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1. INTRODUCTION

In [SY], Schoen and Yau proved that if (M™,g) (n > 3) is a smooth compact lo-
cally conformally flat manifold with scalar curvature R > 0, and M is the universal
covering space of M, then the developing map ¢ : M — S™ is a conformal embed-

ding, in addition, the complement of the development image A = S™\¢ (M ) has

its Hausdorff dimension bounded by "T’2 On the other hand, if the Ricci tensor is
positive definite, the Bonnet-Myers theorem implies that |7y (M)| < oo and hence
¢ is a diffeomorphism onto S™. In another direction, [CQY] gives a criteria for
the set A to consist of isolated points in terms of the finiteness of the @) curvature
integral. The @ curvature is closely connected with the second symmetric function
o2 (A) of the Schouten tensor. We recall the Schouten tensor is given by

(L.1) A= % (Rc— WR_I)g) .

For 1 < k < n, we denote by o (A) the kth elementary polynomial function of the
eigenvalues of A (with respect to g). The fourth order () curvature is defined as

(1.2) Q= -t AR+ """ R 140y (4).

2(n-1) 8(n—1)

The purpose of this article is to show that the positivity of the quantity o2 (A) or
that of the ) curvature give further control of the size of the complement A.

Theorem 1.1. Let Q@ C S™ (n >5) be an open connected subset and gg be the

standard metric on S™. Assume we have a metric g on  such that (Q,g) is
complete, g is conformal to gs», |R|+|VyR|, < co and o1 (A) > c1 >0, 02 (4) >0,
then dim (S™\Q) < 271,

On the other hand, we have

Theorem 1.2. Let Q C S™ (n > 3) be an open connected subset and gs- be the
standard metric on S™. Assume we have a metric g on  such that (Q,g) is
complete, g is conformal to ggn, |Rc|g + |VgR|g <ec, R>c1 >0,Q >c2 >0,
then dim (S™\Q) < 232, In particular, this means Q = S™ when n < 4.

If we replace Q@ > ¢3 > 0 by @ > 0, then when n > 5, we have dim (S™\Q) < "T_“;
when n = 3, we have ) = S3.

We would like to point out that if the condition |R[ + [VyR|, < ¢o in Theorem
1.1 is dropped, then one has dim (S™\) < 2%, Similarly, if the condition |Rc] g T
[V4R|, < co in Theorem 1.2 is dropped, then one has dim (5"\(2) < 24 when

n > 5 and Q = S% when n = 3. These can be done by the proof presented below
1
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together with the coercivity of conformal factor proved in Section 8 and a method
in [SY] of using capacity theory to estimate the dimension of A, which replaces the
use of Lemma 2.1. In general the positivity of o (A) will yield corresponding size
control of A. Indeed, when k& > 2, a calculation of [GVW] shows that when o (4) >
0,---,0r (A) > 0, the Ricci tensor is positive definite hence the complement A is
empty. For the intermediate range 3 < k < %, the question is addressed in the
forthcoming thesis of M. Gonzalez.

It follows from the same consideration as in [SY] that the following hold.

Corollary 1.1. Let (M™,g) (n > 5) be a smooth compact locally conformally flat
Riemannian manifold such that o1 (A) > 0 and o3 (4) > 0, then for any 2 < i <
[2]+1, 7 (M) =0; forany 2 —1<j<2+1, H (M,R) =0.

Corollary 1.2. Let (M™,g) (n > 3) be a smooth compact locally conformally flat
Riemannian manifold such that R > 0 and Q > 0, then when n > 5, we have for
any 2 < i < [2] + 1, m (M) = 0; for any integer j with 2 —1 < j < 2 +1,
HI (M,R) = 0; when n = 3 or 4, the universal cover of M is conformal isomorphic
to S™.

We were informed recently that the result on vanishing of cohomology groups in
Corollary 1.1 was also derived in [GLW].

In dimension four, one has the following slightly improved version of theorem 2
in [CQY].
Theorem 1.3. Let Q C S* be an open connected subset and ggs be the standard
metric on S*. Assume we have a metric g on Q such that (Q,g) is complete, g is
conformal to gg«, |Rc|g+|VgR|g <cy, R>¢1 >0, and [ Q™ dp, < 0o, here @~ =
max {—@Q, 0}, g 18 the natural measure on () associated with Riemannian metric g,
then [, |Q]dp, < oo, in addition, @ = S*\ {p1,--- ,pm} for some p1,--- ,pm € S*.

Observe that for R x S3, under the product metric, we have R = 6, Q = 0.
By standard gluing method, we may find many examples of metrics satisfying the
conditions in Theorem 1.3. We remark that if Q C S* is an open subset endowed
with a complete metric g, which is conformal to gg«, such that oy (4) > 0,02 (4) >
0 on Q, then we have Rc > 0. It then follows from the splitting theorem of Cheeger-
Gromoll that Q is S* or S*\ {p} or S*\ {p1,p2}.

The above discussions and formula (1.2) indicate that there are strong relations
between the positivity of o4 (A) and the positivity of the Paneitz operator. In four
dimension, it was proved in [G] that if (M*,g) is a smooth compact Riemannian
manifold with positive Yamabe invariant and [,, o2 (A) du > 0, then the Paneitz
operator P > 0 and ker P consists of constant functions. One of the interesting
aspect of this result is that the assumptions are conformally invariant. In higher
dimensions, the search of similar criterion has no success so far. Nevertheless, we
have

Theorem 1.4. Let (M™,g) (n>5) be a smooth compact Riemannian manifold
with 01 (A) > 0 and 02 (A) > 0. If (M,g) is not Ricci flat, then P > 0; otherwise,
P = A? >0 and ker P = {all constant functions}.

The converse of Theorem 1.4 is not true. Indeed, in Section 7, we will present
explicitly some conformal class of metrics with positive Yamabe invariant and pos-
itive Paneitz operator but no metric in that conformal class can have nonnegative
o1 (A) and o3 (A4), in particular, no conformal metric could have positive o5 (A).
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The paper is written as follows. In Section 2, we shall list some standard formulas
and prove two elementary lemmas for future use. From Section 3 to Section 5
we shall prove Theorem 1.1 to Theorem 1.3. In Section 6, we shall discuss the
positivity of Paneitz operator in dimension greater than or equal to 5. In Section
7, we shall present examples which illustrate results above and give limitation to
further improvements. Finally, in Section 8, motivated by the proof of Theorem
1.1 and Theorem 1.2, we study the coercivity of the conformal factor of a complete
conformal metric on an open subset of S™.

Acknowledgment : Chang is supported by. Hang is supported by National Sci-
ence Foundation Grant DMS-0209504 and the Sokol Postdoctoral Research Fellow-
ship from New York University. Yang is supported by. We would like to thank
Xiaodong Wang for valuable suggestions.

2. SOME PREPARATIONS
First let us recall the Paneitz operator and the () curvature (see [B] and [P]).
Let (M™,g) be a smooth Riemannian manifold with dimension n > 3. We denote
R 2 n
2.1 J= e =—AJ=2|A]" + - J*
The Paneitz operator is defined by

-4
(22) Py =A2p+div(4A(Vy,e) e — (n — 2) JV) + ”TQ L,

where e, - -- , e, is an orthonormal frame. It has the following conformal covariant
property, namely
(2.3) Poowyp = e_"TH“’Pg (enT_‘lwcp)

for any w € C*° (M) and ¢ € C*® (M).
Let g = e2%g with w € C® (M). It follows from (2.3) that

~ 2 n4d n—4
(2.4) Q= p— e_T+ng (eT’”) forn #4
and
(2.5) Q=e"v (Pyw+ Q) forn =4.

Under an orthonormal frame with respect to g, for the scalar curvature, standard
calculation shows

~ —2
(2.6) Je? = J — Aw — nT [Vwl|®.
For Schouten tensor, we have
~ Vuwl|?
(2.7) A,'j = Az'j — W5 +wW;w; — %gﬁ,
Hence
(2.8) 245y (Z)

= 205 (A4) + (Aw)® - |D2w|2 +(n—3) |Vu|” Aw + 2w;jwiw;

n-1)(n—-4)

4 |VU)|4 - 2Az-]-w,~wj

+2A,-jw,-j - 2JAw +
—(n—=3)J|Vw|®.
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We will need the following simple lemma later.

Lemma 2.1. Let F be a compact subset of R*. Define dp (x) = dist (z,F) for
x € R*. Assume for somer >0 and a > 1, we have

FCB, and O (z)” " dH" (z) < oo,
B, \F
here H™ is the standard Haousdorff measure on R", then H" * (F) = 0. In addition,
if a > n, then F = {.

Proof. We first observe that H" (F) = 0. In fact, when n = 1, the conclusion is
trivial. Now one just let z = (z',2z"), it follows easily from Fubini theorem and
the assertion in dimension 1 that for H" ! a.e. z', ({z'} x R) N F = (). Hence
H" (F) = 0. Going back we see [ dr (z)” " dH"™ (z) < oo.

If a > n, then F' must be empty. Otherwise, let o € F', then

/BT Or (z) “dH" (z) > /B, |z — zo|* dH" (z) = o0,

a contradiction.
Next, assume 1 < a < n. For any £ > 0, we may find a bounded open set U D F
such that

/ 5r (2)"C dH" (2) < e
U

By Vitali covering theorem (see [EG]) we may find finitely many points 21, , %, €
F and ry,---,r,m > 0such that By, (x;) C U, By, (z;) N By, (z;) = 0 for i # j and
F C U, Bs,, (z;). Hence we have

Zrma<c Z/B i (x)

i (T4)

< / S (z)® dH™ (z) < ¢ (n)e.

Letting ¢ — 0, we see HZ * (F) = 0. Hence H"~* (F) =0. 11

Heo ® (F)

IA

Next we recall an elementary algebraic lemma. For reader’s convenience, we
present the proof here.

Lemma 2.2. Let B be a real n X n symmetric matriz such that o1 (B) > 0 and
o2 (B) >0, then
2—n

o1(B)-1<B<o1(B)-1,
here I is the n X n identity matrix.

Proof. Since

02(B) = 3 (o1(BY - |B)
- %("‘101(3)2—‘3—"123)1‘>>0,
we see 9
‘B—UI(B)I‘ Sn_lal(B)z
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Let Ay,---, A, be the eigenvalues of B — #I . Without losing of generality, we
may assume |);| < |A1| for 1 <4 < n. Then

‘B_"I_(B)ILX;’JFiA,?»\%JFL(iA,)Z: m a2,
n = - n—1 = n—1
Hence
A<l < 2o (B).
This implies
1_”01(3)-133—"1753)13”;101(3) I

The lemma follows easily. i

3. PROOF OF THEOREM 1.1

In this section, we shall prove Theorem 1.1. By rotation, we may assume the
north pole N € . Let my : S™\ {N} = R” be the stereographic projection. Then
we may write

(mx") " (9) = G = €™gan.
Here gg~ is the Euclidean metric. Define the bad set B = my (S™\2). Then B is a
compact subset of R". Fix a r > 0 such that B C B,.
Next we recall some basic estimates for w observed in the proof of proposition
2.6 in [SY]. By Lemma 2.2, we see Rc > 4= Rg, this plus the bounds on R shows
the total Riemann curvature is bounded. Because gr» = e 2%g, we see

0= _An—l) iln__;)ﬁ (e’"T_Qw) + Re "7,

It follows from the gradient estimate of Cheng-Yau that we have
n—2
‘Vglog (e‘T“’) L <c(g) on B:\B.
g

Changing back to gr-, we get
(3.1) [Vw| <c(g)e” on B.\B.
It follows from this and the completeness of (2, g) that
(3.2) @) > ¢(g)ép (x)™"  for z € B,\B.

Here 05 (z) = dist (z, B). In particular, we know w (z) — oo as dp (z) — 0.
For A > maxgp, w, let

M ={zeB\B:w((zx) <A}.

In view of (3.2) and Sard’s theorem, we know for generic A, (2, is a bounded smooth
open subset of R”, Q) C B,\B and

(3.3) 00\ =0B, U{z € B,\B:w(x)=A}.
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By (2.8), we see for any a € R,
2 / e+ug, (4) anr
Qax

= / e ((Aw)2 - |D2w|2) dH™ + (n — 3)/ e |Vuw|* AwdH™
Qx Q

A

+2/ e wiw;w;dH™ + ("_1)4&/ e |Vuw|* dH™.
Qx Qx
Since
e | Awl|? — e |D2w|2
= (e*Aw-wy); — (ea“’wijwi)j — ae*” |Vw|2 Aw + ae®wjw;wj,
we see

2 /Q A e, () danr

= / e Aw- ow _ U)ijU)iVj) dH" '+ (n-3- a)/ e |Vu|® AwdH"
aQ v Qx

(n—1)(n—-4)
4

Here v is the outer normal direction. Substituting the identity

+(a+ 2)/ e“wjww;dH™ + / e |Vwl|* dH™.
Q)‘ Q)\

1 1
ew;jwiw; = = (ea“’ |Vwl|? wi) = 560‘“’ |Vw|* Aw — %ea“’ [Vwl[*,
2

2
we find

Q/m elotwg, (Z) dH"

ow ow o+2 2 Ow ne
= /am e (A'w "5y T Widlivi + 5 |Vaw|? E) dH™ !

+ (n —4- §a) / e |Vuw|* AwdH™
2 Q.

. ((n - 1)4(n —4) a (a2+ 2)) /Q p———

By (2.6), we see

2

(3.4) Aw=—Jer — "% |yu?,

hence

2 [ o, (3) an

ow [ 5 200W n—4—o ow e
= ‘/'BQ)\ e (—J€2 E - ’LUij’U)Z'Vj - f |V’LU|2 E) dH 1

- (n —4- §a) Jelat2w | 7y|? dpr
2 Qs

_% (a _ ”;4> (a—(n—3) /Q e |Vl dH™.
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In view of (3.3) and the fact that on {z € B,\B: w(z) = A}, the outer normal
v= |§—$|, and %% = |Vw|, we see

2 [ i, (1)
Qx
n—4 5 Ow

~ 611} —
= e | —Je™ — — wijwv; — ———— |V —) dH™ !
/{mEBT\B:w(m)—A} ( ov ’ ’ 2 | ov

- (n —4 - §a) JeletDw |G| dpm
2 Q,

1 —4
—= (a—n )(a—(n—3))/ e |Vw[* dH™ + ¢ (a, g) -
2 2 o
But using (2.7), we see

~ o Ow n—4—a« Ow
_Jezwa - wz'ju)z'l/j — # |VU}|2 E

~ = ow 2 n—3—« 4

Since o, (Z) > 0,04 (Z) > 0, by Lemma 2.2 we have
A< (tr]l') g =Jevg,
this implies
gij'll]iﬂ)j < Je2v |Vw|2.
Summing up, we get the following
(3.5) 2 / elathwg, (Z) dH"
Qx

n—3—a«

- 2 /{wGBT\B:w(a:)z)\}
- (n —4- §a) / Jelet2)w | gy|? dH™
2 Q,

e |Vw|3 dH™ !

_1 (a— ”;4> (a—(n—3))/9 0 [Vl dH™ + ¢ (a, g)

On the other hand, it follows from (3.4) that for any o € R,

~ -2
Jelatwgyn — _/ R a_wdan—l + (a _n ) / R |Vw|2 dH™.
a0,  Ov 2 N

Qx

This implies

(3.6) Jelet2)w gy
Qax

—2
= (a— n )/ e |Vw|2dH"—/ e | V| dH™
2 Qi {ze€B, \B:w(z)=A}

+c(a,g) -
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Taking o = 25 in (3.5), we get

/ e"F g, (ﬂ) dH" +/ JeE" |Vw> dH™ < ¢(g) .
Qx Qax

Let A — o0, it becomes
/ e"F Yoy (ﬁ) dH" +/ e3" |Vuw|® JdH™ < ¢(g) < 0.
B, \B B:\B
In view of the fact J >c1 > 0, we see

/ e3" |Vu|® dH" < 0.
B,\B

Using this inequality, the fact J > ¢; > 0 and taking a = % in (3.6), we see

n+4
/ e 2 YdH"™ < oo.
B,\B

By (3.2) the above inequality implies

_nga
/ dp > dH"™ < oo.
B,\B

It follows from this and Lemma 2.1 that %% (B) = 0, and hence dim B < nd,
To get the strict less sign, we put a = "7_4 + ¢ in (3.5) for € > 0 very small, then
using (3.1) and the lower bound for J we see

/ e(B+9)w |Tul® dH" < c(g) + ¢ (9)e / 3 [Guf i
Qax

Qx

This shows [ e(3+e)w |Vw|* dH"™ < ¢(g) when ¢ is tiny enough. By letting
A — o0, we get fBT\B e(%JrE)“’le2 dH" < oo. Let @« = § + ¢ in (3.6), we

get fBT\B e("FHHe)wgyn o 00, and this implies dim B < 5% — ¢ < 252,

4. PROOF OF THEOREM 1.2

In this section, we shall show that similar methods for proving Theorem 1.1
would give us Theorem 1.2. As in the beginning of Section 3, we may assume the
north pole N € 2 and using the stereographic projection, we write

(m3")" (9) = § = € “gron.
We also have the corresponding B = my (S™"\Q) and r > 0 such that B C B,.

Again, estimates (3.1) and (3.2) remain true. It follows from (3.4) that for any
a€eR,

aw T (a+2)w n—2 2 _aw
(4.1) A(e*™) = —alde tala——— [Vw|” e*™.

Assume n > 5. Then it follows from (4.1), the fact R>c¢; >0and (3.2) that

n

(4.2) A (e%‘l“’) () » —o00 as dp(z) = 0.
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. n—4
For A < mingp, A (e 2 w), we denote

0y = {m € B\B:A (e"T“‘W) (z) > ,\} :

For generic ), using (4.2) and Sard’s theorem we see {2 is a bounded smooth open
subset with Q, C B,\B and

It follows from (2.4) that

ot g = a? (),
hence for any a € R,
n—4

(4.4) -

[ e
Qx

e ‘VA (e"T_‘lw) ‘ dH™ !

- /{zGBr\B:A (6"7_41”) (z):)\}

—a/Q e w; (A (enT_llw)) dH" +c(a,9) .-
N i

Taking a = 0 in (4.4), we see
n—4
2

/ e T UQAH™ < c(g).
Qax
Letting A — —o0, we get

/ e"TH“’@dH" <c¢(g) < oo.
B.\B

In view of the fact Q > co > 0, it implies

n+4
/ e 2 YdH"™ < oo.
B,\B

Similar arguments in Section 3 shows dim B < "7_4. To get the strict inequality,

we observe that it follows from (3.4), (2.7), (3.1), (4.4) and the lower bound of Q
that for € > 0 small, we have

/ e("T“-i—e)wdan < C(g) +c(g)€/ e("T’L‘l—f-s)wd,}_tn7
Q)‘ Q)\
and hence

/ )y < e (g)
Qx

when ¢ is very tiny. This shows [, \B e("FH+)wgpm <« o and dim B < nd_e<

"7_4 as before.
Assume n = 4. Then it follows from (3.4), the fact R > ¢; > 0 and (3.2) that
Aw — —o0 as g () — 0. By (2.5) we see
e Q = Aw.
For A < mingpg, Aw, define
O\ ={z € B,\B: Aw(z) > A}.
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As before, we may prove that for generic A,
(45) [ eqant < (o).
Qx
Letting A = —o0, we get

/ M QdH* < ¢(g) < .
B.\B

This plus the lower bound of @ implies || B.\B 6,;4d7{4 < oo and hence B = § by

Lemma 2.1.
Assume n = 3. Then it follows from (4.1) that

J 1
(4.6) A (e_%“’) = %e%“’ + 3 |Vw|? e S 00 as g (z) — 0.
It follows from (2.4) that
(4.7 e3¥(Q = —2A2 (e_%“’) .
Using this equation, and for A > maxgp, A (e*%“’), redefine Q) by

0, = {m €B\B:A (e—%W) < A} ,
then similar arguments will give us
/ e QdH? < c(g).
Qx

Letting A — oo, we see fBT\B e3¥QdH3 < ¢(g) < co. Using the lower bound for Q

1
we get fBT\B 052 dH? < co. This clearly implies B = ) in view of Lemma 2.1.
Now let us turn to the case when we only have @ > 0. First assume n > 5. By
doing integration by part one more time in (4.4), we get for any a € R,

’I’L—4/ e(nTH+a)wéden
Q2

(4.8)

e ‘VA (6"7_4“1) ‘ dH™ !

~/{z€Br\B:A (enT_[lw)(m):)\}
+/{EEBT\B:A(enT_4w>(z):)\}
+ A(e*™)A (6"7_4“’) dH" + c(a, 9) -

Qi
For € > 0 small, it follows from (4.1) that

= —2
(4.9) Afev) = el +¢ (nT + 5) |Vw|* e~ > 0,
and
n=4.,\ _ n—4~ 2w n—4 2 nT—Al,w
(4.10) A (e ) =-—3 Jez2™ — —5 [Vw|” e .
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. ., VA JT"‘“) o
Claim 4.1. f{zEBT\B:A(enT_‘Iw)(m)Z)\} Ve . vA(e"T_ll‘”) dH > 0.
Proof. For a generic 7 > max, g w (), the open set

U= {x € B\B:w(z)<7and A (6"7_4“’) (z) < /\}
is smooth, in addition it satisfies U C B,\B and
oU = {:c €B,\B: A (e"T“‘w) () :)\}U{m €B\B:w(z)=1}.
By (4.9), we see

0 < / A (e V) dH™ = / dH™ !
U ( ) sy OV
—&

e |Vw| dH" !

/{mEBT\B:w(w)—T}
VA (e"T_‘l"’)

e ™

VefE’u) .

* /{wEBT\B:A (e"T_‘l‘") (z):)\}
The claim follows easily. 1

Taking a = —¢ in (4.8), we get
0 < 1 / (" ) Qanr
2 Qs

n

e ¥ ‘VA (e%“’) ‘ dH™ !
by Ve ¥ va (enT_[lw) d n—1
sty (" s ()
+/ Ae™™™) A <enT_4“’) dH" +c(e,9).
Qx
Using Claim 4.1 we see
—/ Ae™*") A (6"7_4“’) dH" < c(e,g).
Qx

In view of (4.9) and (4.10) and the fact R > ¢1 > 0, we see

/ ("3 —e)uwgyn <cl(e,g).-
Qa

- ~/{meBr\B:A(e"T_4“’>(z):)\}

Letting A — —o0, we see

/ (" == )wgym <c¢(g,g) < oc.
B.\B

As in Section 3 this implies dim B < 252 + . Taking e — 0%, we see dim B < 232,
Next we look at the case n = 3. For ¢ > 0 small, it follows from (4.1) that

~ 1
(4.11) Ae™v) =eJe®9v 4 ¢ (6 + 5) |Vw|* e~=v.
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This implies A (e7*%) (z) — oo as dp (x) — 0. Using this, similar to the proof of
Claim 4.1, one easily shows

VA (e*%“’

| )
/{zEBT\B:A(e_%"’)(x):/\} v ‘VA (ef%w)|

(4.12) dH> < 0.

Using (4.7), we have for € > 0 small,

0 / e(G-e)wgans = —2/ e—TUA2 (e—%W) dH?
Q)‘ QA

IA

2 —ew |G (e )| ap2
- /{EEBT\B:A(e_é“’)(z):)\}e ‘ (e )‘

VA (e*%"’)
+2)\/ § Ve ew. N 7 p2
{EEBT\B:A(e_Qw)(z):,\} ‘VA (67 w

)

S

—2/ Afem) A () i +e(eg).
Qx
In view of (4.12), (4.6), (4.11) and the fact R > ¢; > 0, this implies

/ e(3==)w gy <cl(g,9).-
Qx

Letting A — oo, we see fBT\Be(%_E)“’dH3 < c(g,9) < oo. By (3.2) we get
I \598 (x)7%+5 dH? (z) < oo. Using Lemma 2.1, we see B = ), and hence Q = S°.

5. PROOF OF THEOREM 1.3

Now we may prove Theorem 1.3. We use the same notations as in Section 4.
Under the condition of Theorem 1.3, the proof in Section 4 shows (4.5) is still true.
That is

/ e QdH < c(g).
Q

Since [, @~ dp, < oo, we see
/BT\B ohw (@)_ dHt = /BT\B (@)_ dp; < 0.
Let (@)Jr = max {@,0}, then we have
e (@) ant <@+ [ et (Q) ant <clo),
letting A = —o0, we see

/BT\B et (é)+dﬂ4 <e(g) < oo.

Hence [, \z et |@‘d7—£4 < oo and this clearly implies [, |Q[du, < oo. Using
theorem 2 of [CQY], we see Q = S*\ {p1,-++ ,pm} for p1,--- ,pm € S*.



ON A CLASS OF LOCALLY CONFORMALLY FLAT MANIFOLDS 13

6. THE POSITIVITY OF PANEITZ OPERATOR

In this section, we shall study the positivity of Paneitz operator on a smooth
compact Riemannian manifold (M™, g). It follows easily from (1.2) and (2.1) that

n —

4
5 J? + 405 (A).

Q=-AJ+

Using this and (2.2), we see for any ¢ € C* (M),

(6.1) /M Py - pdp

/ [(A¢)2 1AV, V9) + (-2 T [Vl + 02| dp

—4
- [(Asof 1AV + (- 2) TV - AT
M

+MJ2(’02 + 2 (TL — 4) (2] (A) 902

dp.
4 K

By the Bochner formula, we have

[ @oran = [ (D% du+ [ Re(e.ve)du
M M M

/ |D%0|" dp + (n — 2)/ AV, Vo) dp +/ TVl dp.
M M M
Under any local orthonormal frame on M, we have
AT-¢* = Jup? = (Jig), — 2Jipp; = (Jip?), — 245500
= (Ji9?), = 2(Aijpp:); + 2445005 + 2445050,
and this implies

/ AJ - Qdp =2 / A(Ve, Vo) dp +2 / (4,D%¢) pdp.
M M M

Plug these identities into (6.1) we get

(6.2) / [(A¢)2 LAV, V) + (n—2) T Vel + ”T“‘w] du

— 4)?
= /M l|D290|2—(n—4)<A,D290><p+ (n 1 L 1ap o | d

+ [ (=37 196l + 205 = 4 (V9. V9)) du

n(n—4) 9

By approximation, we know the above identity remains true for ¢ € H? (M).
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Proof of Theorem 1.4. It follows from (6.2) that for any ¢ € H? (M),
n—4

63 [ a0 -140 90+ -2 1908 + 200

> [ [n=3)7196f + 2079 - 4) (V. 99)]

n(n—4) n—4 >
SO n g [ (1% - 252 Al dn
M M

Since o1 (4) > 0 and o2 (A) > 0, we have Jg > A. It follows easily from (6.3)
that P > 0. Assume (M, g) is not Ricci flat, then A does not vanish identically.
Given any ¢ € ker P, we know ¢ € C*® (M) and Py = 0. It follows from (6.3) that
J|Ve| = 0and |[D?p| — 25 |A||p| = 0. Let U be the open subset on which A does
not vanish, then it follows from o5 (4) > 0 that J > 0 on U. Hence Vg, = 0.
This would imply ¢|;; = 0. By unique continuation property of solutions of elliptic
equations, we see p =0 on M. 1

7. EXAMPLES

In this section, we shall present examples related to the results above. Let k& and
I be natural numbers and n = k + [. Denote H as the half space (0, 00) x R~1
with the hyperbolic metric
1 -1
- J J
gu = 5 dr®dr+Zdy ®dy
j=1
Here (r,y',--- ,y'~!) is the coordinate on (0, 00) X R'='. Endow the space S* x H'
with the product metric ggr . By abusing a little bit notations, we have
1 -1 ‘
gstxm = gst T gm =gsk+ 5 dr ® dr + Zdy’ ® dy’
j=1
1 -1
= — |dr®dr+rigg +Zdy’ ® dy’
j=1

<
no

-1
= T‘lz gRrk+1 + Z dyj & dyj
j=1
Note here we have used the polar coordinate on RFt1\ {0}. The above calculation
shows S* x H is conformal isomorphic to (RF1\ {0}) x R'=1 = R™\ ({0} x RI—1),
which is conformal isomorphic to = S™\S!~! by the stereographic projection.
Note that dim (S™\Q) =1 — 1.
On the other hand, we have

Re = (k—T)ggo—(—1)gu, R=(n—-1)(k—1), J=21

2
A = Sgs—gem, o) =g ((k-07-n), Q=7 (k-1*-4).

Let N* be a I dimensional smooth compact oriented Riemannian manifold whose
universal covering space is isometric to H' . Endow M™ = S* x N' with the product
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metric g = gs» + gn. For S° x N2, we have R = 18, 05 (4) = 1, Q = 2,
5 (85 X N2) ~ 7, H? (55 X N2,]R) =~ R and H® (55 X NZ,]R) = R. This should
be compared with Corollary 1.1 and Corollary 1.2. More generally, if we let &

be the minimal integer larger than or equal to ”+2ﬁ, then | < "72‘/5, it follows

that oy (4) > 0, 0 (4) > 0 and dim (S"\Q) =1 — 1 > 2 _ 2 this should be

compared with Theorem 1.1. If n > 5 is even, then let k = ”T+4, l = "7_4, we see

R>0,Q>0and dim(S™\Q) =1—-1=25let k=22, | = 22 we see R> 0,

Q@ =0and dim (S"\Q) =1 —1= 254 If n > 5is odd, then let k = 23, | = =3
wesee R >0,Q > 0and dim(S"\Q)=1-1= "T_F’ These should be compared
with Theorem 1.2.

Assume n > 5. For any ¢ € H? (M), the quadratic form associated with the

Paneitz operator on M is

[ |@or -1ame v + -2 1908 + 00

(n—2) (k-

: l
= [ @02 -219spp +21vmept + E=BE=D vy

+%6_4) ((k e 4) @2] dys.

In particular, if kK —1 > 3, then we know M has positive scalar curvature and
positive Paneitz operator.

For any w € C™ (M, R), we let g, = €2¥g, then it follows from (2.8) that (using
orthonormal frame with respect to g)

2/ ety (Ay)dp
M
2 2 12 2

= / ((Aw) — | D*w| )d,u—i—/ ((n—3)|Vw| Aw+2w,-jwiwj) du

M M

—1)(n—4
+w/ |Vw|4d,u+2/ o2 (A)du+2/ Ajjwijdp
4 M M M

—2/ JAwdu—2/ A (Vw, Vw) dp — (n—3)/ J V| dp.
M M M
Note that

/M ((Aw)2— |D2w|2) dy = (n—2) /MA(ch,ch)du+/MJ|ch|2du,

1
/ wijwiwidp = —5/ Vl|* Awdp,
M M
/ Ajjwiidp = —/ (VJ,Vw) dp =0,
M M

and

/JAwdu:J/ Awdp = 0,
M M



16 SUN-YUNG A. CHANG, FENGBO HANG, AND PAUL C. YANG

hence we have

2/ e*oy (Ay)dp
M
_ (n—4)/ |Vw|2Awd,u+w/ |Vw|4d,u+2/ o3 (A) dp
M 4 M M
+(n- 4)/ A (Y, V) du — (n—4)/ TVl du.
M M
Using (2.6) we see
2w MN—2 2
Aw =J — Jye —T|Vw| .

M
- _(n— &2V Vw2 _(”—3)(”—4) wlt o.
=~ [ ol dap— S [ vt aue2 [ o () au
+(n—4)/ A (Vw,Vw) dp
M
= —(n—4) /M62w |Vwl|? deu—W/Merldu

1 2 n—4 2 TL—4/ 2
4/M (n (k=1 )d,u—i— 5 /M|V5kw| du 5 M|VNw| du

- e /M e /M (Ivskwlz - #)2 dy

n—3
—3)(n—4 .
_n=3m=9 )4(n ) /M (lVNw|4 +2|Vgiwl|? |VNw|2) du

n—4

[ el [ <(’;‘_2§ —<k—z)2) .

For convenience, we write k = ”;L“, I = *5%. Fix a such that 3 < a < \7%,
then we know the scalar curvature and the Paneitz operator is always positive. In
addition, if for some w, o1 (4,) > 0 and o2 (Ay) > 0, then it follows from (7.1) that
Jw |Vw| = 0 and |Vgrw| = \/T% Hence J,, = 0. This contradicts with the fact
J > 0, which implies that the Yamabe constant is positive. The arguments show
that we can not find any conformal metric g,, with o1 (4,) > 0 and o3 (Ay) > 0.
On the other hand, if for some w, we have oy (4,,) > 0, then J2 — |4,]* > 0 and
this implies either J,, > 0 or J,, < 0. Since J > 0, we see J,, > 0. This shows
o1 (Ay) > 0 and o2 (Ay) > 0. It contradicts with the former conclusion. Hence
we can not find any conformal metric with positive o2 neither. This should be

compared with Theorem 1.4.

8. COERCIVITY OF THE CONFORMAL FACTOR

Motivated by the proofs of Theorem 1.1 and Theorem 1.2, we propose the fol-
lowing problem :
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Let Q C S™(n > 3) be an open subset, wg € C* (2, R) such that
€20 gsn is complete on 2, when would we have wg (z) — oo as
dist (z, 00) — 07
The following result is an answer to the question. One may apply this result
to relax the assumptions in Theorem 1.1 and Theorem 1.2, as mentioned in the
introduction.

Proposition 8.1. Let 2 C S™ (n > 3) be an open subset, wg € C*° (Q, R) such that
(Q,e**0ggn) is complete. If Ro2wo,., > —c1 for some ¢y > 0, then wo (z) — oo as
dist (z,0Q) — 0.

Proof. By rotation, we may assume N € (). We may write

g= (ﬂ,l;l)* (eZwogS") — e2ng"

and U = 7wy (2\ {N}). Denote L, = —4(::21)Ag + R, as the conformal Laplacian,
then
n+2 n—2

0= Lyl = Lo-zwyl = e 370, (e"5°0).

This implies
4 - ]. n— n—
_757_ 5 )Ag (6—7210) + Rge_T%} = 0.

Since U is a domain in R™, by the conformal covariant property of the conformal
Laplacian operator, one easily deduces that for any ¢ € C*° (U),

n—2

4(n—-1 2n_ "
/U (% Vyely + Rgso2> dpy > ¢ (n) (/U [l ™2 dug) :

here ¢ (n) > 0. That is, we have the Sobolev inequality. Hence we may start the

procedure of Moser iteration. From now on, for convenience, we use g as back
n—2

ground metric and omit the g in all notations. Let u = e~ "2 *, then

4(n—1)
n—2
For 3> 0,n€ C® (U),0<n<1. Let ¢ = n*uP, since

4(n—-1
/ <MVU -V + R+u<p> du < cl/ updy,
v\ n—2 U

Au+RTu=Ru<cu.

and
Vo = 20uPVn + e’ ~1Vu,

we see

c(n)ﬁ/UTfuB_l |Vul|® d,u+c(n)/Unu5Vu-Vndu+/UR+nzuﬂ+1dp

< cl/nzuﬁ"'ldu.
U

Hence

c(n)ﬂ/{}nzuﬂ_l |Vu|2du+/UR+n2uﬁ+1du

< cl/n2u6+1d,u+@/ |Vn|* uPtdp.
U g Ju
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In another way, it is

c(n)pB / 2 a11 |2 / +, 2, B+1
— Vu™= | du+ [ R™n*u""d
(,84—1)2 Uﬂ | Y v n 4

< C1/n2uﬂ+1du+m/ [V|* wb+dp.
U g Ju

Hence
112 2
/,f‘vuﬁ% du+M/ R ufdp
B U
< ¢(n,a) (ﬁ-i— ﬂ2) / <772 + |V7}|2) WP Hdp.
But )
/ ‘V ET dug 2/Un2 ‘Vu% d,u+2/UuﬁJr1 \Vn|® du,

we get

—1)
(n /‘V nu -ZH d,u-{-/RJrnZuﬂ“du
U

c(n,c1) (5+ ﬂ2>/ (n2+|V17|2) udp.

74@_1)/ ‘V nu%)rdu-{—/}#?ﬁuﬂ“dﬂ

IN

Observing that

n—2
> 4(n7—1/ ‘V %) Cl,u+/RT)2uB+1d,u
B+1 |2
> 2 n .
2 c(n) ‘nu Lz ()
Hence
g1 |2 1 2 2 B+1
2 2n < 5 — .
2y, <eluen) (54 %) [ (i +190F) w?¥ia

Choose a point zg € U such that DY (zo) = {z € U : dy (z,z0) < 1} is compact.
For k € N, let r;, = 1 + 2, by choosing suitable 5 we have

2n <c(n)p-4k / u?dp.
Bfk

L (ng+1)

2k7
2

In another way, it is

B+1 k B+1
u < n 8 .4 u d““
| Ln= 2(ﬁ+1)(3g )~ e /Bﬁk

Th41

k—1
Choose 8 = % (L) — 1, then we get

n—2

n—2
k—1 W( n
n—2(n—2\k—1 2n n
< =2 (2)
e ) 00 (n_2 (n_2) )

4% k(252) Jul

L%(ﬁ)’“(%) '
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Iteration shows

In particular, we have

n—2 n—2
e~ wleo) < c(n,cl)‘e_ z v

L7272 (B{ (z0))

n—2

2n

= c¢(n,c1) / e ™du
Bf(zo)

= c(nyer) (H™ (B (o)) ™

as g — OU, in view of the Lebesgue dominated convergence theorem. i

—0
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