. Let �(s) = P��si de�ned for Res > 12 , then � has ameromorphi
 
ontinuation to the whole plane and is regular at the origin using theheat kernel expansion of �g. �� 0(0) is well-de�ned, and one may de�ne log det�g tobe �� 0(0) (as in Ray-Singer [RS℄). In [Po℄, Polyakov further 
omputed the logarithmof the ratio of determinant of two 
onformally related metri
s gw = e2wg on a
ompa
t surfa
e without boundary.(4.1) F [w℄ = log det�wdet� = 13 ZM (jrwj2 + 2Kw)dvgunder the normalization that vol(gw) = vol(g). Noti
e that F [w℄ is essentiallythe same as the fun
tional J [w℄ in (3.1). In a series of papers, Osgood-Phillips-Sarnak ([OPS1℄, [OPS2℄)have shown among other things that F [w℄ enjoys a 
ertain8




ompa
tness property on a

ount of the Moser-Trudinger inequality, and provedthat in ea
h 
onformal 
lass, the fun
tional F [w℄ attains its extrema at the 
onstant
urvature metri
s.When the dimension of a 
losed manifold is odd, it was shown in Branson [Br2℄that log detLg is a 
onformal invariant. Thus the next natural dimension to studythe generalized Polyakov formula (4.1) is four.Suppose (M; g) is a 
ompa
t, 
losed 4-manifold, and suppose A is a 
onformally
ovariant operator satisfying (0.3). In [BO℄ Branson-Orsted gave an expli
it 
om-putation of the normalized form of log det Awdet A whi
h may be expressed as:(4.2) F [w℄ = 
1I[w℄ + 
2II[w℄ + 
3III[w℄where 
1; 
2; 
3 are 
onstants depending only on A andI[w℄ = 4 Z jCj2wdv � �Z jCj2dv� log �Z e4wdvII[w℄ = hPw;wi+ 4 Z Qwdv � �Z Qdv� log �Z e4wdv;III[w℄ = 12�Y (w)� 13 Z (4R) wdv� ;where C is the Weyl tensor, and Y (w) = R ��(ew)ew �2� 13 R R jrwj2:We also remarkthat the fun
tional III[w℄ [BCY℄ may be written asIII[w℄ = 13 �Z R2w dvw � Z R2 dv�so that when the ba
kground metri
 is assumed to be the Yamabe metri
 in apositive 
onformal 
lass, the fun
tional III is non-negative.Let us de�ne the 
onformal invariant:kd = �
1 Z jCj2dv � 
2 Z Qdv= (�
2) 4�2�(M) + �
28 � 
1� Z jCj2dv(4.3)Theorem 4.1. ([CY3℄) If the fun
tional F satis�es 
2 < 0; 
3 < 0, and kd <(�
2)8�2, then supw2W 2;2 F [w℄ is attained by some fun
tion wd and the metri
 gd =e2wdg0 satis�es the equation(4.4) 
1 jCdj2 + 
2Qd � 
34dRd = �kd �Vol(gd)�1:Further, all fun
tions ' 2W 2;2 satisfy the inequality:(4.5) kd log �Z e4('� ~')dvd � (�
2) hP'; 'i � 12
3Yd('):where ~' denotes the mean value of ' with respe
t to the metri
 gd, and �R denotes1vol(M;gd) RM dvd. 9



Theorem 4.2. If kd � 0, the extremal metri
 gd for the fun
tional F 
orrespond-ing to the 
onformal Lapla
ian operator L is unique.This uniqueness assertion is obtained as 
onsequen
e of the 
onvexity of the
orresponding fun
tionals. Applying the uniqueness result, we were able to identifysome of the extremal metri
s with known metri
 in spe
ial 
ir
umstan
es.As a 
onsequen
e of a general regularity result for minimizing W 2;2 solution ofthe equation:(4.6) ��! = 
1jr!j4 + 
2(�!)2 + 
3�!jr!j2 + lower order terms;we have the following regularity result:Theorem 4.3. ([CGY℄) Let F [!℄ be as in Theorem 4.1, then sup!2!2;2 F [!℄, whenattained, is a smooth fun
tion.The appearan
e of the Ri

i tensor in the Euler equation (4.4) 
an be put togood use sin
e su
h terms also arise in the Bo
hner formula for the Lapla
ian ofthe length of harmoni
 forms. Indeed Gursky has given ([Gu1℄) beautiful appli
a-tion of the extremal metri
s (also some modi�ed version) to 
hara
terize 
ertainspe
ial 4-dimensional 
onformal 
lasses. To state his results, we need to make somede�nitions. On a 
ompa
t manifold (Mn; g), de�ne the Yamabe invariant of g as(4.7) Y (g) = infg!=e2!gvol(g!)�n�2n Z Rg!dvg! :By the work of Yamabe, Trudinger, Aubin and S
hoen mentioned in se
tion 1,every 
ompa
t manifold Mn admits a metri
 g! 
onformal to g whi
h a
hievesY (g), hen
e g! has 
onstant s
alar 
urvature. We say (Mn; g) is of positive s
alar
lass if Y (g) > 0.On 
ompa
t 4-manifolds, both Y (g) and R Qgdvg are 
onformal invariants. Thefollowing result of Gursky [Gu1℄ indi
ates that these two 
onformal invariants 
on-strain the topologi
al type of M4.Theorem 4.4. ([Gu1℄) Suppose (M4; g) is a 
ompa
t manifold with Y (g) > 0,(i) If R Qgdvg > 0, then M admits no non-zero harmoni
 1-forms. In parti
ular,the �rst Betti number of M vanishes.(ii) If R Qgdvg = 0, and if M admits a non-zero harmoni
 1-form, then (M; g) is
onformal equivalent to a quotient of the produ
t spa
e S3�R. In parti
ular (M; g)is lo
ally 
onformally 
at.As a 
orollary of part (ii) of Theorem 4.4, one 
an 
hara
terize quotient of theprodu
t spa
e S3�R as 
ompa
t, lo
ally 
onformally 
at 4-manifold with Y (g) > 0and �(M) = 0.A 
ru
ial step in the proof of theorem above is to show that for suitable 
hoi
e of
1, 
2, 
3, the extremal metri
 gd for the log-determinant fun
tional F [!℄ exists andis unique. Furthermore under the assumption Y (g) > 0, one has Rgd > 0; if Y (g) =0 then Rgd � 0. In the 
ase R Qgdvg = 0, existen
e of non-zero harmoni
 1-form10



a
tually indi
ates that Rgd � positive 
onstant. It is 
urious that in 
hara
terizingthese spe
ial 
onformal 
lasses one 
annot work dire
tly with the Q = 
onstantmetri
s. Using similar ideas, Gursky [Gu1℄ has also 
hara
terized the 
onformal
lass of Kahler-Einstein surfa
es:Theorem 4.5. ([Gu1℄) Suppose (M4; g) is 
ompa
t 4-manifold with non-negatives
alar 
urvature, and suppose the self interse
tion form has a positive element, then(4.8) Z jW+j2dV � 4�23 (2�+ 3�)where W+ is the self dual part of the Weyl tensor, � is the euler number and � isthe signature. Furthermore,(i) equality is a
hieved in (4.8) by some metri
 with Y (g) > 0 if and only if g is
onformal to a Kahler-Einstein metri
 with positive s
alar 
urvature,(ii) equality is a
hieved in (4.8) by some metri
 with Y (g) = 0 if and only if gis 
onformal to a Kahler Ri

i 
at metri
.x5. P3 { a boundary operatorThere exist natural boundary operators for fun
tions de�ned on the boundaryof 
ompa
t manifolds. We des
ribe su
h operators on boundary of Mn for n = 2and n = 4. Most of the material des
ribed in this se
tion is 
ontained in the jointwork [CQ1℄, [CQ2℄and [CQ3℄. The reader is also referred to the le
ture notes [C2℄for a more detailed des
ription of su
h operators derived in 
onjun
tion with thegeneralized formula [BO℄ [BCY℄ [CY℄ of Polyakov [Po℄ of zeta fun
tional determinantfor 4-manifolds with boundary. We start with terminology. On 
ompa
t manifold(Mn; g) with boundary, we say a pair of operators (A;B) satisfy the 
onformalassumptions if:Conformal Assumptions. Both A and B are 
onformally 
ovariant of bidegree(a1; a2) and (b1; b2) in the following senseAw(f) = e�a1!A(ea2!f)Bw(g) = e�b1!B(eb2!g);for any f 2 C1(M); g 2 C1(�M). Assume also thatB(ea2!g) = 0 if and only if Bw(g) = 0;for any ! 2 C1( �M), where Aw, Bw denote the operator A, B respe
tively withrespe
t to the 
onformal metri
 gw = e2wg.Examples: The typi
al examples of pairs (A;B) whi
h satisfy all three assump-tions above are: 11



(i) when n = 2, A = ��; B = ��n (negative of) the Lapla
ian operator and theNeumann operator respe
tively.(ii) when n = 4, in [CQ-1℄ we have dis
overed a boundary operator P3 
onformalof bidegree (0,3) on the boundary of a 
ompa
t 4-manifold. On 4-manifolds, (P4; P3)is a pair of operators satisfying the 
onformal 
ovariant assumptions, whi
h in thesense we shall des
ribe below, is a natural analogue of the pair of operators (��; ��n )de�ned on 
ompa
t surfa
es.On 
ompa
t surfa
eM with boundary, the Gauss-Bonnet formula takes the form(5.1) 2��(M) = ZM Kdv + I�M kd�;where k denotes the geodesi
 
urvature of �M and d� the ar
 length measure on�M . Through 
onformal 
hange of metri
 gw = e2wg for w de�ned on �M , theNeumann operator ��n is related to the geodesi
 
urvature k via the di�erentialequation(5.2) ��w�n + kwew = k on �M:On 4-manifold with boundary there exists a boundary lo
al invariant of order 3and a 
onformal 
ovariant operator P3 of bidegree (0; 3), the relation of (Q; T ) to(P4; P3) on 4-manifolds is parallel to that of (K; k) to (�; ��n ) on 
ompa
t surfa
es.(5.3) P3 = �12 ��n�� ~� ��n � 23H ~�+L�� ~r� ~r� +(13R�R�N�N ) ��n + 13 ~rH � ~r:(5.4) T = 112 ��nR+ 16RH � R�N�NL�� + 19H3 � 13TrL3 � 13 ~�H:In parti
ular, via the 
onformal 
hange of metri
s gw = e2wg, P3 and T satis�esthe equation:(5.5) �P3w + Twe3w = T on �M;and(5.5) (P3)w = e�3wP3 on �M:The operator T and P3 were dis
overed in [CQ2℄ through the Chern-Gauss-Bonnet formula for 4-manifolds with boundary:(5.7) �(M) = (32�2)�1 ZM (jCj2 + 4Q)dx+ (4�2)�1 I�M (T � L4 � L5)dy:In the boundary integral above the invariants L4 and L5 involve the ambient 
ur-vature tensor and the se
ond fundamental form Lab. We shall use an orthonormal12



frame and use the latin indi
es to run through the ambient indi
es and the Greekindi
es to only run through the boundary dire
tions.(5.8) L4 = �RH3 +R�N�NH �R�N�NL�� + R
�
�L�� ;and(5.9) L5 = �29L��L��L

 + L��L�
L�
 � L��L�
L
�:Analogous to the Weyl term, L4 and L5 are boundary invariant of order 3 whi
h arepointwise invariant under 
onformal 
hange of metri
s. Hen
e for a �xed 
onformal
lass of metri
s, 12 ZM Qdv + I�M Tdsis a �xed 
onstant. We remark that in the original Chern-Gauss-Bonnet formula Tdi�ers from the present form by 13 ~�H, whi
h does not a�e
t the integration formula(5.7).Thus on 4-manifolds with boundary it is natural to study the energy fun
tional(5.10) E[w℄ = 14 Z wP4w + 12 I�M wP3w:In view of the 
ompli
ated expressions of the operators P4, P3, Q and T , it isdiÆ
ulty to study the fun
tional E[w℄ de�ned as above on general 
ompa
t mani-folds. We mention some spe
ial situations that allows an understanding of the basi
situation. In the 
ase of (B4; S3) with the standard metri
s, we have(5.11) P4 = (�)2; P3 = �12N�� ~�N � 2 ~� and Q = 0; and T = 3;where ~� denotes the the Lapla
ian operator � on (S3; g). Thus the expressionin E[w℄ be
omes relatively simple. In this spe
ial 
ase, we are able to study thefun
tional E[w℄. The main analyti
 tool is the following sharp inequality of Lebedev-Milin type on (B4; S3).Theorem 5.1. Suppose w 2 C1( �B4). Then(5.12)log� 12�2 IS3 e3(w� �w)dy� � 34�2 �14 ZB4 w�2w + IS3 12wP3w � 14 �w�n + 14 �2w�n2 � ;under the boundary assumptions RS3 � [w℄ds[w℄ = 0 where � is the s
alar 
urvatureof S3. Moreover the equality holds if and only if e2wg on B4 is isometri
 to the
anoni
al metri
 g. 13



x6 An extension of the Cohn-Vossen/Huber/Finn inequalityWe �rst re
all the Cohn-Vossen ([CV℄) inequality for 
omplete surfa
es. Suppose(M; g) is a 
omplete surfa
e with Gauss 
urvature K in L1, then(6.1) ZM KdA � 2��:In fa
t, Huber ([H℄) has shown that su
h a surfa
e has a 
onformal 
ompa
ti�
ationM = ~MnfP1; :::Png where ~M is a 
ompa
t Riemann surfa
e. At ea
h pun
ture Piby inverting a 
onformal dis
 DinfPig, Finn ([Fn℄) has 
onsidered the isoperimetri
ratio �i = limr!1 (Length(�Dr))22Area(Dr) , and a

ounted for the de�
it in the inequalityabove:(6.2) 2��� ZM KdA = nXi=1 �i:A 
ompletely analogous situation holds in dimension four provided we restri
t our-selves to 
onformally 
at 4-manifolds of positive s
alar 
urvature. Let us �rst re
allthat S
hoen-Yau ([SY℄) has demonstrated that for su
h manifolds, the holonomy
over of su
h manifolds embed 
onformally as domain ~M in S4 with a boundarywhi
h has Hausdor� dimension less than one. Thus by going to a 
overing of su
hmanifolds we may assume that we are dealing with domains in R4.Theorem 6.1. ([CQY1℄)Let e2wjdxj2 be a 
omplete metri
 on 
 = R4nfP1; :::; Png with nonnegative s
alar
urvature near the pun
tures. Suppose in addition that Q is integrable. Then wehave(6.3) �(
)� 18�2 Z
QdV = nXi=1 �iwhere at ea
h pun
ture Pi a 
onformal disk DinfPig is inverted and(6.4) �i = limr!1 (vol(�Br))4=34(2�2)1=3vol(Br) :The �niteness of the Q integral together with the embedding result of S
hoen-Yauhas strong impli
ation for the underlying topology:Theorem 6.2. ([CQY2℄) Let (M4; g) be a simply 
onne
ted 
omplete 
onformally
at manifold satisfying s
alar 
urvature R � 
 > 0, Ri
 � �
, and R jQjdv < 1;then M is 
onformally equivalent to R4nfP1; :::; Png. In 
ase M4 is not assumedsimply 
onne
ted, under the additional assumption that M4 is geometri
ally �niteas a Kleinian manifold, then M is 
onformally equivalent to ~MnfP1; :::; Png, where~M is a 
ompa
t 
onformally 
at manifold.Remarks 14



1. An important ingredient in the proof of theorem is the 
onsideration of theboundary P3 operator. The lo
al expression for the quantity T allows us to interpretthe T integral as 
ontrolling the growth of volume. The idea is that the �nitenessof the Q integral does not allow large growth of volume hen
e 
onstrain the numberof ends.2. As a 
onsequen
e of this �niteness 
riteria, we 
an 
lassify the 
omplete
onformal metri
s de�ned on domains in S4, whi
h satisfy the 
urvature 
onditionsin the statement of Theorem 6.2, and in addition has 
onstant Q 
urvature whi
hare integrable. There are only three su
h metri
s: the standard metri
 on S4, the
at metri
 on R4 and the 
ylindri
al metri
 on R4nf0g.x7 A 
onformal variational problem for 4-manifold with boundaryIn this se
tion we 
onsider 
onformal variations of Neumann type on a 4-manifoldwith boundary (M;�M). That is the ba
kground metri
 g on the pair (M;�M)whi
h satisfy the property that the s
alar 
urvature of M is 
onstant and the mean
urvature H vanishes on the boundary. This 
ondition 
an always be a
hieveda

ording to Es
obar's solution of the Yamabe problem on manifolds with boundary([E℄). We 
onsider 
onformal 
hange of metri
 gw = e2wg = u2g that satisfy the
onstraints(7.1) vol(M)[w℄ = vol(M)[0℄H[w℄ = 0:For 
onvenien
e we set Y (g) = infZM Lu � udvwhere the in�mum is taken over positive 
onformal fa
tors satisfying the 
onstraint(7.1). The variational fun
tional we shall 
onsider is an analogue of the fun
tionalII dis
ussed in se
tion three with additional terms to a

ommodate the presen
e ofboundary:(7.2) J [w℄ = 14 Z fwP4w + 12wQg+ 12 I�M wP3w � (1=8 Z Q)log Z e4w:In order to formulate 
riterion for existen
e of extremal metri
s for the fun
tionalJ let us de�ne the natural invariant(7.3) kp(M;�M) = 12 ZM Qdv + I�M TdsThen the analysis of ([CQ3℄) yields the following:Theorem 7.1. Suppose kp(M;�M) < 16�2 and the operator pair (P4; P3) is posi-tive ex
ept on 
onstants, then the fun
tional J under the 
onstraint (7.1) a
hievesits minimum.In fa
t it is easy to see that the fun
tional J is 
onvex under the stronger as-sumption kp(M;�M) � 0 and hen
e: 15



Theorem 7.2. Suppose kp(M;�M) � 0 and the operator pair (P4; P3) is positiveex
ept on 
onstants, then the fun
tional J under the 
onstraint (7.1) has a unique
riti
al point whi
h is the minimum.In the following we impose additional boundary 
onditions on the pair (M;�M)in order to formulate the simplest boundary value problem for the operator pair(P4; P3). It would be interesting to relax this boundary 
ondition to a

ommodatemore general situations.De�nition. We say �M is umbili
 if the se
ond fundamental form has all equalprin
ipal eigenvalues.Remark. The umbili
ity 
ondition is 
onformally invariant, thus under thisassumption, the solution of Yamabe problem with minimal boundary a
tually makesthe boundary totally geodesi
.Proposition 7.3. Suppose (M4; g) has 
onstant positive s
alar 
urvature and �Mhas zero mean 
urvature, then kp(M;�M) � 16�2; and equality holds if and only if(M;�M) is 
onformally equivalent to the upper hemisphere (S4+; S3).Proof: The solution of the Yamabe problem with boundary provides a 
onformalmetri
 with 
onstant s
alar 
urvature with xero mean 
urvature H = 0 on theboundary. Hen
e the boundary 
ontribution in the de�nition of kp vanishes andhen
e kp(M;�M) = Z (�jEj2 + 112R2)dV� Z 112R2dV� 16�2Of 
ourse, equality 
an hold if and only if the Yamabe 
onstant is equal to thatof the hemisphere, in whi
h 
ase the positive mass theorem (see [E℄) asserts that(M;�M) is 
onformally equivalent to the hemisphere (S4+; S3).In order to 
ir
umvent the positivity requirement on the pair (P4; P3), we addan extra term to the fun
tional J and 
onsider(7.4) F [w℄ = � Z R2dV + J [w℄:The argument in the proof of Theorem 2.1 in ([CQ3℄) shows that as long as � > 0,and kp � 16�2, we have W 2;2 
ompa
tness of the minimizing sequen
e for thefun
tional F under the 
onstraint (7.1). Hen
e we 
an minimize the fun
tional Fto produ
e a minimizing extremal metri
. The extremal metri
 satisfy the Eulerequation(7.5) �R = �+ 
(�jEj2 + 112R2); where � � 0; 
 = 14(3� + 112)�1;and the boundary 
ondition H = 0. Sin
e the boundary 
ondition is of Neumanntype, the regularity theory developed in ([CGY2℄) goes through without essential
hange. Hen
e we may assume the solution is smooth up to the boundary.16



Lemma 7.4. If 0 < � � 95432 then the extremal metri
 satis�es(7.6) �R = �+ 
(�jEj2 + 112R2); where � � 0;and(7.7) ��nR = 0 on �M:In addition, we have R > 0 on M .Proof. Let � be the prin
ipal eigenfun
tion of the pair (P4; P3): L� = �1� withthe boundary 
ondition �n� = 0. Consider the fun
tionF = R� :Then we �nd gives�F = �� 
 jEj2� + (
 � 16 + �1)F � 2 < rF; r�� > � �1F � 2 < rF; r�� >and �nF = �nR� � F �n�� on �M:The strong maximum prin
iple and the boundary Hopf lemma then shows that theminimum must o

ur on the interior and F is positive there.Now we are in a position to single out the pairs (M;�M) with Q = 0 and T = 0.Proposition 7.5. If M4 is lo
ally 
onformally 
at with umbili
 boundary �M ,assume Y (g) > 0 and �(M)=0, then either (M;�M) = (S1 � S3+; S1 � S2), or(M;�M) = (I � S3; �I � S3) where I is an interval.Proof: We �rst 
al
ulate the Euler number to see that either b1 = 1; b3 = 0or b1 = 0; b3 = 1. This is due to the vanishing of the se
ond homology sin
e theargument of Bourguignon ([Bo℄) still applies in our situation: if b2 6= 0, there is aharmoni
 two form ! satisfying the absolute boundary 
ondition i(�n)(!) = 0 andi(�n)(d!) = 0. The Bo
hner formula gives12�!j2 = jr!j2 + 23Rj!j2�nj!j2 = 0 on �M:The strong maximum prin
iple and the Hopf boundary lemma then shows ! mustbe identi
ally zero. Thus not both b1 and b3 
an vanish.17



In the �rst 
ase, there is a harmoni
 1-form ! on M4 satisfying the absoluteboundary 
onditions. Choose � = 136 in (7.5) for the fun
tional F , we have theexisten
e of 
onformal metri
 satisfying the equation(7.8) �R = �32 jEj2 + 18R2with the boundary 
ondition(7.9) �nR = 0:Consider the fun
tion G = j!jR . The 
al
ulation of Gursky then gives(7.10) �G+ 2 < rG; rRR >� 32 GR (jEj � p36 R)2 +Gj!j�2(jr!j2 � jrj!jj2)on the set 
 = fxj!(x) 6= 0g; and equality 
an hold at a point if and only if E hasthe form(7.11) E = 0B��3� 0 0 00 � 0 00 0 � 00 0 0 �1CASin
e the boundary 
ondition assures that �nG = 0, the Hopf boundary lemmashows that the maximum of G 
annot take pla
e there unless ! vanishes identi
ally
ontradi
ting its non-triviality. The strong maximum prin
iple then asserts that Gis 
onstant so that jEj2 = 112R2. Then we �nd �R = 0, and the boundary 
ondition�nR = 0 implies that R is 
onstant. This implies j!j is 
onstant, and hen
e r! = 0.We �nd equality holds everywhere in (7.10). This shows that the Ri

i tensor is ofthe form 0B� 0 0 0 00 4� 0 00 0 4� 00 0 0 4�1CAThis shows that M is lo
ally 
onformally equivalent to R � S3 with ! = 0displaying the S3 fa
tor. The boundary 
ondition !(�n) = 0 shows that the bound-ary respe
t the produ
t stru
ture and the one dimensional fa
tor is tangent tothe boundary, but the total geodesi
 
ondition implies that the other fa
tor is a
onstant positive Gauss 
urvature surfa
e, hen
e is S2. Thus globally we have(M;�M) = (S1 � S3+; S1 � S2).In the se
ond 
ase, we have a harmoni
 3-form  satisfying the absolute boundary
onditions. Hen
e its dual 1-form ! = � is harmoni
 and satis�es the relativeboundary 
onditions. The foregoing argument still shows that M is lo
ally of theform R �S3, but now the one dimensional fa
tor is perpendi
ular to the boundary,whi
h being totally geodesi
 must be of 
onstant se
tional 
urvature. Thus (M;�M)is 
onformally equivalent to (I � S3=�; �I � S3=�).18



Remark: An alternative method would be to prove this proposition dire
tly bydoubling the manifold, by re
e
ting a
ross the boundary, this is possible be
auseall boundary data are of Neumann type. However we present this argument sin
eit o�ers possibility to generalize to more 
ompli
ated situations.Referen
es[A℄ D. Adams; \A sharp inequality of J. Moser for higher order derivatives",Annals of Math., vol 128, (1988), pp 385{398.[Au℄ T. Aubin;\ Equations di�erentielles non lineaires et probleme de Yamabe
on
ernant la 
ourbure s
alaire", J. Math. Pures Appl. 55(1976), 269-296.[B℄ W. Be
kner; \Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality", Annals of Math., 138 (1993),pp 213-242.[Bo℄ J.P. Bourguignon; " La varietes du dimension 4 a signature non null dont la
ourbure est harmonique sont d'Einstein, Invent. Math. 63 (1981), 263-286.[Br1℄ T. Branson: "Di�erential operators 
annoni
ally asso
iated to a 
onformalstru
ture", Math. S
and. 57 (1985), 293-345.[Br2℄ T. Branson; \Sharp Inequality, the Fun
tional Determinant and the Com-plementary series", TAMS, 347 (1995), pp 3671-3742.[BCY℄ T. Branson, S-Y. A. Chang and P. Yang; \Estimates and extremal problemsfor the log-determinant on 4-manifolds", Comm. Math. Physi
s, Vol. 149,No. 2, 1992, pp 241-262.[BG℄ T. Branson and P. Gilkey; \The fun
tional determinant of a 4-dimensionalboundary value problem", Trans. AMS, 344 (1994), pp 479-531.[BO℄ T. Branson and B. �rsted; \Expli
it fun
tional determinants in four dimen-sions", Pro
. Amer. Math. So
., vol 113, (1991), pp 669-682.[CGS℄ L. Ca�arelli, B. Gidas and J. Spru
k; \ Asymptoti
 symmetry and lo
albehavior of semi-liner equations with 
riti
al Sobolev growth"" Comm. PureAppl. Math. 42 (1989), pp 271-289.[C1℄ Sun-Yung A. Chang, "Moser Trudinger inequality and appli
ations to someproblems in 
onformal geometry", Nonlinear Partial Di�erential Equations,Editors: Hardt and Wolf, AMS IAS/Park 
ity Math series, vol 2, pp 67-125.[C2℄ Sun-Yung A. Chang, "On zeta fun
tional determinants", Centre de Re
her
heMath�ematiques, CRM Pro
eedings and Le
ture Notes, Vol 12, 1997, pp 25-50.[C3℄ Sun-Yung A. Chang, " On Paneitz operator{a fourth order di�erential op-19



erator in 
onformal geometry", Survey arti
le, preprint 1996, to appear inthe Pro
eedings for the 70th birthday of A.P. Calderon.[CQ1℄ Sun-Yung A. Chang and Jie Qing, "Zeta fun
tional determinants on mani-folds with boundary ", Resear
h announ
ement, Math. Resear
h Letters, 3(1996), pp 1-17.[CQ2℄ Sun-Yung A. Chang and Jie Qing, "The Zeta fun
tional determinants onmanifolds with boundary I{the formula", JFA 147, No. 2, (1997), pp 327-362.[CQ3℄ Sun-Yung A. Chang and Jie Qing, "The Zeta fun
tional determinants onmanifolds with boundary II{Extremum metri
s and 
ompa
tness of isospe
-tral set", JFA 147, No. 2, (1997), pp 363-399.[CGY2℄ S.Y.A. Chang, M. Gursky and P.Yang, " On regularity of a fourth orderPDE with 
riti
al exponent". To appear in Amer. Jour. of Math.[CQY1℄ S.Y.A. Chang, J. Qing and P. Yang; "On the Chern-Gauss-Bonnet integralfor 
onformal metri
s on R4", preprint 1998.[CQY2℄ S.Y.A. Chang, J. Qing and P. Yang; in preparation.[CY1℄ S.Y.A. Chang and P. Yang; \Extremal Metri
s of zeta Fun
tional Determi-nants on 4-Manifolds, " Annals of Math. 142(1995), pp 17 1-212.[CY2℄ S.Y.A. Chang and P. Yang: "On uniqueness of solution of a n-th orderdi�erential equation in 
onformal geometry", Math. Res. Letters ., 4 (1997),91-102.[CGY1℄ S.Y.A. Chang, M. Gursky and P. Yang, " Remarks on a fourth order in-variant in 
onformal geometry", to appear in Pro
eedings of 
onferen
e inHong Kong University, 1996.[CGY2℄ S.Y.A. Chang, M. Gursky and P.Yang, " On regularity of a fourth orderPDE with 
riti
al exponent". To appear in Amer. Jour. of Math.[ChK℄ S. Chanillo and M. K.-H. Kiessling: \Conformally invariant systems of non-linear PDEs of Liouville type". Geom. Fun
t. Anal. 5 (1995), 924-947.[CL℄ W. Chen and C. Li; \ Classi�
ation of solutions of some non-linear ellipti
equations", Duke Math. J. 63, no. 3, (1991), pp 615-622.[E℄ J. Es
obar; "The Yamabe problem on a manifold with boundary", J. Di�.Geom., 35 (1992), 21-84.[F℄ L. Fontana; \Sharp borderline estimates on spheres and 
ompa
t Riemann-ian Manifolds", Ph.D thesis, Washington University, St. Louis, 1991.[FG℄ C. Fe�erman and C.R. Graham; \Conformal invariants", In: �Elie Cartan etles Math�ematiques d'aujourd'hui. Asterisque (1985), pp 95-116.20



[Fn℄ R. Finn; "On a 
lass of 
onformal metri
s, with appli
ation to di�erentialgeometry in the large", Comm. Math. Helv. 40 (1965), pp1-30.[GNN℄ B. Gidas, N.W. Ni and L. Nirenberg; \Symmetry and related properties viathe Maximum Prin
iple", Comm. Math. Phys. 68 (3) 1979, pp 209-243.[GJMS℄ C. R. Graham, R. Jenne, L. Mason, and G. Sparling; \Conformally invariantpowers of the Lapla
ian, I: existen
e", J. London. Math. So
. (2) 46, (1992),pp 557-565.[Gu1℄ M. Gursky; \ The Weyl fun
tional, deRham 
ohomology and Kahler -Einstein metri
s", Annals of Math. 148 (1998), 315-337.[Gu2℄ M. Gursky; "The prin
ipal eigenvalue of a 
onformally invariant di�erentialoperator , with an appli
ation to semilinear ellipti
 PDE, preprint 1998.[L℄ C.-S. Lin: \ A 
lassi�
ation of solutions of a 
onformally invariant fourthorder equation in Rn ", Comment. Math. Helv., 73 (1998), 206-231.[M
℄ R. M
Owen; "Conformal metri
s in R2 with pres
ribed Gaussian 
urvatureand positive total 
urvature", Indiana Univ. Math. J., 34 (1985), 97-104.[Mo℄ J. Moser; \A Sharp form of an inequality by N. Trudinger", Indiana Math.J., 20, (1971), pp 1077-1091.[Ob℄ M. Obata; \Certain 
onditions for a Riemannian manifold to be isometri
with a sphere", Jour. Math. So
. Japan,14, (1962), pp333-340.[On℄ E. Onofri; \On the positivity of the e�e
tive a
tion in a theory of randomsurfa
es" Comm. Math. Phys., vol 86, (1982), pp 321-326.[OPS1℄ B. Osgood, R. Phillips, and P. Sarnak; \Extremals of determinants of Lapla-
ians", J. Fun
t. Anal., vol 80, (1988), pp 148-211.[OPS2℄ B. Osgood, R. Phillips, and P. Sarnak; \Compa
t isospe
tral sets of sur-fa
es", J. Fun
t. Anal., vol 80, (1988), pp 212-234.[Pa℄ S. Paneitz; \A quarti
 
onformally 
ovariant di�erential operator for arbi-trary pseudo-Riemannian manifolds", Preprint, 1983.[PuS℄ P.Pu

i and J.Serri; \ Criti
al exponents and 
riti
al dimensions for poly-harmoni
 operators", J. Math. Pures Appl., 69(1990), pp 55-83.[Po℄ A. Polyakov; \ Quantum geometry of Bosoni
 strings" Phys. Lett. B, vol103, (1981), pp 207-210.[RS℄ D. B. Ray and I. M. Singer; \R-torsion and the Lapla
ian on Riemannianmanifolds", Advan
es in Math., 7, (1971), pp 145-210.[S
℄ R. S
hoen, \Conformal deformation of a Riemannian metri
 to 
onstants
alar 
urvature" J. Di�. Geom., vol 20, (1984), pp 479-495.21



[T1℄ N. Trudinger; \Remarks 
on
erning the 
onformal deformation of Riemann-ian stru
ture on 
ompa
t manifolds", Ann. S
uo. Norm, Sup. Pisa, 3,(1968), pp 265-274.[T2℄ N. Trudinger;\ On imbedding into Orli
z spa
es and some appli
ations", J.Math. Ma
h, 17(1967), pp 473-483.[WX℄ J. Wei and X. Xu;"Classi�
ation of solutions of higher order 
onformallyinvariant equations", preprint 1998.[Y℄ H. Yamabe; \On a deformation of Riemannian stru
tures on 
ompa
t man-ifolds", Osaka Math. J., 12 (1960), pp 21-37.[X1℄ X. Xu; \ Classi�
ation of solutions of 
ertain fourth order nonlinear ellipti
equations in R4", preprint 1996.[Z℄ N. Zhu; "Classi�
ation of solutions of a third order nonlinear equation inR3", preprint 1997.Sun-Yung Ali
e Chang, Department of Mathemati
s, Prin
eton University,Prin
eton, NJ 08544 & Department of Mathemati
s, UCLA, Los Angeles, CA 90095.E-mail address: 
hang�math.prin
eton.eduPaul Yang, Department of Mathemati
s, University of Southern California, LosAngeles, CA 90089.E-mail address: pyang�math.us
.edu

22


