ON A FOURTH ORDER CURVATURE INVARIANT

SuN-YUNG A. CHANG AND PauL C. YANG

60. Introduction

This article is a continuation of the survey article [C3] on the fourth order equa-
tion first introduced by Paneitz ([Pa]). In particular we describe the geometric
aspect of the equation, as well as further analytic development since that survey
was written.

On a Riemannian manifold (M™, g) of dimension n, the Laplace Beltrami opera-
tor is the natural geometric operator. Under conformal change of metric § = e2%g,
when the dimension is two, A, is related to A4 by the simple formula:

(0.1) Ay, (p) =e A (p) forall e C>®(M?).

In dimension greater than two, similar tranformation property continue to hold for
a modification of the Laplacian operator called the conformal Laplacian operator

L= —%A + R where R is the scalar curvature of the metric. We have
_nt2 n=2
(0.2) Ly, () = e 0L, (")

for all ¢ € C>(M).

In general, we call a metrically defined operator A conformally covariant of bide-
gree (a,b), if under the conformal change of metric g, = €2“g, the pair of corre-
sponding operators A, and A are related by

(0.3) Ay(p) = e ™ A(e™p) forall @€ C®(M™).

A particularly interesting such operator is a fourth order operator on 4-manifolds
discovered by Paneitz [Pa] in 1983:

2
(0.4) Pp=A%p+§ <§RI — 2Ric> do
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where 0 denotes the divergence, d the deRham differential and Ric the Ricci tensor of
the metric. The Paneitz operator P (which we will later denote by Py) is conformal
covariant of bidegree (0,4) on 4-manifolds, i.e.

(0.5) P, (p) =e *P,(p) forall ¢eC®M?).

For manifold of general dimension n, when n is even, the existence of a n-th
order operator P, conformal covariant of bidegree (0,n) was verified in [GJMS].
However it is only explicitly known on the standard Euclidean space R and hence
on the standard sphere S™. The explicit formula for P,, on standard sphere S™ has
appeared in Branson [Br-1] and independently in Beckner [B].

In dimension four, the Paneitz equation has close connection with the Chern-
Gauss-Bonnet formula. The () curvature invariant defined by the Paneitz operator
integrates to a numerical conformal invariant which is essentially bounded by the
Euler number. We have obtained ([CY3]) general existence and uniqueness criteria
for the Paneitz and related equations. The appearance of the traceless Ricci tensor
in the equation can be exploited to characterize certain special conformal classes
in the work of Gursky ([Gul]). He has also shown that the criteria for existence
in ([CY3])is satisfied by a large class of conformal structures. To further relate the
role of the quantity ) curvature, it is natural to understand the contribution of
the boundary term in the Chern-Gauss-Bonnet integral when we incorporate the
@) curvature. Previously Chang-Qing ([CQL1], [CQ2]) had considered the boundary
term and defined a third order boundary operator which we shall call P3 operator
which defines boundary curvature invariant. Recently we have derived in collabo-
ration with Qing ([CQY1, CQY2]) Cohn-Vossen type inequality which express the
difference of the ) curvature integral from the Euler number by an isoperimetric
ratio analogous to Finn’s result in dimension two. Such an integral formula gives a
criteria for conformal compactification of complete conformally flat manifold of pos-
itive scalar curvature and finite () curvature integral. As a consequence we obtain
a classification of such manifolds with zero () curvature.

One cannot discuss the Paneitz operator without mentioning its connection with
the zeta function formulation of the determinant of the conformal Laplacian. Such
consideration in fact lead to the relevance of the Paneitz operator to four dimen-
sional conformal geometry, as well as the discovery of the boundary P5; operator.
It is appropriate to acknowledge on this occasion the pioneering work of Osgood-
Phillips-Sarnak ([OPS1], [OPS2]) in two dimension.

This paper is organized as follows. In section one, we discuss basic properties
of the Laplace operator in dimension two and compared it, from the point of view
of conformal geometry, to analogous properties of the Paneitz operator P;. In
section two, we discuss uniqueness results of the Paneitz equation on spheres. In
section three, we consider the variational functional for the Paneitz operator Py on
general compact 4-manifolds. In section four, we discuss another natural geomet-
ric functional-namely the zeta functional determinant for the conformal Laplacian
operator-where Paneitz operator plays an important role. We survey some existence
and regularity results of the extremal metrics of the zeta functional determinant,
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and indicate some recent geometric applications by M. Gursky of the extremal met-
rics to characterize some compact 4-dimensional conformal structures. In section
five, we discuss the P3 operator, which is conformally covariant of bidegree (0, 3);
and its associated curvatures 7', operating on functions defined on the boundary
of compact 4-manifolds. We mention some existence results for extremal metrics
in this setting. In section six, we discuss the Chern-Gauss-Bonnet formula that
relates the () curvature integral to the Euler number. We discuss the generalization
of the Cohn-Vossen inequality for surfaces to 4-dimensional conformally flat mani-
folds as well as some application to obtain further uniqueness result for the Paneitz
equation on such manifolds. In section seven, we consider a variational problem in
which the P, and P5 operators both play a role. We define a numerical conformal
invariant of the pair (M*, M) and prove an existence theorem when this numerical
invariant is suitably restricted. In order to avoid technical complications caused by
the boundary geometry, we consider boundaries which are umbilic. We show that
the argument of Gursky ([Gu2]) can be modified to determine the conformally flat
pairs (M,0M) that satisfies the simplest equations @ = 0 and T' = 0.

We are indebted to many friends and collaborators among whom we shall mention
Branson, Gilkey, Gursky, C.S. Lin, Qing, Sarnak and Xu.

§1. Properties of the Paneitz operator

On a compact Riemannian manifold (M™, g) without boundary, when the dimen-
sion of the manifold is two, we denote by P, = —A = —A,, the Laplacian operator.
When the dimension is four, we denote by P = P, the Paneitz operator as defined on
(0.4). Thus both operators satisfy conformal covariance property (P,), = e " P,,
where (P,),, denote the operator with respect to (M™, g,,), g, = €“g. Here we list
several such properties for comparison.

(i) On a compact surface, a natural curvature invariant associated with the
Laplace operator is the Gauss curvature K. Under the conformal change of metric
gw = €*“g, we have

(1.1), Aw+ Kye** =K on M?

where K, denotes the Gaussian curvature of (M?2,g,). While on 4-manifold, we
have

(1.1) —Pyw +2Q,e* =2Q on M*
where () is the curvature invariant
(1.2) 12Q = —AR + R? — 3|Ric/|?

(ii) The analogy between K and Q becomes more apparent if one considers the
Gauss-Bonnet formulae:

(1.3), 27rx(M):/Kdv on M = M?
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CT?

(1.3), Ay (M) = / (Q + 7) dv on M =M*

where x(M) denotes the Euler-characteristic of the manifold M, and |C|?*= norm
squared of the Weyl tensor. Since |C|?dv is a pointwise invariant under conformal
change of metric, Qdv is the term which measures the conformal change in formula
(17 3)6'

(iii) When n > 3, another natural analogue of —A on M? is the conformal
Laplacian operator L as defined on (0.2). In this case, if we denote the conformal

change of metric as g, = uﬁg for some positive function w, then we may rewrite
the conformal covariant property (0.2) for L as

n42

(1.4), L,(p)=u"»—2L(up) on M",n>3

for all p € C°(M™).
A differential equation associated with the operator L is the scalar curvature
equation:

n+2

(1.5)4 Lu= R,u~—2 on M", n>3.

Equation (1.5), has been intensively studied in the recent decade. For example the
famous Yamabe problem in differential geometry is the study of the equation (1.5),
for solutions R, = constant; the problem has been completely solved by Yamabe
[Y], Trudinger [T-1], Aubin [Au] and Schoen [Sc].

(iv) There is also a natural fourth order Paneitz operator P;* in all dimension
n # 4, which enjoys the conformal covariance property with respect to conformal
changes in metrics also. The relation of this operator to the Paneitz operator in
dimension four is completely analogous to the relation of the conformal Laplacian
to the Laplacian in dimension two. On (M™, g) when n # 4, define

4
Pit = (=A) 4 b(an R+ by Ric)d + “—— Qi

where
1

n: n Tk dn 2_
Q4 = cp|Ricl” +d, R =1

AR,

_9)2.14 3 _ 402 _
(n—2)"+ b 4 2 d, = 4n’+16n-16 ...

and an = s e b0 = —ap O = - (n=2)% 8(n—1)%(n—2)
dimensional constants. Thus P§ = Py, Q1 = Q. Then (Branson [Brl]), we have for

Gu — Uﬁgv n 7£ 4
n —ntd n
(1.4)p (Pf)y (p) = u™ =1 (P) (up)
for all ¢ € C°°(M™). We also have the analogue for the Yamabe equation:

(1.5)p Piu = QZUZ—Till on M"™, n#4.
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We remark that on R™ with Euclidean metric, P;* reduces to the bi-Laplacian
n+4
operator. Equation (1.5), takes the form (—A)2%u = Cun=7, an equation which has

been studied in literature e.g. [PuS].

§2. Uniqueness result on S”

In this section we will consider the behavior of the Paneitz operator on the
standard spheres (S™,g). First we recall the situation when n = 2. On (S2,9),
when one makes a conformal change of metric g, = ¢**g, the Gaussian curvature
K, = K(g,,) satisfies the differential equation

(2.1) Aw+ K,e* =1

on S?, where A denotes the Laplacian operator with respect to the metric g on S2.

When K, = 1 on (2.1), the Cartan-Hadamard theorem asserts that e*“g is
isometric to the standard metric g by a diffeomorphism ¢; and the conformality re-
quirements says ¢ is a conformal transformation of S2. In particular, w = % log |J,, |,
where J, denotes the Jacobian of the transformation .

In [CL], Chen and Li studied the corresponding equation of (2.1) on R? with
K., = 1, and they proved, using the method of moving plane, that when « is a
smooth function defined on R? satisfying

(2.2) —Au = e on R?

with [p, e*“da < oo, then u(x) is of the form u(x) = log Wim(ﬂ? for some xy € R?
and some A > 0. There is an alternative argument by Chanillo-Kiessling ([ChK])
for this uniqueness result using the isoperimetric inequality.

On (S™,g), denote g, = = g the conformal change of metric of g, where u is a
positive function, then the scalar curvature R,, = R(g,,) of the metric is determined
by the following differential equation

4 - ]_ n+2
(2.3) —Lz)Au +n(n—1u= Ryui=?,
n j—

When R, = n(n — 1), a uniqueness result established by Obata [Ob] states that
this happens only if the metric g, is isometric to g or equivalently u = |J(p|n2—12 for

some conformal transformation ¢ of S™. In [CGS] Caffarelli-Gidas-Spruck studied
the corresponding equation on R":

n—+2

(2.4) —Au =n(n—2)un=2, u>0 on R".

They classified all solutions of (2.4), via the method of moving plane, as u(x) =
(¢)an2 for some 9 € R*, A > 0.

A2 4|z—xo|?
For all n, on (S™, g), there also exists a n-th order (pseudo) differential operator
P,, which is the pull back via sterographic projection of the operator (—A)"/ 2 from
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R™ with Euclidean metric to (S™, g). P, is conformal covariant of bi-degree (0, n),
ie. (P,)w = e "P,. According to Branson [Brl] and Beckner [B]:

For n even P, = H,:?; (—A+Fk(n—Fk—1)),
(2.5) o\1/2 __n-3
For n odd P, = (—A + (251) ) 12, (A +Ek(n—k—1)).
On general compact manifolds in the cases when the dimension of the manifold is
two or four, there exist natural curvature invariants (,, of order n which, under
conformal change of metric g, = e2“g, is related to P,w through the following

differential equation:
(2.6) —Pow+ (Qn)we™ =0Q, on M.

In the case when n = 2, P, is the negative of the Laplacian operator, Q2 = K,
the Gaussian curvature. When n = 4, P, is the Paneitz operator, Qs = 2Q4
as defined in (1.2). In the special case of (S%,g), P» = Ps, similarly on (S%,g),
P, = P4. In section 5 below, we will also discuss the existence of P, P3 operators
and corresponding curvature invariants ()1 and ()3 defined on boundaries of general
compact manifolds of dimension 2 and 4 respectively.

On (S™, g), when the metric g,, is isometric to the standard metric, then (@), =
Qn = (n —1)! . In this case, equation (2.6) becomes

(2.7) —Pw+ (n—1)""=(n—-1)! on S"

One can establish the following uniqueness result for solutions of equation (1.7).

Theorem 2.1. [CY4] On (S™,g), all smooth solutions of the equation (2.7) are
of the form e*¥g = p*(g) for some conformal transformation ¢ of S™; i.e. w =
Llog|J,| for the transformation .

Appealing to the conformal covariance of the equation (2.7) one can rewrite the
equation on R™:

(2.8) (=A)2u = (n—1)le™ on R".

For the fourth order equation C.S. Lin ([L]) and Xu ([X1]) have obtained a clas-
sification of solutions of the equation (2.8) in R*. Then combining the arguments
of Wei-Xu ([WX]) in even dimensions and that of Zhu ([Z]) in odd dimensions,
solutions of equation (2.8) can be classified:

Theorem 2.2. ([L], [X1], [WX], [Z]) On R™, suppose u is a smooth solution of
the equation (2.8) such that:

2 2
(2.9) u(z) = log T+ + o([z[7),
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then u(x) is of the form

2\
(2.10) u(z) = log R P——r for some 9 € R" A > 0.

Remarks

1. In the case when w is a minimal solution of the functional with Euler-Lagrange
equation (1.7), the result in Theorem 2.2 is a consequence of the sharp Sobolev type
inequality of Milin-Lebedev when n = 1, that of Moser [Mo] and Onofri [On] when
n = 2 and Beckner [B] for general n.

2. The condition (2.9) is necessary as one can show using an argument of McOwen
([Mc]) that for any choice of a; > 0, 1 <4 < 4 there exists solution v of the equation

4
(—A)?v = exp(— Zaixiz)e‘“’, onR*
i=1

which has the asymptotic behavior v(x) = —2log(|z|). Then setting

4
1
u(z) = ~1 Z a;x? + v(z),
i=1

we obtain an extraneous solution of the equation which does not satisfy the condition
(2.9). Geometrically such solutions correspond to metrics which are incomplete and
has very large negative scalar curvature at infinity.

Concerning the analogue of the Yamabe equation (1.5)p, Lin and Xu have also
obtained uniquess result on R".
Theorem 2.3. ([L], [X1]) In R",n > 5, the positive solutions of the equation

n—4

A2y = /O are of the form u(z) = (5rrpga)

In general dimensions n > 5 there is additional analytic difficulty associated with
the lack of a good maximum principle for fourth order equations. In particular it
is not a simple matter to verify that minimizing solutions to (1.5); are positive.

§3. Existence and regularity of the Paneitz equation on 4-manifold

On (M?,g) with Gaussian curvature K = K, consider the functional

(3.1) Jw] :/|Vw|2dv+2/Kwdv— (/Kdv) logfezwdv

where the gradient, the volume form are taken with respect to the metric g, and
Vpdv = [ pdv/volume for all .
The Euler-Lagrange equation for J is:

(3.2) Aw+ce® =K on M?
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where ¢ is a constant. Notice that (3.2) is a special case of equation (1.1), with
K,, = c. For the special manifold (S2,g), K = 1, (3.2) is a special case of equation
(2.1).

On a compact 4-manifold (M*?, g), denote by k, = [ Qdv, and define

(3.3) IIw] = / (Pyw)w + 4 / Quwdv — ( / Qdv) 1og(fe4wdv)

Theorem 3.1. (/CY-3]) Suppose k, < 872, and suppose Py is a positive operator
with ker P = {constants}; then inf I],cy2.2|w| is attained. Denote the infimum by
wy, then the metric g, = e*“rg satisfies Q, = constant = k,/ [ dv.

Remarks

(1) In general, the positivity of P4 is a necessary condition for the functional I1 to
be bounded from below. Recent work of Gursky [Gu-2| indicates that under the
additional assumption that k, > 0 and that g is of positive scalar class, P, is always
positive. Furthermore, under the same assumption, k, < 872 is always satisfied
unless (M*, g) is conformally equivalent to (S%, g); in the latter case then k, = 872
and the extremal metric for I/[w] has been studied in [BCY].

(2) Notice that the extremal function w, in W22 for IT satisfies the equation
(3.4) —Pywy + Qpe*r = Q

with @), = constant. Thus standard elliptic theory can be applied to establish the
smoothness of w,. This is in contrast with the smoothness property of the extremal
function wg of the log-determinant functional F[w], in which I7[w] is one of the
term. We will discuss regularity property of wy in section 4.

(3) A key analytic fact used in establishing Theorem 3.1 above is the generalized
Moser inequality established by Adams [A], which in the special case of domains 2
in R* states that W2 "*(Q) — exp L.

§4 Zeta functional determinant

On compact surface (M?2,g), let {0 < Ay < Ag < ---} be the spectrum of the
(negative of) Laplacian -Ag. Let (s) = >° A;® defined for Res > %, then ¢ has a
meromorphic continuation to the whole plane and is regular at the origin using the
heat kernel expansion of A,. —¢’(0) is well-defined, and one may define logdet A, to
be —(¢’(0) (as in Ray-Singer [RS]). In [Po], Polyakov further computed the logarithm
of the ratio of determinant of two conformally related metrics g, = €*“g on a
compact surface without boundary.

detA, 1
© = —/ (|Vw]? + 2Kw)dv,
M

4.1 Flw] =1 =

(4.1) [w]=log——+ =3

under the normalization that vol(g,) = vol(g). Notice that F[w] is essentially

the same as the functional J[w] in (3.1). In a series of papers, Osgood-Phillips-

Sarnak ([OPS1], [OPS2])have shown among other things that F|w] enjoys a certain
8



compactness property on account of the Moser-Trudinger inequality, and proved
that in each conformal class, the functional F[w] attains its extrema at the constant
curvature metrics.

When the dimension of a closed manifold is odd, it was shown in Branson [Br2]
that logdet L, is a conformal invariant. Thus the next natural dimension to study
the generalized Polyakov formula (4.1) is four.

Suppose (M, g) is a compact, closed 4-manifold, and suppose A is a conformally
covariant operator satisfying (0.3). In [BO] Branson-Orsted gave an explicit com-

putation of the normalized form of log dg;tA‘i" which may be expressed as:

(4.2) Flw) = yuI[w] + 721 T[w] + v T[]

where 71, 72,73 are constants depending only on A and

Iw] = 4/ |CPwdv — </ |C’|2dv> 1ogfe4wczv
II[w] = (Pw,w) + 4 / Qudv — ( / de) log fe‘“”dv,

[IT[w] = 12 <Y(w) - % / (AR) wdv),

ew

that the functional I17{w] [BCY] may be written as

II[w] = % {/ R? dv, — / R? dv]

so that when the background metric is assumed to be the Yamabe metric in a
positive conformal class, the functional 17 is non-negative.
Let us define the conformal invariant:

kq = —71/|C|2d”—72/ Qdv
(43) — () antx ) + (2 =) [ I10Pas

Theorem 4.1. ([CY3]) If the functional F satisfies v2 < 0, v3 < 0, and kq <
(—v2)872, then sup Flw] is attained by some function wq and the metric gq =

Wiy 2
where C'is the Weyl tensor, and Y (w) = [ (M) —3 [ R|Vw]?. We also remark

'LUEWQ’Z
e?vd g, satisfies the equation
(4.4) Y1 Cal® + 72 Qa — v3LqRa = —ka - Vol(ga) ™"
Further, all functions ¢ € W22 satisfy the inequality:
(4.5) ka log f 9P duy < (—72) (P, p) — 1273Ya(p)-

where ¢ denotes the mean value of ¢ with respect to the metric g4, and [/ denotes

Uol(]\ngd) fM dvg.



Theorem 4.2. Ifky <0, the extremal metric gq for the functional F' correspond-
ing to the conformal Laplacian operator L is unique.

This uniqueness assertion is obtained as consequence of the convexity of the
corresponding functionals. Applying the uniqueness result, we were able to identify
some of the extremal metrics with known metric in special circumstances.

As a consequence of a general regularity result for minimizing W?2?2 solution of
the equation:

(4.6) AAw = ¢1|Vw|* + c2(Aw)? + c3Aw|Vw|? + lower order terms,

we have the following regularity result:

Theorem 4.3. ([CGY]) Let F|w] be as in Theorem 4.1, then sup,,c,,.» Fw], when
attained, is a smooth function.

The appearance of the Ricci tensor in the Euler equation (4.4) can be put to
good use since such terms also arise in the Bochner formula for the Laplacian of
the length of harmonic forms. Indeed Gursky has given ([Gul]) beautiful applica-
tion of the extremal metrics (also some modified version) to characterize certain
special 4-dimensional conformal classes. To state his results, we need to make some
definitions. On a compact manifold (M™, g), define the Yamabe invariant of g as

(4.7) Y(g) = inf, _e2ugvol(gy) ™ 7 / R, dv,, .

By the work of Yamabe, Trudinger, Aubin and Schoen mentioned in section 1,
every compact manifold M"™ admits a metric g, conformal to g which achieves
Y (g), hence g, has constant scalar curvature. We say (M", g) is of positive scalar
class if Y(g) > 0.

On compact 4-manifolds, both Y (g) and [ Qgdv, are conformal invariants. The
following result of Gursky [Gul] indicates that these two conformal invariants con-
strain the topological type of M*.

Theorem 4.4. (/Gul]) Suppose (M*,g) is a compact manifold with Y (g) > 0,

(i) If [ Qgdvg > 0, then M admits no non-zero harmonic 1-forms. In particular,
the first Betti number of M vanishes.

(ii) If [ Qqgdvg = 0, and if M admits a non-zero harmonic 1-form, then (M, g) is
conformal equivalent to a quotient of the product space S* x R. In particular (M, g)
15 locally conformally flat.

As a corollary of part (ii) of Theorem 4.4, one can characterize quotient of the
product space S® x R as compact, locally conformally flat 4-manifold with Y (g) > 0
and x(M) = 0.

A crucial step in the proof of theorem above is to show that for suitable choice of
Y1, Y2, V3, the extremal metric gg4 for the log-determinant functional F'|w] exists and
is unique. Furthermore under the assumption Y (g) > 0, one has Ry, > 0;if Y (g) =
0 then Ry, = 0. In the case [ Qgdvy = 0, existence of non-zero harmonic 1-form
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actually indicates that ,, = positive constant. It is curious that in characterizing
these special conformal classes one cannot work directly with the ) = constant
metrics. Using similar ideas, Gursky [Gul] has also characterized the conformal
class of Kahler-Einstein surfaces:

Theorem 4.5. ([Gul]) Suppose (M*,q) is compact 4-manifold with non-negative
scalar curvature, and suppose the self intersection form has a positive element, then

4 2
(4.8) / W [2dV > %(2x +30)

where W is the self dual part of the Weyl tensor, x is the euler number and o s
the signature. Furthermore,

(i) equality is achieved in (4.8) by some metric with Y (g) > 0 if and only if g is
conformal to a Kahler-Finstein metric with positive scalar curvature,

(ii) equality is achieved in (4.8) by some metric with Y (g) = 0 if and only if g
s conformal to a Kahler Ricci flat metric.

65. P3 — a boundary operator

There exist natural boundary operators for functions defined on the boundary
of compact manifolds. We describe such operators on boundary of M™ for n = 2
and n = 4. Most of the material described in this section is contained in the joint
work [CQ1], [CQ2Jand [CQ3]. The reader is also referred to the lecture notes [C2]
for a more detailed description of such operators derived in conjunction with the
generalized formula [BO] [BCY] [CY] of Polyakov [Po] of zeta functional determinant
for 4-manifolds with boundary. We start with terminology. On compact manifold
(M™, g) with boundary, we say a pair of operators (A, B) satisfy the conformal
assumptions if:

Conformal Assumptions. Both A and B are conformally covariant of bidegree
(a1,a2) and (by,b2) in the following sense

Au}(f) — e—a]_WA(eaz(Uf)

By(g) = e Y B(eb2¥ ),

forany f € C®(M),g € C®°(0OM). Assume also that
B(e**“g) =0 if and only if By(g) =0,

for any w € C®(M), where A, B, denote the operator A, B respectively with

respect to the conformal metric g, = e*“g.

Examples: The typical examples of pairs (A, B) which satisfy all three assump-
tions above are:
11



(i) when n =2, A= —A, B = 2 (negative of) the Laplacian operator and the
Neumann operator respectively.

(ii) when n = 4, in [CQ-1] we have discovered a boundary operator Ps conformal
of bidegree (0,3) on the boundary of a compact 4-manifold. On 4-manifolds, (Py, Ps)
is a pair of operators satisfying the conformal covariant assumptions, which in the
sense we shall describe below, is a natural analogue of the pair of operators (—A, %)
defined on compact surfaces.

On compact surface M with boundary, the Gauss-Bonnet formula takes the form

(5.1) 21y (M) = /M Kdv + ]{3 ko,

where £ denotes the geodesic curvature of M and do the arc length measure on
OM. Through conformal change of metric g, = €*“g for w defined on M, the
Neumann operator 6% is related to the geodesic curvature k via the differential

equation

0
(5.2) —a—: + kype” =k on OM.
On 4-manifold with boundary there exists a boundary local invariant of order 3
and a conformal covariant operator Ps of bidegree (0, 3), the relation of (Q,T) to
(Py, P3) on 4-manifolds is parallel to that of (K, k) to (A, 2) on compact surfaces.

10 -0 2 - . 1 g 1~ -
53) Ps=———A—-A— —ZHA+ L3V, “R—RoNaN)— +=-VH-V.
(5.3) Ps 59 5 3 + LogV Vg-l—(3 NN)an‘|‘3V \V4
1 0 1 1 1 1-
5.4 T=——R+-RH - R, Lo+ —H3— -TrL®— -AH.
(5.4) 2ot "6 NoNLag + g 3" 3

In particular, via the conformal change of metrics g, = €>“g, Pz and T satisfies
the equation:

(5.5) —Psw + Tpe®™ =T on OM,
and
(5.5) (P3)yw =€ 2" P3 on OM.

The operator 7" and Ps; were discovered in [CQ2] through the Chern-Gauss-
Bonnet formula for 4-manifolds with boundary:

(57)  x(M) = (320%)7) /

[ (107 + 4Q)ar + (am?) f (T — L4 — Ls)dy.

oM

In the boundary integral above the invariants £4 and L5 involve the ambient cur-
vature tensor and the second fundamental form L,;,. We shall use an orthonormal
12



frame and use the latin indices to run through the ambient indices and the Greek
indices to only run through the boundary directions.

RH
(5.8) Ly = ——t RonanH — RongNLap + RyaypLag,
and

2
(5.9) L5 = —5 LaaLpsLy + LaaLsy Ly = LapLgnLna-

Analogous to the Weyl term, £4 and L5 are boundary invariant of order 3 which are
pointwise invariant under conformal change of metrics. Hence for a fixed conformal

class of metrics,
1
— / Qdv + j[ Tds
2 Ju oM

is a fixed constant. We remark that in the original Chern-Gauss-Bonnet formula 7’
differs from the present form by %AH , which does not affect the integration formula
(5.7).

Thus on 4-manifolds with boundary it is natural to study the energy functional

1 1
(5.10) Elw] = - /wP4w + —j( wP3w.

In view of the complicated expressions of the operators P,, P3, () and T, it is
difficulty to study the functional E|w| defined as above on general compact mani-
folds. We mention some special situations that allows an understanding of the basic
situation. In the case of (B*, S3) with the standard metrics, we have

1 - -
(5.11) P, = (A)2,P3:—§NA—AN—2A and Q =0, and T =3,

where A denotes the the Laplacian operator A on (S3,g). Thus the expression
in F[w] becomes relatively simple. In this special case, we are able to study the
functional E|w]. The main analytic tool is the following sharp inequality of Lebedev-
Milin type on (B*, S3).

Theorem 5.1. Suppose w € C°(B*). Then
(5.12)

1 _ 3 (1 1 1ow 10%w
logd — ¢ Sw-Dgyl < 2 —/ A? 7{ SwPyw — -2 4 2
Og{zﬂfise YIS0 a4 ) T P2 T A T a2 )

under the boundary assumptions [g, T[w]ds[w] = 0 where T is the scalar curvature
of S3. Moreover the equality holds if and only if €2¥g on B* is isometric to the
canonical metric g.

13



§6 An extension of the Cohn-Vossen/Huber/Finn inequality

We first recall the Cohn-Vossen ([CV]) inequality for complete surfaces. Suppose
(M, g) is a complete surface with Gauss curvature K in L!, then

(6.1) / KdA < 2my.
M

In fact, Huber ([H]) has shown that such a surface has a conformal compactification
M = M\{Px,...P,} where M is a compact Riemann surface. At each puncture P,

by inverting a conformal disc D;\{P;}, Finn ([Fn]) has considered the isoperimetric
(Length(8D,.))?

ratio v; = lim, 2Area(D,)

, and accounted for the deficit in the inequality
above:

(6.2) 2mx — / KdA =) ;.
M i=1

A completely analogous situation holds in dimension four provided we restrict our-
selves to conformally flat 4-manifolds of positive scalar curvature. Let us first recall
that Schoen-Yau ([SY]) has demonstrated that for such manifolds, the holonomy
cover of such manifolds embed conformally as domain M in S* with a boundary
which has Hausdorff dimension less than one. Thus by going to a covering of such
manifolds we may assume that we are dealing with domains in R*.

Theorem 6.1. (/CQY1))

Let e*V|dz|? be a complete metric on Q = R*\{Px, ..., P,} with nonnegative scalar
curvature near the punctures. Suppose in addition that () is integrable. Then we
have

82

(6.3) @ - o [ Qv =Y

where at each puncture P; a conformal disk D;\{P;} is inverted and

o (vol (0B,.))*/3
(64) "= rll>nolo 4(272)/3vol(Br)

The finiteness of the () integral together with the embedding result of Schoen-Yau
has strong implication for the underlying topology:

Theorem 6.2. ([CQY2]) Let (M*,g) be a simply connected complete conformally
flat manifold satisfying scalar curvature R > ¢ > 0, Ric > —c, and [ |Q|dv < oo;
then M is conformally equivalent to R*\{Py, ..., P,}. In case M* is not assumed
simply connected, under the additional assumption that M* is geometrically finite
as a Kleinian manifold, then M is conformally equivalent to M\{P\, ..., P,}, where
M is a compact conformally flat manifold.

Remarks
14



1. An important ingredient in the proof of theorem is the consideration of the
boundary P5; operator. The local expression for the quantity 71" allows us to interpret
the T integral as controlling the growth of volume. The idea is that the finiteness
of the @) integral does not allow large growth of volume hence constrain the number
of ends.

2. As a consequence of this finiteness criteria, we can classify the complete
conformal metrics defined on domains in S*, which satisfy the curvature conditions
in the statement of Theorem 6.2, and in addition has constant () curvature which
are integrable. There are only three such metrics: the standard metric on S*, the
flat metric on R* and the cylindrical metric on R*\{0}.

67 A conformal variational problem for 4-manifold with boundary

In this section we consider conformal variations of Neumann type on a 4-manifold
with boundary (M,0M). That is the background metric g on the pair (M,0M)
which satisfy the property that the scalar curvature of M is constant and the mean
curvature H vanishes on the boundary. This condition can always be achieved
according to Escobar’s solution of the Yamabe problem on manifolds with boundary
([E]). We consider conformal change of metric g,, = €**g = u?g that satisfy the
constraints

vol (M)[w] = vol (M)[0]

(7.1) Hiw] = 0.

For convenience we set

Y(g) = mf/M Lu - udv

where the infimum is taken over positive conformal factors satisfying the constraint
(7.1). The variational functional we shall consider is an analogue of the functional
II discussed in section three with additional terms to accommodate the presence of
boundary:

12 Sl =g [{wPwt juQ) + fa w18 [ @og [ e,

In order to formulate criterion for existence of extremal metrics for the functional
J let us define the natural invariant

(7.3) kyp(M,OM) = % /M Qdv + 7{) | Tds

Then the analysis of (J[CQ3]) yields the following:

Theorem 7.1. Suppose k,(M,0M) < 1672 and the operator pair (Py, P3) is posi-
tive except on constants, then the functional J under the constraint (7.1) achieves
its mintmum.

In fact it is easy to see that the functional J is convex under the stronger as-
sumption k,(M,0M) < 0 and hence:
15



Theorem 7.2. Suppose k,(M,0M) < 0 and the operator pair (Py, Ps) is positive
except on constants, then the functional J under the constraint (7.1) has a unique
critical point which is the minimum.

In the following we impose additional boundary conditions on the pair (M, 0M)
in order to formulate the simplest boundary value problem for the operator pair
(Py, Ps). It would be interesting to relax this boundary condition to accommodate
more general situations.

Definition. We say OM is umbilic if the second fundamental form has all equal
principal ergenvalues.

Remark. The umbilicity condition is conformally invariant, thus under this
assumption, the solution of Yamabe problem with minimal boundary actually makes
the boundary totally geodesic.

Proposition 7.3. Suppose (M*,g) has constant positive scalar curvature and OM
has zero mean curvature, then k,(M,0M) < 1672; and equality holds if and only if
(M,0M) is conformally equivalent to the upper hemisphere (S, S?).

Proof: The solution of the Yamabe problem with boundary provides a conformal
metric with constant scalar curvature with xero mean curvature H = 0 on the
boundary. Hence the boundary contribution in the definition of k, vanishes and
hence

kep(M,0M) = /(—|E|2 + 1—12R2)dv

1
< /—R2dv
12

< 1672

Of course, equality can hold if and only if the Yamabe constant is equal to that
of the hemisphere, in which case the positive mass theorem (see [E]) asserts that
(M,0M) is conformally equivalent to the hemisphere (5%, S3).

In order to circumvent the positivity requirement on the pair (P4, P3), we add
an extra term to the functional J and consider

(7.4) Flw] = ,B/deV + Jw].

The argument in the proof of Theorem 2.1 in ([CQ3]) shows that as long as 8 > 0,
and k, < 1672, we have W22 compactness of the minimizing sequence for the
functional F' under the constraint (7.1). Hence we can minimize the functional F'
to produce a minimizing extremal metric. The extremal metric satisfy the Euler
equation

2, 1 o 1 L
(7.5) AR =X+ y(-|E| +ER ), where A <0, 721(3ﬁ+ﬁ) ,
and the boundary condition H = 0. Since the boundary condition is of Neumann
type, the regularity theory developed in ([CGY2]) goes through without essential
change. Hence we may assume the solution is smooth up to the boundary.

16



Lemma 7.4. If0 < 8 < 25 then the extremal metric satisfies

432
(7.6) AR =X+ ~v(—|E* + %Rz), where A < 0,
and

(7.7) Lo, R =0o0n0M.

In addition, we have R > 0 on M.

Proof. Let ¢ be the principal eigenfunction of the pair (Py, P3): L¢ = p1¢ with
the boundary condition 0,,¢ = 0. Consider the function

R
F=—.
¢
Then we find gives
E|? 1 \Y
AF:A—’yu+(’Y——+H1)F—2<VF,—¢>
¢ 6 ¢
\Y
S,ulF—2<VF,?¢>
and 9. R 5.
O F = 2~ — FC on OM.
¢ ¢

The strong maximum principle and the boundary Hopf lemma then shows that the
minimum must occur on the interior and F' is positive there.
Now we are in a position to single out the pairs (M,0M) with @ = 0 and T = 0.

Proposition 7.5. If M* is locally conformally flat with umbilic boundary OM,
assume Y (g) > 0 and x(M)=0, then either (M,0M) = (S' x S3,8' x S?), or
(M,0M) = (I x S3,0I x S3) where I is an interval.

Proof: We first calculate the Euler number to see that either by = 1,03 = 0
or by = 0,b5 = 1. This is due to the vanishing of the second homology since the
argument of Bourguignon ([Bo]) still applies in our situation: if by # 0, there is a
harmonic two form w satisfying the absolute boundary condition i(9n)(w) = 0 and
i(0On)(dw) = 0. The Bochner formula gives

1 2
On|w|* = 0 on OM.

The strong maximum principle and the Hopf boundary lemma then shows w must
be identically zero. Thus not both b; and b3 can vanish.
17



In the first case, there is a harmonic 1-form w on M* satisfying the absolute
boundary conditions. Choose 8 = sz in (7.5) for the functional F', we have the
existence of conformal metric satisfying the equation

1

(7.8) AR = —§|E|2 + <~ R?

2 8
with the boundary condition
(7.9) o R =0.
Consider the function G = %'. The calculation of Gursky then gives

VR 3G 3

(7.10)  AG+2 < VG, - 2 §E(|E| — %R)2 + Glw| 2 (|Vw|? — |V |w]||?)

on the set Q = {z|w(z) # 0}; and equality can hold at a point if and only if E has
the form

v

—3

0
(7.11) E=|
0

o O X O
o X O O
R OO O

Since the boundary condition assures that 0,G = 0, the Hopf boundary lemma
shows that the maximum of G cannot take place there unless w vanishes identically
contradicting its non-triviality. The strong maximum principle then asserts that G
is constant so that |E|? = {5 R%. Then we find AR = 0, and the boundary condition
On R = 0 implies that R is constant. This implies |w| is constant, and hence Vw = 0.
We find equality holds everywhere in (7.10). This shows that the Ricci tensor is of
the form

0 0 0 o0
0 4v 0 O
0 0 4v 0
0 0 0 4v

This shows that M is locally conformally equivalent to R x S3 with w = 0
displaying the S® factor. The boundary condition w(d,) = 0 shows that the bound-
ary respect the product structure and the one dimensional factor is tangent to
the boundary, but the total geodesic condition implies that the other factor is a
constant positive Gauss curvature surface, hence is S?. Thus globally we have
(M,0M) = (S* x 3,8 x §2).

In the second case, we have a harmonic 3-form ¢ satisfying the absolute boundary
conditions. Hence its dual 1-form w = % is harmonic and satisfies the relative
boundary conditions. The foregoing argument still shows that M is locally of the
form R x S3, but now the one dimensional factor is perpendicular to the boundary,
which being totally geodesic must be of constant sectional curvature. Thus (M, 0M )
is conformally equivalent to (I x S3/T',0I x S3/T).

18



Remark: An alternative method would be to prove this proposition directly by
doubling the manifold, by reflecting across the boundary, this is possible because
all boundary data are of Neumann type. However we present this argument since
it offers possibility to generalize to more complicated situations.
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