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0. Introduction

In this paper we establish an a priori estimate for a fully nonlinear equation arising in
conformal geometry (see [V-1], [CGY]). Although the equation is defined on any Riemannian
manifold of dimension n > 3, four dimensions is of particular interest due to its connection
with the Chern—-Gauss—Bonnet integrand, and in estimating the eigenvalues of the Ricci cur-
vature (see the introduction of [CGY]). For this reason we will restrict our attention to case
n = 4, while introducing a variant of the equation.

Let us begin by introducing our notation. Let M* be a smooth compact four-manifold
without boundary. Given a Riemannian metric g, we let W, Ric, and R denote respectively
the Weyl curvature tensor, Ricci curvature, and scalar curvature of g. We also define the
tensor

1
A=A, = Ric— gRg . (0.1)

Note that A arises in a natural way when decomposing the Riemannian curvature tensor
Riem: 1
Riem =W + §A Dy, (0.2)

where (® denotes the Kulkarni-Nomizu product of symmetric two—tensors; see [Be, 1G] for
definitions.

To describe our equation we first note how the tensor A transforms under a conformal

2w

change of metric. Let g = e*“gp, and from now on let us designate quantities which depend

on go by attaching a sub— or superscript 0. Then
A, = Ay — 2Vaw + 2dw @ dw — |dw|?gq , (0.3)
where V2 denotes the Hessian. In [V-1], the following equations were introduced:
or(Ay) = o1 (Ay — 2Viw + 2dw @ dw — |dw|?go) = f, (0.4)

where o, denotes the k' elementary symmetric polynomial, applied to the eigenvalues of Ay
Note that when k = 1, 01(A4,) = try4, = R, so (0.4) is the prescribed scalar curvature
equation.

Our particular interest here is with the case £k = 2. In terms of the Ricci and scalar
curvature, 02(A) = —|Ric|* + $ R?. Moreover, the decomposition (0.2) implies a splitting of
the Euler form, so that the Chern—Gauss—Bonnet formula can be written

82y (M*) :/i|W|2dvol+/02(A)dvol,

where |W|? denotes the squared norm of the Weyl tensor as a (0,4) tensor. Thus, the Euler
characteristic is expressed as the sum of two conformally invariant integrals. The second
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integral can be either positive or negative, but its positivity obviously has topological conse-
quences. Furthermore, in [CGY], we were able to show that any metric gy satisfying

/Uz(AgO)dvolg0 >0,
Y(gO) > 07

(0.5)

where Y (go) is the Yamabe invariant of gy, is conformal to a metric g with o2(A,) > 0. The
positivity of o2(A) is a kind of pinching condition on the Ricci curvature; in particular it
implies

1
0 < Ric < §Rg
(see [CGY, Lemma 1.2]).

The present paper is, in a sense, the continuation of [CGY]. Once a conformal class
admits a metric with o2(A) > 0, our goal is to show that it admits a metric normalizing
o2(A). To achieve this we need the following basic estimate:

Theorem. Let (M*,gy) be a compact Riemannian four-manifold, which is not conformally
equivalent to the round sphere. Suppose the conformal metric g = e**gq satisfies

02 (Ag)
Ry

=f>0, (0.6)

where « =0 or I ; and Ry > 0. Then there is a constant C' = C(|fl|c2,90) such that

nﬁx{e“’ +|Vow|} < C. (0.7)

Two corollaries follow from inequality (0.7). The first is technical, while the second is an
existence result.

Corollary A. Under the same assumptions, there is a constant C = C(||f]lc2, (min f)~1, go)
such that
[w]ee < C. (0.8)

Corollary B. Assume that (M*,go) satisfies (0.5). If a = 0, then given any positive
(smooth) function f > 0, there ewxists a solution g = e?*“go of (0.6). In particular, this is
true if f = 1.

Remarks.

1. The assumption that (M*?, go) is not conformally equivalent to the round sphere is of
course crucial, since (0.6) is invariant under the conformal group.
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2. Taking f = 1 in (0.6), the parallel with the Yamabe problem is apparent. We wish
to emphasize, however, that the theorem above does not rely on the positive mass
estimate.

3. Once the bound (0.8) is established for solutions of (0.6), an existence result like
Corollary B follows from applying a standard procedure: first, (0.7) and (0.8) imply
uniform C*-bounds for solutions. In section 1 we show that one obtains C'*''~bounds
on solutions to (0.6) once C'-bounds are known. Finally, invoking the concavity of
equation (0.6) ([Ev], [Kr]) one can derive regularity estimates of any order. Applying
the degree theoretic arguments, existence follows. This is explained in more detail in
section 5.

4. The positivity of f implies that (0.6) is elliptic. This and other important properties
of (0.4) are described in [CGY]. In [V-2] estimates like (0.7) are established, assuming
however that f has a very special structure.

5. It is interesting to note that the equation

is variational exzcept in four dimensions (due to conformal invariance; see [V-1]). When
n # 4 it is the Euler—Lagrange equation of the functional

g /Uz(Ag)dvol.

6. When « = 1, the existence of solutions to (0.6) remains an open question. When
a = 0, one can rewrite (0.6) in a kind of divergence form (see section 5, (5.5)); this
ultimately allows us to compute the degree of the equation as defined in [Li]. But
the structure of (0.6) is more complicated when o = 1, and a different argument is
apparently required.

The research for this article was carried out while the second author was a Visiting
Professor at Princeton University, and the third author was a Visiting Member of the Institute
for Advanced Study. Both authors wish to acknowledge the support and hospitality of their
host institutions.

1. The blow—up

In this section we begin the proof of the main theorem by doing a blow—up analysis.
Namely, given a sequence of solutions to (0.6) for which the estimate (0.7) fails, we dilate
them to construct a new sequence which converges to a smooth solution of (0.6) on (R*, ds?)
with f = constant. In sections 2 and 3 we provide a classification of all such solutions; from
this we eventually conclude that the manifold (M*, go) is conformally equivalent to the round
sphere (see section 4).
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The aforementioned process is fairly standard, and is important whenever the PDE under
consideration is invariant under some (non—compact) group of transformations. The main
technical difficulty in our case is the absence of a Harnack inequality for solutions of (0.6).
Consequently, if we simply dilate our solutions in order to obtain a sequence which is uniformly
bounded above, we are unable to conclude that the sequence has a uniform lower bound (even
locally). This makes it difficult to construct a non-trivial limiting solution to (0.6) on R* from
our original sequence.

To overcome this difficulty we dilate in a rather unusual way, which we now describe.
Let gx =€

2wk gy be a sequence of solutions to

02 (Ayk)

R‘(qlk :fk ) (11)

where @ = 0 or 1, and we assume that {fj} satisfies

0<cy < < c_l,
0 fk 0 (12)
I felle2 ) < e1 -
If inequality (0.7) fails, then
mﬁx[|vowk| +e"] w00 as k—o00. (1.3)

Let us assume that P, € M is a point at which (|Vowg| 4+ €¥*) attains its maximum. By
choosing normal coordinates {®} centered at Pj, we may identify the coordinate neighbor-
hood of Py in M with the unit ball B(1) C R* such that ®;(FP) = 0. Given ¢ > 0, we define
the dilations T.: R* — R* by = — ez, and consider the sequence wg,. = Twy, + loge. Note
that

|Vowg,.| + €% = e(|Vowy| +e“*) o T, .

Thus, for each k we can choose € so that

Vo(w.e, )| +ee ] =1 (1.4)

Note that wy, ., is defined in B ; (0), and

€k

|V0(wk,6k)| + e L1 on Ba (0) . (1.5)

<k

To simplify notation, let us denote wy, ., by wy. Since from now on we view {wy} as a
sequence defined on dilated balls in R*, there will be no danger of confusing the renormalized
sequence with the original sequence. Note that gf = e+ T% g = e*“* g satisfies

‘72(Ag;)

—a— =JfroTy , (1.6)
Rg]t k
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where o = 0 or 1. Furthermore, g& = T g0 — ds? in C%# on compact sets.
There are now two possibilities to consider, depending on the behavior of the exponential
term in (1.4). First, suppose that
lim e“*(®) =0 .
k

After choosing a subsequence (also denoted {wy}) with e?*(®) — 0, we let Wy (x) = wy () —
wy(0). Then gi = e*Prgf satisfies
wk(O) =0,
|dw| < 1, (1.7)
1i1£n|dwk(0)| =1.

Also
o2(Ag,)

= 22w o (1.8)
kg, '

Note that the bounds in (1.7) imply that given a fixed ball B(p) = {z € R*||z| < p} C R",
then
wy| < 1.9
max [We] < p (1.9)
so that {wy} is bounded in the C'-topology on compact sets in R*.

Alternatively, suppose
limsup e”*(®) =g, > 0.
k

Then there is a subsequence (also denoted {wy}) satisfying

—C2 < wk(o) < 07 (1 10)
<1, '

|dwk|

for some constant ¢, > 0. Note that (1.10) implies that for any p > 0, there is a constant C,
such that

max |w| < C, . 1.11
B(p)| k| P ( )

We now want to show that both {wy} and {wy} converge; but the type of convergence
differs: for the sequence {wy} the equation (1.8) will not be uniformly elliptic, because the
RHS tends to zero as k — oo (see [CGY, Prop. 1.5]). Consequently, the best estimate we can
obtain is

sup |V?wg| < C, ; (1.12)
B(p)

see Proposition 1.1 below.
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On the other hand, the sequence {wy} does satisfy a (uniformly) elliptic equation; in
addition to the bounds on the second derivatives as in (1.12), by the concavity of the equation
22 it follows from the work of Evans [Ev] and Krylov [Kr] that {wy} is bounded (on compact
sets) in C2#. Then the Schauder estimates, along with standard elliptic estimates, give
convergence in any C*.

The preceding analysis is based on the following a priori estimate:

Proposition 1.1. Let gy be a Riemannian metric on B(p) C R*. Suppose g = €*“ g, satisfies

02(Ag)
=p>0, 1.13
Ra SD ( )
R>0, (1.14)

on B(p), where oo =0 or 1. Then there is a constant

C =Cp, lgollc2 By, Nlellcz(s)) » NWllLe(B)) s IVw]lLe(B(p))

such that
V2w Lo (B(p/2)) < C - (1.15)

Remarks.

1. A careful examination of the proof for the Proposition indicates that one can modify
the constant C in (1.15) to depend only on p, ||gollc2(B(,)), and a lower bound of Ag¢p
on B(p) and an upper bound of || V|| on B(p).

2. The C* norm in the statement of Proposition 1.1 are with respect to the Euclidean
metric.

Proof. The proof amounts to a localization of the estimates in [CGY]. Roughly speaking, the
idea is to work intrinsically; that is, to derive bounds on the curvature of g on B(p/2), then
reinterpret these bounds in terms of the conformal factor w. For this reason, all covariant
derivatives, curvature tensors, etc., which appear in the following are understood to be with
respect to the metric g. If we need to refer to a quantity which depends on the background
metric gg, then we will denote this with a sub— or superscript 0. By convention, components
of tensors are in normal coordinates. In particular, W;;xe, R;;, and B;; denote the components
of the the Weyl curvature, Ricci curvature, and Bach tensor (see [CGY, (1.18)]). Also, we let
Eij == Rij — %Rgija S@'j = _Rij + %Rgija and Aij == Rij — %Rg” We will need two identities
from [CGY]:

1
Si;ViV,;R = 3A0y(A,) + 3(|VE|* — E|VR|2)
+ 6trE? + R|E|2 — 6W¢jkg EikEjg — 6E”B” (]_]_6)
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where trE? = E;;E;xEjj, (see [CGY, Lemma 5.4]), and

1 1 1
ViV;V = ——trE® + —R|E]> + —R®
8iViV;V = —trE® + S RIEP + — R

- %(Vw,Vaz(A)) - %war* _ S,V |V2Vw

F WigneSaVuVew — LSy Andsy + 1S A%AS,

— 8i; A7 ViwViw + %S@-jA?j|Vw|2 + %kaVkAE’jSij

+ %RAijinjw , (1.17)

where V = 1|Vw|? (see [CGY, Cor. 5.15]). To accommodate the case @ = 1 in (1.13), we

need to write these identities in a slightly different form. To this end, let T;; = S;; — 3% 9ijs

by [CGY , Lemma 1.2], T;; is positive semi-definite when o3(A4) > 0 and R > 0.

Lemma 1.2. Suppose g = e?“gq satisfies (1.2) and (1.14) with o = 1. Then

T;;ViV;R > 3RAp + 6trE* + R|E|?
— 6WijneEi Ejy — 6B Eyj | (1.18)

1 1 1 1
TijViV;V = =3¢ {Z|A|2 + AP = S A A —gR|Vw|2

1 1 1
+ > Ro|Vwl|? + E(Vw,V(Roe_m))} — §(Vw,V<,0)R

6
1 1 1
— ¢ E3 - E 2 - 3
g R RIEN A gl
1 1
— 5(V1U,VO’2(A)> — ZR|V1,U|4 — SWV@|Vw|2V]w

1 o ]' o o
+ WijkgSiijngw — §S”AzkA]k + ZSZJA“C 5k

o 1 o ]- o
— S”AlkVﬂUka + 55”14”|V’w|2 + §kava”S”

1
+ §RA;’jV@-ijw . (1.19)

Proof. Note that
A
T;;ViV,R = 8;;V;V;R — 3%AR .

By [CGY, Lemma 7.10],

1 VR VR|?
3(|VE|? - ﬁ|VR|2) > —fsvo—z(A)f + 602(A)| R2| .
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Substituting these into (1.16), we have
) Vi

R

T;;V;V;R > 3A05(A) — 3

[VR?

AR — 6Voy(A)

+ 605 (A) T 6trE° + R|E|?
— Wik Eje — 68, E;

_ o2(A) 3 2
= 3RA( = ) +6trE® + RIE)|
— 6WijpeEir By — 6B Eyj
To establish (1.19), we first note
A
Ty, ViV, V = Si;ViV,;V — 3%Av .

By the Bochner formula,

1

From [CGY, (5.34)], we have
1 . 1
Viij = _EAij + EA” — Vinjw + §|Vw|zgij ,
so that
V2wl = a2+ 240 - Dag a4 (v
4 4 2 T
1
+ vazwvjw — 6R|Vw|2 — A?jvinjw

1
+ 8R0|Vw|2 .
Also, tracing (1.22),

1

1
Aw=—ZR+ |Vw|? + —Roe 2",

6
hence

1
(Vw, V(Aw)) = —E(Vw,VR) + (Vw, V|Vw|?)
1
+ 6<vw7 V(Roe™ "))
1
= —6<V’UJ, VR) + 2ViijVinjw

1
+ g(V’UJ, V(Roe_zw»
1

= (Vw, VR) - vazwvjw + Agjvinjw

6
1
— |[Vw|* + E(Vw,V(ROe_zw» .

(1.20)

(1.21)

(1.22)

(1.23)

(1.24)
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Therefore,

O'2(A)

-3
R

AV = 3pAV
_ 1 1 2 1 o2
— VU VR)p —3p | 1AP + 114°
1 o 1 2 1 2
— §A”A,L] - €R|VUJ| + 6R0|V’w|
1
+ E(Vw,V(ROezw))] .
Notice the term —%(Vw, Voa(A)) appearing in (1.17). since o = 1 in (1.13),
1 1
(Y, Voo (4) = 5V, V()
1 1
= —§(Vw,VR><p — §(Vw,V<,0)R.
If we substitute (1.26) into (1.17), then add (1.25), we arrive at (1.19).

Now let
F =R+ 24V .

(1.25)

(1.26)

In the calculations which follow, C' is a constant which depends at most on the quantities p,
“()0“02(B(p))7 ||90||02(B(p))7 ||w||cl(3(p)). Since 02(A) > 0 and R > 0, note that we can bound
the Ricci curvature by the scalar curvature; hence |Ric| S R, |A| S R, |E| S R. Also, observe
that by (1.22), |V2w| < C|A] + C < CR + C. With these facts in mind, from (1.13), (1.18),

and (1.19), we see that

valij - T”V¢VJR + 24:’TWV@V]V

1 1
> 3RAp — —(Vw,Vo)R + —R?
2 24

—CR?>-CR-C.
Note that
|Ap| = [e7?" Aoy + 2~ (Vow, Vo)
<0,
V| =e [Vop| < C,
thus

1
T;;ViV;F > ﬂzﬁ —CF*-CF-C.
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Using the inequalities —CF? > —%F3 —-C,-CF > —%F3 — C, we conclude

1
T;;V;V,;F > 4—8F3 -C. (1.27)

When o = 0 in (1.13) we still define FF = R + 24V; using (1.16) and (1.17) directly and
estimating as before, we find

1
Si;iViV;F > EF3 -C. (1.28)

The conclusion of Proposition 1.1 now follows from applying the maximum principle to
(1.27) and (1.28), after introducing a cut—off function 1 supported in B(p), and estimating the
maximum of nF'. Since the argument is quite standard, the details will be omitted. The result
is an estimate for the scalar curvature R in B(p/2); this implies a bound on |A|, and conse-
quently bounds on |V2w|, [Viw|, and |9;0;w|. O

The same argument can be applied to give the following result:

Corollary 1.3. Let go be a Riemannian metric on B(p) in R*. Suppose g = e*“ gy satisfies
02(Ag) = pre” " + 2,
R >0,
on B(p), where @1 > 0 and @3 > 0. Then there is a a constant

C = C(pllgollczB(py), lerllezBo)) s le2llozBep)) s lwllze(Bep)) s VWl (Bp)))
such that
V2wl g (B(p/2)) < C -

Applying the estimate of Proposition 1.1 to the sequences gy = e2Wk gk and gy = e*Pk gk

described above, we have

Corollary 1.4.
(i) For the dilated and rescaled sequence g = e***g& there exists a C11 conformal metric
g = e¥ds? with (a subsequence of ) wy, — w in C*# on compact subsets of R*, where

0 < B < 1. Furthermore, g satisfies

o2(Ag) =0,

R; >0, (1.29)

|Vw|(0) =1. (1.30)
(ii) For the dilated sequence g5 = e*** gk, there exists a C* conformal metric g = e**ds?

such that (a subsequence of ) wy, — w in C*# on compact subsets of R*. Furthermore,
after possibly rescaling, g satisfies
o2(4y)
Ra
R >0,

where Ao = 1(12)1=* and a = 0 or 1.

= Ao 5 (1.31)
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2. Solutions on R*, Part 1
In this section we prove the following uniqueness result.

Theorem 2.1. Suppose g = e?Vds? is a conformal metric on R* with w € CYt, satisfying

02 (Ag)
R,

0, (2.1)
0.

WV

Then w = constant.

Remark. As a consequence of the above theorem, we see that the limiting metric § = e?¥ds?,
defined as the C1-#-limit of the blow—up sequence described in Cor. 1.4(i), cannot occur.

Proof. Regularity considerations will complicate our arguments somewhat. We begin by
deriving an estimate which holds for arbitrary smooth conformal metrics on R?*; a limiting
argument will imply that the same estimate holds for C1'! metrics. To this end, fix p > 0
and let 7 denote a cut—off function supported in B(2p) satisfying n = 1 on B(p), |Vn| < p~ 2,

V2| < p~2. Let
[ w

B(2p)
J1
B(2p)

W =

denote the mean value of w on B(2p). Since
A, = —2V?w + 2dw @ dw — |Vw|?§
where 0 is the identity, we have

02(Ay) = 09(—2V2w + 2dw ® dw — |Vw|*§)
= e 4 2|VZw|? + 2(Aw)? + 4V2w(Vw, Vw) + 2Aw|Vw|?} . (2.3)

Using the Bochner identity
%A|Vw|2 = |V2w|* + (Vw, V(Aw)) ,
we can rewrite (2.3) as

02(Ay)e™ = —A|Vw|? + 2(Vw, V(Aw)) + 2(Aw)?
+ 4V2w(Vw, Vw) 4 2Aw|Vw|? . (2.4)
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Now multiply both sides of (2.4) by n*(w — w) to get

[w-moaa)etvnt = [ —tw-mavu
+ 2n*(w — W) (Vw, V(Aw)) + 2n*(w — @) (Aw)?
+ 4n*(w — W) V2w(Vw, Vw) + 2n*(w — @) Aw|Vw|?* .

(2.5)
Integrating by parts gives
[ —nttw = )AIVul = [ VP Al o)
= [ VPR snt - m) + 122w - w)| VP
+ 87> (Vn, Vw) + n*Aw]
= /—4n3An(w —0)|Vw|? = 120?|Vn* (w — @) |[Vw|?
= 87*(Vn, V)| Vul|* — 0| Vw|*Aw (2.6)
/2774(11) T (Vaw, V(Aw)) = /—2774(11) T (Aw)? — 2t Aw| Va2
— 80 (w — W) (Vn, Vw)Aw , (2.7)
/4174(11) — W) Vw(Vw, Vw) = /2774(11) —w)(Vw, V|Vwl|?)
_ / _on (w — W) Aw| V]2 — 294 |V
— 80 (w — @) (Vn, Vw)|Vwl|? . (2.8)
Substituting (2.6)-(2.8) into (2.5) we have
[w-mstag)etnt = [ —ardnt - w)vuf
— 120 (w — @) |Vn|*|Vw|? — 87> (Vn), V)| Vu|?
— 8n*(w — w)(Vn, Vw)|Vw|* — 87 (w — @) (Vn, Vw) Aw
— 3} | Vw|? Aw — 21* | Vuw|* (2.9)

The last three terms in (2.9) require special attention. First, integrating by parts we can
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write
/ —8n%(w — @) (Vn, Vw)Aw

:/—8173(11) — W) 0;nd;wo;0jw

= /8773 (w — W) 0;n0; O;wdjw + 8n* (w — W)0; Oind;wd;w
+ 8020, wOinO;wdjw + 24n* (w — W)9;nd;nd;wd;w

— [ 4w~ (V0 VIVWP) + 87w - ) V(Y Vo)
+ 81| Vw|*(Viy, V) + 24n* (w — @)|(Vn, V) ?

— [~ w A0l Vuf? — 4 [Tul(Va, Vo)

— 120%(w — @)|Vw|?|Vn|? + 8 (w — W) V1 (Vw, Vw)
+ 80 |Vw|*(Vn, Vw) + 24n*(w — w) |(Vn, Vw)[?

- / 4w — @) Ag|Val? + 4 |Vl (Y, Vo)

— 1202 (w — )| Vw|?| V| + 89 (w — @) V31 (Vw, Vw)
+ 24n* (w — @) |(Vn, Vw)|? . (2.10)

For the last two terms in (2.9) we use the scalar curvature equation
Aw + |Vw|> + tRe* =0 (2.11)
to conclude
[ 17wl a0 - 2 Vul!
— [ st 1VuP (-ITul - Re™) - 2w
= / 1Re*|Vw|*n* + n*|Vuw|* . (2.12)
Substituting (2.10) and (2.12) into (2.9) we arrive at
Jw-mostay)etnt = [ siantw - o)’
= 24n* (w =) |V *|Vw|* + 249* (w — @) (Vn, V) |?
+81° (w — W) V2(Vw, Vw) — 41> (Vi), V) [Vw|?

= 8n° (w — w)(Vn, V)| Vuwl|?
+ IRe® |Vul?n* + n*|Vu|* . (2.13)
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Using the properties of  we can estimate several of the terms on the RHS (2.13) in order to
conclude that

/%Re2w|Vw|2774 + V|t < /(w _ T)os(A)etv

v [ w—wlVuPet 4t [ -Vl
Alp) Alp) (2.14)

where A(p) = B(2p) \ B(p). In deriving (2.14) we have made no special assumptions about
the metric g = ¢>*ds?, other than smoothness (in order to justify the integration by parts).
We now begin to specialize to the case of interest.

First, note that if w is just C!, then (2.14) holds for any mollification of w. A limiting
argument then implies that (2.14) is equally valid for any C'*!-metric g = e?**ds?. Moreover,
if we assume that g satisfies (2.1) and (2.2), then

/774|Vw|4<0,0_2 / lw — (| V|20 + Cp? / w— TVl . (2.15)
A(p) Alp)

We now proceed to estimate the last two integrals in (2.15). First,

1/2 1/2
Cp2 / |w—w||Vw|2n2<cp—2< / |w—m|2> (/n4|w|4> L (216)

A(p) A(p) A(p)

By the Poincaré inequality on B(2p), we see that

Jw-wr< [w-wt<cp [ |vup.

A(p) B(2p) B(2p)

Let ¢ be a cut—off function supported in B(3p) satisfying ¢ = 1 on B(2p), |V¢| < pt
Referring back to (2.11), we have

/§2Aw + E2|Vuw|?* + %Rem{z =0.

Since R > 0,
/ £|Vul? < / —Aw
=/2§V§Vw
</%§2|Vw|2+2|w|2
=

/ 2Vl < Cp? .
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Therefore,
|Vw|? < Cp?, (2.17)
B(2p)
so that
/ (w —w)? < / (w—w)? < Cp*. (2.18)
A(p) B(2p)
Substituting this into (2.16), we conclude
1/2
Cp~2 / lw — @||Vw|*n? < C( / 774|Vw|4> . (2.19)
Alp) Alp)

For the last integral in (2.15) we have

1/2 1/2
et [ o-wivel <co ([ w-mpvue) ([ atvar) . e

A(p) A(p) A(p)

Referring to (2.11) once again, and arguing as before, we find

/(Aw + |Vw|? + $Re*)n*(w —w)* =0

N
[ vl -m? < [ ~swi-wp2
= /277(w —w)?VnVw
T 2(w - )| Vul?
< [ HvuPr-a)? + 490P w - o)
T Y VulPr(w - m)? + Vo2
N

[ivulrw-m2 s [ w-ut [ VP
A(p) B(2p)
Se°

the last line following from (2.17) and (2.18). If we substitute this into (2.20),

1/2
Cp~t / |w—@||Vw|3773<C(/774|Vw|4> . (2.21)
Alp) Alp)
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Combining (2.15), (2.19), and (2.21), we conclude

1/2
/774|Vw|4 <C< /n4|Vw|4> : (2.22)

A(p)

From (2.22) it easily follows that w = constant. First, notice that (2.22) implies that

/ Vul* < oo .
R4
In particular,
/ |Vuw|* = / Vw|* -0 as p— o0,
Alp) B(2p)\B(p)
which by (2.22) implies |Vw| = 0. O

3. Solutions on R*, Part 2

In this section we provide a classification of all solutions on R* of

RCM
g= uds?, (3.1)

where \, = %(12)1_0‘, a=0or1l, and if « = 1 we assume, in addition, that R > 0. As we
shall see, all such solutions are obtained by pulling back the round metric on the sphere (and
its images under the conformal group) under stereographic projection.

Our method is inspired by the corresponding uniqueness result of Obata [Ob] for the
scalar curvature. Indeed, to emphasize the parallel between our arguments, it will be helpful
to partially reproduce his. To this end, suppose g = u2gy is a conformal metric on S*, where
go is the round metric. Assume that g has constant scalar curvature.

To begin, we write the formula which expresses the trace-free Ricci tensor E of g in terms
of u:

E = —2u_1V§u +2ut Agug . (3.2)

Note that the Hessian and Laplacian in (3.2) are with respect to g, not go. If we pair both
sides of (3.2) with uE and integrate over S* we obtain

/|E|2udvolg = —2/g(E, Viu)dvoly .
54 51
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Note that the second terms in (3.2) vanishes when we pair with uF because E is trace—free.

We now apply the divergence theorem to conclude

/|E|2udvolg = 2/9(5E, du)dvol, .

S4 S4

The contracted second Bianchi identity says that 0F = idR, where R is the scalar curvature.

Since R is constant, F is divergence—free. Thus

/|E|2udvolg =0.
S4

The uniqueness result follows, since (3.3) implies that ¢ has constant curvature.

(3.3)

In our setting, we need a tensor which plays the same role that the trace—free Ricci tensor

does in Obata’s proof. The first step in describing such a tensor is the following result.

Proposition 3.1. (See [Gu, Thm. B]). Suppose (M*,g) is locally conformally flat. Define

the symmetric two—tensor L by
L=3|E’g+ ¢RE — E*.
Then L satisfies
trgL =0,

Proof. Just take v = 1 and y3 = —1—12 in [Gu, Thm. B].

Now define the tensor
7o =1 2220 F

Lemma 3.2. If g = u?ds? satisfies (3.1), then Z% satisfies
trqyZ% =0,
0% =0

Proof. (3.7) is obvious from (3.4). Using (3.5),
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since « = 0 or 1. O

For our proof we will need two additional sharp inequalities involving Z¢.

Proposition 3.3. Assume 03(A) >0 and R > 0. Then

(i) g(Z*, FE) > 0, with equality if, and only if, E = 0.
(i) |Z°]2 < LRg(2°, E).

Proof.
(i) By (3.6),
o2(A
o(2°,8) = g(1, 1) ~ 272
A
— LR|IEP — trE® - 2a%|15|2 . (3.9)
Using the sharp inequality |[trE3| < %|E|3, we have
o 1 2 1 3 02(4) o
9(2°,B) > LRIBP — E|EP — 272 7]
o2(4)
= §RIEP - LB - 2a Vi (—3|EP” + 5z R?)
=L (2—-a)R|E? - L|E? + a@
12 V3 R

= §(1 - a)R|EP - B2 Bp?

o 4 1 3, 1 P22
+ 2 (1BI* = HZRIEP + 5 R B%)
=GB (-E| + 555 R)?
—I—a@ﬂE— —L_R)?. (3.10)
R 2v/3

Now,
0< 205(4) = ~|B]? + 55 = (~ |B| + 55 R) (1] + 555 F)

so —|E|+ ﬁR > 0. Since a = 0 or @ = 1, both terms on the RHS of (3.10) are non-negative,

and their sum vanishes if, and only if, £ = 0.

(ii) We have

A)? A
1Z%)2 = |L]? + 4a2702}(22) |EB? — 404—02](% )g(L,E) (3.11)
while
LI> = |[E*) — |E|* + % R*|E|* — $RirE® . (3.12)

We will need the following lemma:
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Lemma 3.4.

|B?? < 518" (3.13)

Proof. This amounts to a Lagrange—multiplier problem. Fix a point and diagonalize E:

A1

Since E is trace—free,

It suffices to establish (3.13) assuming |E|? = 1. Therefore, we must show that

3 4

subject to the constraint
3 2
AT+ A2+ A%+ <21AZ> =1.
1=

The associated Euler-Lagrange equation is then

Aj+ (é Ai>3 = p (Aj + i Az) : (3.14)

g =1,2,3; where y is the Lagrange multiplier.
First, suppose

3
A+ 2N #0 (3.15)
i=1
for each j = 1,2,3. Using the common value of y from (3.14) we find

(N

=22 -\ (2N )2
PVESPY =N EN) + (BN)7,

so that

A2 = M (EN) + (B0)2 = A2 = \(BA) + (BA)?

for all 7, k. Thus,
)\1()\2 + )\3) = )\2()\1 + )\3) = )\3()\1 + )\2) . (3.16)
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If one of the eigenvalues is zero, say A\; = 0, then by (3.16) we see that another eigenvalue
must vanish — say Ay = 0. Then A3 = i%, Ay = —Ag, and (A1, A2, A3, \y) = % However,
if \; # 0, then from (3.16) we conclude that A1 = Ay = A3, and f(A1, A2, A3, M) = 1—72

Returning to the assumption (3.15), if for some j, say j = 3, we have
A3+ > A =0,
then rewriting (3.14) for j = 1,2 we find

A= Af = (A — As)

If Ay = A3, it follows that Ay = —3A3. If Ay = A3, it follows that Ay = —3)\3. In either case F

is conjugate to the matrix
A

—3X
If A1 # A3 and Ao # A3, we find, using the common value of p,

)\2()\2 + )\3) = )\1(>\1 + )\3) .

Hence either A\; = Ay, so that A3 = —A; and f(A1, Aa, A5, Aq) = % < 1—72, or A1 + Ao = — g3,

then )\3 = 0, and )\1 = —>\2. Then f(>\1,>\2,>\3,>\4) = 2)\14 with |E|2 = 2)\12 = 1. Thus
FOL A2, 03, 0) = 3 < 55 U

Substituting (3.13) into (3.12), we find
IL|? < 3EI* + L R|E|® — i RirE®. (3.17)
Thus, from (3.11),

1Z2°1? < 31B* + 55 R?|E)” — §RUrE®
0(A)? 02(A)
R2 R

=YE*+ LRYE)? - tRtrE®

2 A A
+ 40222A) |E|? —404—0'2](12 ) g (Z“ +2a02](% )E,E>

+ 40? |E]? — da g(L,E)

R2
= 3|EI* + % R*|E|* — tRirE®
202(4)% o2(4) o
—4a® = B — da=—=g(2", E)

<iE*+ £R*E)? - iRtrE®.
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Therefore,
127 = §R9(Z", B) < 1BI* = 5 R2EP + Soa(A) B = 0. -

We are now prepared to prove the classification described at the beginning of the section.
First, recall that when a = 1 in (3.1) we assume that R > 0. However, if @ = 0, it turns out
that the scalar curvature must be positive as well. Indeed, in either case it must be strictly
positive.

Lemma 3.5. Suppose g = u?ds? satisfies (3.1) with Ao = 3(12)*=*, a =0o0r 1, and ifa = 1
we assume, in addition, that R > 0. Then the scalar curvature satisfies

R>12 (3.18)

Proof. If R > 0, then (3.1) implies
SR > 02(g) = Ao (3.19)

and (3.18) follows. Therefore, our only task is to show that R > 0 when a = 0.

Note that (3.19) implies that either R > 12 or R < —12 on R*. To rule out the latter
case, we appeal to the scalar curvature equation

Au-i—%Ru?’:O.

If R < —12, then
2u < Au . (3.20)

Let p > 1 and 71 denote a cut—off function supported in B(2p) satisfying n = 1 on B(p),
|Vn| < p~!. Multiplying both sides of (3.20) by un* and integrating we find

/2u4774 < /un4Au =/—4n3uV77Vu—n4|Vu|2

< /(4772u2|V77|2 + 1Y |Vul’) = n*|Vul?

1/2 1/2 1/2

5 p—2/ T]2U2 5 p—2 /n4u4 / /7]4U4 .
(3.21)

p<lz|<2p p<lz|<2p p<lz<2p p<lz|<2p

N

Now, (3.21) obviously implies that v € L*(R?*). But this in turn implies that the RHS of
(3.21) approaches zero as p — oo. Since u > 0, we conclude that R cannot be negative.
O
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Theorem 3.6. Let g = u?ds® be a solution to (5.1), where « = 0 or 1. Then u(x) =
(a|z)? + bizt +c) ™ for constants a,b;,c. In particular, g is obtained by pulling back to R* the
round metric on S* (or its image under a conformal map).

Proof. To begin, fix p > 1 and let n denote a cut—off function supported in B(2p) satisfying

n=1on B(p), |Vn| < p~t. As outlined above, we write the formula for the trace—free Ricci
tensor E of ¢ in terms of wu:

E=—-2u"'Viu+ $u ' Agug . (3.22)

Notice that in (3.22), the Hessian and Laplacian are with respect to g, not the Euclidean
metric. Next we pair both sides with —un?Z? to get

/g(Za,E)un2dvolg = /_2g(za,v§u)n2duolg. (3.23)

Note that in (3.23) we have used the fact that Z¢ is trace-free. Applying the divergence
theorem,

/g(Za,E)unzdvolg = /29(5Z°‘,du)772dv0lg
—I—/ZZ“(Vgu,Vg(nz))dvolg.
By Lemma 3.2, 62 = 0. Thus
/g(Za,E)unzdvolg = /ZZO‘(Vgu, V,(n?))dvol,,
=/4Z°‘(Vgu, V4n)n dvol,
< /4|Z°‘||Vgu||Vg77|17dvolg.
Using Proposition 3.3 (ii), we conclude
/g(Z"‘,E)un2 dvoly < % /Rl/z(g(Zo‘,E))1/2|Vgu||Vg77|17dvolg .

By the Schwartz inequality,

1/2
/g(Z“,E)unzdvolg < %( / g(Z“,E)unzdvolg>

supp|Vn|

1/2
X (/ R|Vgu|2u_l|Vg17|2dvolg> , (3.24)
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which, of course, implies
/g(Za,E)un2dvolg S /R|Vgu|2u_1|vg77|2dvolg. (3.25)

We now rewrite the integral on the RHS of (3.25) in terms of the Euclidean metric, using the
identities

IV ul? = u=?|Vu|?,

Vyn|? = u™2|Vn|?

dvoly = utdzr .

Thus,
/R|Vgu|2u_1|Vg77|2dvolg = /R|Vu|2u_1|V17|2da;.

Since |Vn|? < p~2 and suppn C B(2p) \ B(p), this implies

/R|Vgu|2u_1|vgn|2dv0lg <p? / R|Vul|*u™tdz . (3.26)
B(2p)\B(p)
We claim that the RHS of (3.26) is bounded independent of p. Assuming this for the moment,
we conclude by (3.25) that
/g(Z"‘,E)udvolg <00 .
R4
In particular,
/ 9(Z%, E)udvoly -0 as p—o00. (3.27)
supp|Vn|

Combining (3.27) with (3.24) and the boundedness of the integrals in (3.26) we conclude
/g(ZO‘,E)un2 dvoly -0 as p—o00.

Therefore, g(Z%, E) = 0 on R*, so by Proposition 3.3(i), £ = 0. The conclusion of Theorem
3.6 now follows from standard arguments. 0

We now return to the estimate in (3.26)

Proposition 3.7. There is a constant ¢y such that for any p > 0,

R|Vu|*u™tdz < c1p? . (3.28)

B(2p)\B(p)
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Proof. It will simplify our calculations somewhat if we let © = € and establish the equivalent
estimate

/ Re®|Vw]? < c1p? .
B(2p)\B(p)
If g = e?*ds?, then
A= -2V%w + 2dw ® dw — |[Vw|?J ,

where 0 is the identity. Therefore,

02(A) = 09(—2V?w + 2dw @ dw — |Vw|?0)
= e~ {-2|V2w|? + 2(Aw)? + 4V:w(Vw, V) + 2Aw|Vw|?} .

(3.29)
Using the Bochner identity
FAVP = V2wl + (Vw, V(Aw)) ,
we rewrite (3.29) as
o3(A)e* = —A|Vw|? + 2(Vw, V(Vw)) + 2(Aw)?
+ 4V-2w(Vw, Vw) + 2Aw|Vw|?* . (3.30)

Now, fix p > 0 and denote A(p) = {z € R*|p < |z| < 2p}. Let 0 be a cut—off function
satisfying
=1 on Alp),
0=0 on B2,
0 =0 outside B(3p),
VOl <p™,
V20 < p2

Multiplying both sides of (3.30) by #*e~%, we find

/ Olos(A)edw — / 0t A|Vw]? + 2% (Vuw, V(Aw))

+20%¢™ " (Aw)? + 460%™ V2w(Vw, V)
+ 260%™ Aw|Vwl|?
=LA+ I+ I+ 15 . (3.31)

We now analyze several of the terms in (3.31) more carefully.
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Integrating by parts gives
I = / —0*e Y AlVw|?

=/—A(946_w)|Vw|2
:/—[A(04)6_w +0*Ale™™) +2(V(0*), V(e™™))])|Vw|?

- / CA0Ye [ Vul? — 04 —e" Aw + = | V|| Vuwl?
—2(V(0"),V(e™™))|Vuw/|®
= / ~A(0He | Vw|® + 0% Aw|Vw|* — 0% " |Vuw|*

+ 27V (), Vw)|[Vuw|? .
Next,

I, = /2946_“’(Vw,V(Aw)>
- / _20e= (Aw)? — 204(V(e=), Vo) Aw
—2e7(V(0*), Vw)Aw
= /—2946_“’(Aw)2 + 20% e |Vw |2 AY
—2e7(V(0*), Vw)Aw .
For the last term above we integrate by parts again:
/—26_“’(V(6‘4), Vw)Aw
= / —2e_w8i(04)8iw8k8kw

- / 26~ 0,(04) DDyl w + 2~ 940 (0)Dywdyuw
2% (=)0 (04) Dy
- / e=0,(6%)0, V2 + 26~ V2(04)(Vw, V)
—2¢7"|Vw|*(V(0*), Vw)
— [~ a0V ul - e B 0Y Vi
+2e7UV2(0*)(Vw, V) — 2e* |Vw|*(V(0%), Vw)
- / e A0Y)| Vw2 + 26 V2(04)(Vw, V)
— e Y |Vw|*(V(0*), Vw) .

25

(3.32)
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Thus,
I, = /2046_“’(Aw)2 + 260%™ Aw|Vwl|?
—eTYAOY|Vw|? + 27 V(04 (Vw, Vw)
— e Y |Vw|X(V(6*), Vw) . (3.33)
Finally,

Iy = / 460%™ V2w (Vw, Vw)
=/294e_wVwV|Vw|2
:/—2046_wAw|Vw|2 — 204V (e™Y), Vw)|Vuw|?
—2e"(V(6*), Vw)|Vw|?
:/—2046_“’Aw|Vw|2+2046_w|Vw|4
—2e”Y(V(0%), Vw)|Vw|? . (3.34)

Combining (3.31)-(3.34) we find

/6‘402(A)63w = /304e_wAw|Vw|2 +0te™ | Vw|*

—e7Y(V(0Y), Vw)|Vw|? + 2¢~V?(6*)(Vw, V)
—2A(0%) e |Vw|? . (3.35)

Now, as the scalar curvature satisfies
Aw + [Vwl> + tRe* =0,

we have
Aw = —|Vw|* — tRe*™ |

and substituting this into the first term in the RHS of (3.35) we find

/0402(A)63w = /—%04Rew|Vw|2 — 260%™ |Vuw|*

—e7(V(0Y), Vw) | Vw|? + 27 V2(0*)(Vw, Vw)
—2A(0%)e™ Y| Vwl|? .
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Using the fact that oo(A) > 0, and the properties of 6, we conclude
/%04Re2w|Vw|2 + 260%™ | Vw|*

< /,0_1036_“’|Vw|3 +p 0% |Vl .

(3.36)
By Holder’s inequality,
3/4 1/4
/p_103e_w|Vw|3 <pt (/046_w|Vw|4> ( / e_w> .
supp 0
Using the inequality zy < %64/3.’54/3 + %6‘4y4, we have
/p_103e_w|Vw|3 < %64/3/046_W|Vw|4 + 277! / e V. (3.37)
supp 0
Similarly,
1/2 1/2
/p—202e—w|vw|2 < P_2 (/04e—w|vw|4> ( / e—w)
supp 0
<< /946—“’|Vw|4 PR / e (3.38)
2 2e
supp 6

Substituting (3.37) and (3.38) into (3.36), and choosing ¢ > 0 sufficiently small, we conclude

/ R|Vu|*u™"! = / Re¥|Vuw|?

B(2p)\B(p) B(2p)\B(p)

<pt / e v . (3.39)

Then (3.28) follows from (3.39) and the following technical lemma:
Lemma 3.8. If g = u*/"2ds? = e2“ds? is a conformal metric on R" with scalar curvature
R > ¢y > 0, then there is a constant cy such that for all |x| sufficiently large,

(n

ul(z) =e 2 w(a) < colz" 2.
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Proof. The scalar curvature equation

— (n=2) p 22
—Au = 4(n_1)Ru z
is invariant under the Kelvin transform = — . Thus, if u(z) = M%u (#), R\(:v) =

R (ﬁ), then u satisfies

(n—2) ponez

A= 2
TP

on R™ — {0} .

Since ﬁ(:r) > ¢ > 0, it follows that
~ nt2
—AU > c,un on R™ — {0} .
Then the arguments of [KMPS, Lemma 1] imply that
—Au >0

on R™ in the sense of distributions. From this we conclude that u(z) > ¢; > 0 on B(1)\{0}. O

4. The Proof of the main theorem

The proof of the main theorem begins by assuming that for some sequence of conformal
metrics {gr = e?“kgo} the bound (0.7) fails. We then dilate as described in section 1 to obtain
a sequence {gy = T7 (e*"kgo) = e*“*gf} on R* satisfying

max{e“* + |Vowg|} = O 4+ |Vow (0)] = 1. (4.1)

Recall that if lilgn e+ = 0, then by Cor. 1.4(i) (a subsequence of) the rescaled sequence

Wi = wy, — wi(0) converges to w € CHH(RY), with g = e*™ds? satisfying

(4.2)

However, Theorem 2.1 implies that W = constant, contradicting (4.2). Consequently, we may
assume that limsup e”*(®) > (. In this case, by Cor. 1.4(ii) (a subsequence of) wy — w €
C>(R*). After rescaling if necessary, the limiting metric g = e?*ds? satisfies

02(Ag)
Ra
Ry >0,

:>\o¢7
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where Ao = $(12)7® and a = 0 or 1. According to Theorem 3.1, g is obtained by pulling
back the round metric on S* via stereographic projection. In particular, it follows that

/Uz(Ag)d’l)Olg = 1672, (4.3)
R4
/%dvolg = ng, (4.4)
R4
8
/dvolg =37 (4.5)
R4

At this point, it will simplify the exposition if we consider the cases where @« = 0 and o = 1
separately, beginning with a = 0.

Now, given any fixed ball B(p) C R?,

/ o2 (Ags )dvol; — / oa(A, ) dvol, (4.6)
B(p) B(p)

as k — oco. On the other hand, since g = T

/ 02 (Agz )dUOly; = / Te*k (02(Ag, )dvolg, )
B(p) B(p)

= / 02(Ayg, )dvoly,

Te,, (B(p))

< /az(Agk)dvolgk. (4.7)

M4

gk, we have

Since the RHS of (4.7) is conformally invariant, this implies

/ o2(Agx)dvolyx < /az(Ago)dvolgo. (4.8)

B(p) M4

If we let k — 00 in (4.8), then let p — oo, it follows from (4.6) and (4.3) that

1672 < / 02(Ag, )dvoly, . (4.9)
M4
However, by [G, Theorem B], [ 02(Ay,)dvol,, < 16m% with equality if, and only if, (M*, go)

is conformally equivalent to the round sphere. Thus, the bound (0.7) holds unless (M*, go) is
conformally the round sphere, as claimed.
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When a = 1 we argue similarly. First, for any fixed ball B(p),

A —1/2
(/ 72 gk)dvo@;)( / dvolg;>
Rgx

B(p) B(p)

—>< / %?dvo@)( / dvolg>_l/2 (4.10)

B(p) B(p)

as k — oo. By the Schwartz inequality,

A x —-1/2
</ 72 gk)dvolglt)(/ dvolg;>
Ry

B(p) B(p)

-1/2 A ~1/2 ~1/2
< (/ Uz(Ag;)dvolg;> (/ 02;2291»')(&)0!%) (/ dvolgz> :
at (4.11)

B(p) B(p) B(p)

From the definition of o5 we notice

Uz(Ag,t) _ 1 [—1|E *|2—|—iR2 ]
R2, Rz | 27" T o4k
9k 9k
< 1
X 247

which by (4.11) implies

02(Agr) —1/2 1 ~1/2
/ Ry dvolg;></ dvolg;> <m(/ az(Ag;)dvolg;> .

B(p) B(p) B(p)

By (4.7) and (4.8) we conclude

(/ o2(Ayp) o )(/d l )‘”Z ! (/ (A, yavol )‘”2 (412)
Ry,t VOl g* VOl gx \2\/6 02(Ag, )avolg, . .

B(p) B(p) M4

If we let k — 00 in (4.12), then let p — oo, it follows from (4.10), (4.4), and (4.5) that
4 3 -1/2 1 1/2
<§7I'2> (§7I'2> < Wg (/ O'2(Ag0)d1)0lgo> .
M4

In other words, (4.9) holds. Once again, we see that (0.7) holds unless (M*, go) is conformally
the round sphere. This completes the case @ = 1 and the proof of the main theorem.
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To prove Corollary A when a = 0, we first observe that by (0.7), w is bounded from
above. We integrate (0.6) with respect to the volume form of g = €2%gy:

/az(Ag)dvolg :/fdvolg :/]"64“’dv0lg0 (4.13)

by the conformal invariance of the integral on the left in (4.13), we see that

0< /Uz(z‘lgo)dvolg0 = /0’2(Ag)dvolg < I |lsovol (go)et ™ax .

Therefore, maxw > C(go, || f]loo)- Since (0.7) implies |Vow| < C(go, ||f|lc2), we also know
that
| maxw — minw]| < Clgo, |fllcs), (4.14)

and (0.8) follows.

When a = 1, we integrate (0.6) once again:

/az(Ag)dvolg = /Rfdvolg < HfHoo/Rdvolg . (4.15)

Using the scalar curvature equation, and integrating by parts, we find

/Rdvolg = /Re4wdvol90

= /(—GAow — 6|Vowl|?® + Ro)e** dvoly,

= /(1262“’|V0w|2 + Roe?™)dvoly,
< Clg0, I fllg2)e? ™. (4.16)

Note that in deriving (4.16) we used the bound (0.7). From (4.15) and (4.16) we conclude
maxw > C(go, ||fllcz). Appealing to (4.14) once again, it follows that |w||s < C(go, ||f]lc2)-

5. Existence of solutions

In this section, we prove Corollary B.

We will apply the degree theory developed for fully nonlinear equations in [L]. The key
aspect of this theory is that the degree remains invariant under continuous deformations of
the equation as long as there is a uniform a priori estimates for all solutions of the equation,
and a uniform bound for the ellipticity.

Given (M*,go), with the metric gy satisfying the conditions (0.5), the main result of
[CGY] asserts the existence of a conformal metric g = e*gq for which the equation

02(44) = f (5.1)
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holds for some positive function f. Assume in addition that (M*?,gg) is not conformally
equivalent to the standard 4-sphere, then the main theorem of this paper asserts the existence
of an a priori bound for any solution w of the equation. In particular, given a (smooth) positive

2w g4 of the equation

function h, there is a constant ¢ independent of t so that all solutions g = e
03(Ag) = tf + (L= t)h ()

with R(g) > 0 satisfies the bounds

lw

|4,a < C, (5 2)
Sii(9)&& = L1E”. '

We denote by the set O,

O, = {w € C**|(5.2) holds } N {w € C**~

o2(Ag,) > 0; Ry, > 0}.

We denote the degree of the equation (2;) by deg(3;, O, 0). The degree theory of [L] implies
that
deg(Xg, O.,0) = deg(X1, O,,0). (5.3)

We need to do a calculation verifying that for ¢ = 1 the degree of the equation is non-zero.
In order to do this, we deform the equation to one whose degree is easy to determine. First,
it is useful to re-write the equation (5.1) in a suggestive form. Suppose g = ¢** gy, denote

M;;(w) = 25’?]- + 2V?V?w — 2A0wg?j — ZVQwV?w. (5.4)
Then, after some computation, the equation (5.1) may be written in the form
—VH{M;j(w)Viw} + 02(Ag,) = 02(Ag)e™™ = fe*. (5.5)
It is important to note the identity
M;j(w) = S;j + S,?j + |V0w|zg?j

so that it is clear that when both o2(A44) > 0, R, > 0 and 02(A4y,) > 0, Ry, > 0, then M;; is
positive definite.

It is also convenient to re-formulate the equation (5.1), on account of the conformal
covariance property, using the solution metric g of the equation as the background metric:

—Vi{Mij(v)Vjo} + f = fe* (5.6)

so that v = 0 is a solution to this equation satisfying R > 0.
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We now use the following deformation:
My (0)V0} + 1 = a4y )e = (1= 0)f [ et s efet (5.7)

where [ e’ = [e*”dvol,. We label this equation by I';. When ¢ = 1 we recover the equation
(5.6), and when ¢t = 0 we have the ”linear” equation

VM) 1= f [ et (5.8)

To analyze the equation (5.8), we integrate it over the manifold to find that [e*'dvol, = 1.
Hence the equation reduces to
_vz{Mzg (’U)Vj’l)} =0.

By the positive definiteness of M;;, v = 0 is the unique solution. To calculate the degree of
this equation, we assume for the moment that we have established the a priori estimates for
all solutions of the equations I'; for all 0 < ¢ < 1; thus deg(T'1, O¢,0) = deg(Ty, O¢,0).

We need to find the linearization of the equation (5.8) at the unique solution v = 0:
Lio=—-28;;V;V;i— f/e4”41')dvolg
= —25;;V;V;0 — 4f/1')dvolg . (5.9)

To see that £ has no kernel, we set Lo = 0. Then upon integration we find [ pdvol, = 0,
and the maximum principle shows ¢ = 0.

If p is an eigenvalue of £, say with eigenfunction ¢; then upon integration

4 / Fdvol,)( / pdvol,) = / pdvol, .

So either p = —4 [ fdvolg or [ @dvol, = 0. In the latter case, we can multiply equation (5.9)
by ¢ and integrate to conclude that p > 0. Of course, constant functions ¢ are eigenfunctions
with eigenvalue —4 [ fdvol,. Hence deg(T'o, 2.,0) = —1.

To complete this argument, in the remaining part of this section we will prove a prior:
estimates for solutions of the equation I'y which verify the condition R > 0.

A preliminary observation is the volume bound
c1 < /e4vdvolg < e (5.10)

for solutions of the equation I'y , where ¢, co are constants with ¢; = ¢;(maxf,inff).
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An immediate consequence is the bound for the mean value

U= /UdUOlg <ec. (5.11)

We divide our consideration of I'; into two cases: (I) 0 <ty <t < 1, and (II) 0 < ¢ < o,
where tg is to be determined later.

Case I: 0 < tg <t < 1. We first observe that from (5.7)

oa(A,,) = (1 —t)fe_4“/e4” +tf. (5.12)

Thus o3(A4,,) > to(inf f). We claim that all solutions of (5.12) are uniformly bounded in C*.
Suppose this is not the case, we will modify the blowup argument in section one of this paper
to obtain a contradiction. Assume that there is a sequence {v} with sup(|Vug| + e”*) — oo.

2’[)],;

Denote g = e*"*g and let

fi = 02(Ag,) = (1 — ) fe= " / My if

Choose Py to be the maximum point of |Vvg| + e on M, and ¢, — 0 as in section one.
Denote vy ¢, = T, vi + loge, so that

(VU | + €7k

z=0 = L.

Again, there are two possibilities depending on whether limy,_, o e¥%<«(©) = 0. We first observe
that if limg_,o €?(© = §, > 0 then vy (Py) — o0, so that denoting for simplicity gx =
e’k g, for the dilated metric o2(Ay, )(0) > ¢tf(0), and a subsequence converges to a solution
of the equation o2(4,_) = tf(0) on R*. By Theorem 3.6 and the argument in the proof
of the main theorem in section four, this implies that M is conformally equivalent to S*, a
contradiction to our assumption.

The other possibility is that limg_,o e”*< (®) = 0. In this case, |Vg,e, (0)] = 1; as before
we rescale the dilated sequence

6ka5k = Vk,ep, — Vk,ep (0) (513)

Then denoting by gr = gs, ., We have 02(4g,) = fr, with
fr = 02(Ag,) = (T2, /)1 = t)( / et )epe e 4 petvres O], (5.14)

Because of the bound (5.10), we can apply Corollary 1.3 to obtain bounds (on any fixed
ball) on the second derivatives of v ,. Therefore o5, — v in C1* on compact sets. Since
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the RHS of (5.14) approaches 0 as k — oo, the limiting metric § = e**ds? satisfies 02(A4z) = 0.
It follows from Theorem 2.1 that v is a constant; but this contradicts the assumption above
that |Vug, (0)] = 1 as K — oo. Thus we have the a priori bound for solutions of I';, as
claimed.

CaseIL0<t<ty<1

In this case we will prove directly that the metric g, satisfying the equation (5.7) has
||v||c4.« norm bounded for some a > 0.

To do this, we first recall a special case of the Trudinger-Moser inequality ( [M], [F]): On
(M*, g), there exists some constant cy so that for all v € W*(M*), we have

|v — 1]\ 4/3
< .
/exp <C4 Do) ) dvoly < ¢y, (5.15)

1/4

where ¢4 = 4|53|4/37 U= Gvdivojig and D(’U) = <f |V’U|4>

Multiply the equation (5.15) v — 7 and integrate; we get

/(sijvwvju+§ijvwvjv+|w|4)dvozg :/f(v—U)(l—t)/e4v+t/f(v—6)e4“. (5.16)

The concavity of the logarithm implies:

< (supf)(/e4”> (log/eg’“’_a| —|—45> . (5.17)

Using the simple inequality

C4  4/3 4
ot < Dif3 t*° +aD
where
( 15 )3(5 15 )
o = [ [
404 404 ’
we find

_ —Tl\4/3
log/e5|”_”| < log/exp <C4<|U,#U|> +aD4>

< o+ aD?. (5.18)
Combine (5.17), (5.18) and substituting into (5.16), recall (5.12) and (5.13), we get

D* < ¢+ te(cp + aD?).
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Thus for t < tg sufficiently small, we find D < ¢. As a consequence,

/641) _/6—4'0 — /64(11—5) _/6—4(1)—5) < CecD <c.

We find from (5.12) that
6—45 S /641) S c.

Hence —c; < < ¢. The positivity of Ry, then yields a lower bound for v.

From the expression of o5(A,,) in (5.14), we can then apply the argument of section 5
in [CGY] to conclude that there is an a priori estimate for ||v||y2.» for some p > 4; hence
||v]|cr.a < ¢ for some constant ¢. At this point, the regularity theory of Evans [Ev] and Krylov
[Kr| applies to show that we have uniform bounds:

30'2

||'U||2,a < C,and S?,g > ? > c.

The uniform ellipticity of the equations then easily yields

[vll40 < e

This finishes the proof of the a priori estimate for Case 11, hence for the equation I';, and
consequently the proof of Corollary B.
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